首页资源分类嵌入式系统 > OMAPL138 C6-Integra™ DSP+ARM® Processor

OMAPL138 C6-Integra™ DSP+ARM® Processor

已有 445042个资源

下载专区

上传者其他资源

    文档信息举报收藏

    标    签:OMAPL138

    分    享:

    文档简介

    OMAPL138 C6-Integra™ DSP+ARM® Processor

    文档预览

    OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 OMAP-L138 C6-Integra™ DSP+ARM® Processor Check for Samples: OMAP-L138 1 OMAP-L138 C6-Integra™ DSP+ARM® Processor 1.1 Features 12 • Highlights – Dual Core SoC • 375/456-MHz ARM926EJ-S™ RISC MPU • 375/456-MHz C674x Fixed/Floating-Point VLIW DSP – Supports TI’s Basic Secure Boot – Enhanced Direct-Memory-Access Controller (EDMA3) – Serial ATA (SATA) Controller – DDR2/Mobile DDR Memory Controller – Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface – LCD Controller – Video Port Interface (VPIF) – 10/100 Mb/s Ethernet MAC (EMAC) – Programmable Real-Time Unit Subsystem – Three Configurable UART Modules – USB 1.1 OHCI (Host) With Integrated PHY – USB 2.0 OTG Port With Integrated PHY – One Multichannel Audio Serial Port – Two Multichannel Buffered Serial Ports • Dual Core SoC – 375/456-MHz ARM926EJ-S™ RISC MPU – 375/456-MHz C674x Fixed/Floating-Point VLIW DSP • ARM926EJ-S Core – 32-Bit and 16-Bit (Thumb®) Instructions – DSP Instruction Extensions – Single Cycle MAC – ARM® Jazelle® Technology – EmbeddedICE-RT™ for Real-Time Debug • ARM9 Memory Architecture – 16K-Byte Instruction Cache – 16K-Byte Data Cache – 8K-Byte RAM (Vector Table) – 64K-Byte ROM • C674x™ Instruction Set Features – Superset of the C67x+™ and C64x+™ ISAs – Up to 3648/2746 C674x MIPS/MFLOPS – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions • C674x Two Level Cache Memory Architecture – 32K-Byte L1P Program RAM/Cache – 32K-Byte L1D Data RAM/Cache – 256K-Byte L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2) • Enhanced Direct-Memory-Access Controller 3 (EDMA3): – 2 Channel Controllers – 3 Transfer Controllers – 64 Independent DMA Channels – 16 Quick DMA Channels – Programmable Transfer Burst Size • TMS320C674x Floating-Point VLIW DSP Core – Load-Store Architecture With Non-Aligned Support – 64 General-Purpose Registers (32 Bit) – Six ALU (32-/40-Bit) Functional Units • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle – Two Multiply Functional Units • Mixed-Precision IEEE Floating Point Multiply Supported up to: – 2 SP x SP → SP Per Clock – 2 SP x SP → DP Every Two Clocks – 2 SP x DP → DP Every Three Clocks – 2 DP x DP → DP Every Four Clocks • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. 2 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and Program Redirection • Software Support – TI DSP/BIOS™ – Chip Support Library and DSP Library • 128K-Byte RAM Shared Memory • 1.8V or 3.3V LVCMOS IOs (except for USB and DDR2 interfaces) • Two External Memory Interfaces: – EMIFA • NOR (8-/16-Bit-Wide Data) • NAND (8-/16-Bit-Wide Data) • 16-Bit SDRAM With 128 MB Address Space – DDR2/Mobile DDR Memory Controller • 16-Bit DDR2 SDRAM With 512 MB Address Space or • 16-Bit mDDR SDRAM With 256 MB Address Space • Three Configurable 16550 type UART Modules: – With Modem Control Signals – 16-byte FIFO – 16x or 13x Oversampling Option • LCD Controller • Two Serial Peripheral Interfaces (SPI) Each With Multiple Chip-Selects • Two Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Interfaces • Two Master/Slave Inter-Integrated Circuit (I2C Bus™) • One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth • Programmable Real-Time Unit Subsystem (PRUSS) – Two Independent Programmable Realtime Unit (PRU) Cores • 32-Bit Load/Store RISC architecture • 4K Byte instruction RAM per core • 512 Bytes data RAM per core • PRU Subsystem (PRUSS) can be disabled via software to save power • Register 30 of each PRU is exported from the subsystem in addition to the normal R31 output of the PRU cores. – Standard power management mechanism • Clock gating • Entire subsystem under a single PSC clock gating domain – Dedicated interrupt controller – Dedicated switched central resource • USB 1.1 OHCI (Host) With Integrated PHY (USB1) • USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High-/Full-Speed Client – USB 2.0 High-/Full-/Low-Speed Host – End Point 0 (Control) – End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx • One Multichannel Audio Serial Port: – Two Clock Zones and 16 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable – FIFO buffers for Transmit and Receive • Two Multichannel Buffered Serial Ports: – Supports TDM, I2S, and Similar Formats – AC97 Audio Codec Interface – Telecom Interfaces (ST-Bus, H100) – 128-channel TDM – FIFO buffers for Transmit and Receive • 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant – MII Media Independent Interface – RMII Reduced Media Independent Interface – Management Data I/O (MDIO) Module • Video Port Interface (VPIF): – Two 8-bit SD (BT.656), Single 16-bit or Single Raw (8-/10-/12-bit) Video Capture Channels – Two 8-bit SD (BT.656), Single 16-bit Video Display Channels • Universal Parallel Port (uPP): – High-Speed Parallel Interface to FPGAs and Data Converters – Data Width on Each of Two Channels is 8- to 16-bit Inclusive – Single Data Rate or Dual Data Rate Transfers – Supports Multiple Interfaces with START, ENABLE and WAIT Controls • Serial ATA (SATA) Controller: – Supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps) – Supports all SATA Power Management Features – Hardware-Assisted Native Command Queueing (NCQ) for up to 32 Entries – Supports Port Multiplier and Command-Based Switching • Real-Time Clock With 32 KHz Oscillator and Separate Power Rail • Three 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers) • One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers) 2 OMAP-L138 C6-Integra™ DSP+ARM® Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com • Two Enhanced Pulse Width Modulators (eHRPWM): – Dedicated 16-Bit Time-Base Counter With Period And Frequency Control – 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input • Three 32-Bit Enhanced Capture Modules (eCAP): OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs – Single Shot Capture of up to Four Event Time-Stamps • 361-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZCE Suffix], 0.65-mm Ball Pitch • 361-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZWT Suffix], 0.80-mm Ball Pitch • Commercial, Extended or Industrial Temperature Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 C6-Integra™ DSP+ARM® Processor 3 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 1.2 Description The OMAP-L138 C6-Integra™ DSP+ARM® processor is a low-power applications processor based on an ARM926EJ-S™ and a C674x DSP core. It provides significantly lower power than other members of the TMS320C6000™ platform of DSPs. The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM. The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance. For security enabled devices, TI’s Basic Secure Boot allows users to protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware-based “root-of-trust”, the secure boot flow guarantees a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks but can be enabled during the secure boot process during application development. The boot modules themselves are encrypted while sitting in external non-volatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. This protects the users’ IP and enables them to securely set up the system and begin device operation with known, trusted code. Basic Secure Boot utilizes either SHA-1 or SHA-256, and AES-128 for boot image validation. It also uses AES-128 for boot image encryption. The secure boot flow employs a multi-layer encryption scheme which not only protects the boot process but offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect user encryption keys. When an update is needed, the customer creates a new encrypted image using its encryption keys. Then the device can acquire the image via an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, refer to the TMS320C674x/OMAP-L1x Processor Security User’s Guide (SPRUGQ9). The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C) Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three 4 OMAP-L138 C6-Integra™ DSP+ARM® Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed DDR2/Mobile DDR controller. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces. The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps). The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on each of two channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE and WAIT signals to provide control for a variety of data converters. A Video Port Interface (VPIF) is included providing a flexible video input/output port. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The device has a complete set of development tools for the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution. Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 C6-Integra™ DSP+ARM® Processor 5 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 1.3 Functional Block Diagram Input Clock(s) System Control PLL/Clock Generator w/OSC GeneralPurpose Timer (x4) RTC/ 32-kHz OSC JTAG Interface Power/Sleep Controller Pin Multiplexing ARM Subsystem ARM926EJ-S CPU With MMU 4KB ETB 16KB 16KB I-Cache D-Cache 8KB RAM (Vector Table) 64KB ROM DSP Subsystem C674x™ DSP CPU AET 32KB 32KB L1 Pgm L1 RAM 256KB L2 RAM BOOT ROM www.ti.com Switched Central Resource (SCR) Peripherals DMA Audio Ports Serial Interfaces Display Video Parallel Port Internal Memory Customizable Interface EDMA3 (x2) McASP McBSP I2C w/FIFO (x2) (x2) SPI UART (x2) (x3) LCD Ctlr VPIF uPP 128KB RAM PRU Subsystem Control Timers Connectivity External Memory Interfaces ePWM eCAP (x2) (x3) USB2.0 USB1.1 EMAC OTG Ctlr OHCI Ctlr 10/100 MDIO PHY PHY (MII/RMII) MMC/SD HPI (8b) SATA (x2) EMIFA(8b/16B) NAND/Flash 16b SDRAM DDR2/MDDR Controller (1) Note: Not all peripherals are available at the same time due to multiplexing. Figure 1-1. Functional Block Diagram 6 OMAP-L138 C6-Integra™ DSP+ARM® Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com 1 OMAP-L138 C6-Integra™ DSP+ARM® Processor ............................................................... 1 1.1 Features .............................................. 1 1.2 Description ........................................... 4 1.3 Functional Block Diagram ............................ 6 Revision History .............................................. 8 2 Device Overview ........................................ 9 2.1 Device Characteristics ............................... 9 2.2 Device Compatibility ................................ 10 2.3 ARM Subsystem .................................... 10 2.4 DSP Subsystem .................................... 12 2.5 Memory Map Summary ............................. 23 2.6 Pin Assignments .................................... 26 2.7 Pin Multiplexing Control ............................ 29 2.8 Terminal Functions ................................. 30 2.9 Unused Pin Configurations ......................... 71 3 Device Configuration ................................. 73 3.1 Boot Modes ......................................... 73 3.2 SYSCFG Module ................................... 73 3.3 Pullup/Pulldown Resistors .......................... 76 4 Device Operating Conditions ....................... 77 4.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) ................................. 77 4.2 Recommended Operating Conditions .............. 78 4.3 Notes on Recommended Power-On Hours (POH) ...................................................... 80 4.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) ............ 81 5 Peripheral Information and Electrical Specifications .......................................... 82 5.1 Parameter Information .............................. 82 5.2 Recommended Clock and Control Signal Transition Behavior ............................................ 83 5.3 Power Supplies ..................................... 83 5.4 Reset ............................................... 84 5.5 Crystal Oscillator or External Clock Input .......... 87 5.6 Clock PLLs ......................................... 88 5.7 Interrupts ............................................ 93 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.8 Power and Sleep Controller (PSC) ................ 103 5.9 Enhanced Direct Memory Access Controller (EDMA3) .......................................... 108 5.10 External Memory Interface A (EMIFA) ............ 114 5.11 DDR2/mDDR Controller ........................... 126 5.12 Memory Protection Units .......................... 139 5.13 MMC / SD / SDIO (MMCSD0, MMCSD1) ......... 142 5.14 Serial ATA Controller (SATA) ..................... 145 5.15 Multichannel Audio Serial Port (McASP) .......... 150 5.16 Multichannel Buffered Serial Port (McBSP) ....... 159 5.17 Serial Peripheral Interface Ports (SPI0, SPI1) .... 168 5.18 Inter-Integrated Circuit Serial Ports (I2C) ......... 189 5.19 Universal Asynchronous Receiver/Transmitter (UART) ............................................ 193 5.20 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG] ..................................... 195 5.21 Universal Serial Bus Host Controller (USB1) [USB1.1 OHCI] .................................... 202 5.22 Ethernet Media Access Controller (EMAC) ....... 203 5.23 Management Data Input/Output (MDIO) .......... 210 5.24 LCD Controller (LCDC) ............................ 212 5.25 Host-Port Interface (UHPI) ........................ 227 5.26 Universal Parallel Port (uPP) ...................... 235 5.27 Video Port Interface (VPIF) ....................... 240 5.28 Enhanced Capture (eCAP) Peripheral ............ 246 5.29 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) ........................................ 249 5.30 Timers ............................................. 254 5.31 Real Time Clock (RTC) ........................... 256 5.32 General-Purpose Input/Output (GPIO) ............ 259 5.33 Programmable Real-Time Unit Subsystem (PRUSS) ..................................................... 263 5.34 Emulation Logic ................................... 266 6 Device and Documentation Support ............. 275 6.1 Device Support .................................... 275 6.2 Documentation Support ........................... 276 6.3 Community Resources ............................ 277 7 Mechanical Packaging and Orderable Information ............................................ 278 7.1 Thermal Data for ZCE Package ................... 278 7.2 Thermal Data for ZWT Package .................. 279 Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Contents 7 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data manual revision history highlights the changes made to the SPRS586C device-specific data manual to make it an SPRS586D revision. SEE Section 1.1 Features Section 1.2 Description Section 2.6 Pin Assignments Section 2.8.8 Programmable Real-Time Unit (PRU) Section 3 Device Configuration Section 5.4 Reset Section 5.5 Crystal Oscillator or External Clock Input Section 5.6.3 Dynamic Voltage and Frequency Scaling (DVFS) Section 5.13 MMC / SD / SDIO (MMCSD0, MMCSD1) Section 5.24.1 LCD Interface Display Driver (LIDD Mode) Section 5.27 Video Port Interface (VPIF) Revision History ADDITIONS/MODIFICATIONS/DELETIONS Added a bullet about TI's Basic Secure Boot. Added a paragraph about TI's Basic Secure Boot. Section 2.6.1, Pin Map (Bottom View): • Added overbar for pin U9 in Figure 2-3, Pin Map (Quad A). • Corrected pin P14 as USB1_VDDA18 and pin P15 as USB1_VDDA33 in Figure 2-4, Pin Map (Quad B). Table 2-12, Programmable Real-Time Unit (PRU) Terminal Functions: • Corrected Terminal R19 Name in PRU0 Input • Corrected Terminal C11 (was incorrectly A10) in PRU1 Output • Corrected Terminal A12 (was incorrectly B10) Name in PRU1 Output • Corrected Terminal D11 (was incorrectly A11) Name in PRU1 Output • Corrected Terminal D13 (was incorrectly C11) Name in PRU1 Output • Corrected Terminal C12 (was incorrectly E11) Name in PRU1 Output Section 3.1, Boot Modes: • Added MMC/SD0 Boot for Silicon Revision 2.1. Table 5-1, Reset Timing Requirements: • Updated td(RSTH-RESETOUTH) Warm Reset MIN values to 4096 and removed MAX values. • Updated td(RSTH-RESETOUTH) Power-on Reset MIN values to 6169 and removed MAX values. Added paragraph detailing CLKMODE bit settings. Table 5-5, Maximum Internal Clock Frequencies at Each Voltage Operating Point: • Updated PLL1_SYSCLK3 to 75 MHz for all voltages. • Updated ASYNC1, ASYNC Mode 1.1 NOM value to 75 MHz. Section 5.13.1, MMCSD Peripheral Description: • Added bullet for SD high capacity support Figure 5-54, Character Display HD44780 Write, through Figure 5-61, Micro-Interface Graphic Display 8080 Status: • Added (LCD_MCLK) after LCD_AC_ENB_CS to show signal name corresponding to parameter on right of signal (CS1) or (E1). Table 5-122, Timing Requirements for VPIF Channels 0/1 Video Capture Data and Control Inputs: • Updated th(VKIH-VDINV) 1.3V MIN to 0.5. 8 Contents Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com 2 Device Overview SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.1 Device Characteristics Table 2-1 provides an overview of the device. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. Table 2-1. Characteristics of OMAP-L138 HARDWARE FEATURES DDR2/mDDR Controller EMIFA Flash Card Interface EDMA3 Timers UART SPI I2C Peripherals Multichannel Audio Serial Port [McASP] Not all peripherals pins are available at the Multichannel Buffered Serial Port [McBSP] same time (for more 10/100 Ethernet MAC with Management Data I/O detail, see the Device Configurations section). eHRPWM eCAP UHPI USB 2.0 (USB0) USB 1.1 (USB1) General-Purpose Input/Output Port LCD Controller SATA Controller Universal Parallel Port (uPP) Video Port Interface (VPIF) PRU Subsystem (PRUSS) Size (Bytes) On-Chip Memory Organization Security C674x CPU ID + CPU Rev ID C674x Megamodule Revision JTAG BSDL_ID Secure Boot Control Status Register (CSR.[31:16]) Revision ID Register (MM_REVID[15:0]) DEVIDR0 Register OMAP-L138 DDR2, 16-bit bus width, up to 156 MHz Mobile DDR, 16-bit bus width, up to 150 MHz Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit SDRAM, NOR, NAND 2 MMC and SD cards supported 64 independent channels, 16 QDMA channels, 2 channel controllers, 3 transfer controllers 4 64-Bit General Purpose (each configurable as 2 separate 32-bit timers, one configurable as Watch Dog) 3 (each with RTS and CTS flow control) 2 (Each with one hardware chip select) 2 (both Master/Slave) 1 (each with transmit/receive, FIFO buffer, 16 serializers) 2 (each with transmit/receive, FIFO buffer, 16) 1 (MII or RMII Interface) 4 Single Edge, 4 Dual Edge Symmetric, or 2 Dual Edge Asymmetric Outputs 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs 1 (16-bit multiplexed address/data) High-Speed OTG Controller with on-chip OTG PHY Full-Speed OHCI (as host) with on-chip PHY 9 banks of 16-bit 1 1 (Supports both SATA I and SATAII) 1 1 (video in and video out) 2 Programmable PRU Cores 488KB RAM DSP 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2) DSP Memories can be made accessible to ARM, EDMA3, and other peripherals. ARM 16KB I-Cache 16KB D-Cache 8KB RAM (Vector Table) 64KB ROM ADDITIONAL SHARED MEMORY 128KB RAM TI Basic Secure Boot 0x1400 0x0000 0x0B7D_102F Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 9 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-1. Characteristics of OMAP-L138 (continued) CPU Frequency Voltage Packages Product Status(1) HARDWARE FEATURES MHz Core (V) I/O (V) Product Preview (PP), Advance Information (AI), or Production Data (PD) OMAP-L138 674x DSP 375 MHz (1.2V) or 456 MHz (1.3V) ARM926 375 MHz (1.2V) or 456 MHz (1.3V) Variable (1.2V-1.0V) for 375 MHz version Variable (1.3V-1.0V) for 456 MHz version 1.8V or 3.3 V 13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE) 16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT) 375 MHz versions - PD 456 MHz versions - PD (1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 2.2 Device Compatibility The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families. 2.3 ARM Subsystem The ARM Subsystem includes the following features: • ARM926EJ-S RISC processor • ARMv5TEJ (32/16-bit) instruction set • Little endian • System Control Co-Processor 15 (CP15) • MMU • 16KB Instruction cache • 16KB Data cache • Write Buffer • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) • ARM Interrupt controller 2.3.1 ARM926EJ-S RISC CPU The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead. The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including: • ARM926EJ -S integer core • CP15 system control coprocessor • Memory Management Unit (MMU) 10 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 • Separate instruction and data caches • Write buffer • Separate instruction and data (internal RAM) interfaces • Separate instruction and data AHB bus interfaces • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com 2.3.2 CP15 The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode. 2.3.3 MMU A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are: • Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme. • Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages) • Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions) • Hardware page table walks • Invalidate entire TLB, using CP15 register 8 • Invalidate TLB entry, selected by MVA, using CP15 register 8 • Lockdown of TLB entries, using CP15 register 10 2.3.4 Caches and Write Buffer The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features: • Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA) • Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache • Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables • Critical-word first cache refilling • Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption • Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address. • Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 11 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry. 2.3.5 Advanced High-Performance Bus (AHB) The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus. 2.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB) To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts: • Trace Port provides real-time trace capability for the ARM9. • Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers. The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data. 2.3.7 ARM Memory Mapping By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, DDR2, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default. See Table 2-4 for a detailed top level device memory map that includes the ARM memory space. 2.4 DSP Subsystem The DSP Subsystem includes the following features: • C674x DSP CPU • 32KB L1 Program (L1P)/Cache (up to 32KB) • 32KB L1 Data (L1D)/Cache (up to 32KB) • 256KB Unified Mapped RAM/Cache (L2) • Boot ROM (cannot be used for application code) • Little endian 12 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated www.ti.com OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 32K Bytes L1P RAM/ Cache 256 256K Bytes L2 RAM 256 BOOT ROM 256 256 Cache Control Memory Protect L1P Bandwidth Mgmt Cache Control Memory Protect L2 Bandwidth Mgmt 256 256 Instruction Fetch C674x Fixed/Floating Point CPU Register File A 64 Register File B 64 256 IDMA 256 256 Power Down Interrupt Controller Bandwidth Mgmt Memory Protect L1D Cache Control EMC CFG MDMA SDMA 8 x 32 32K Bytes L1D RAM/ Cache 64 64 64 64 High Performance Switch Fabric 32 Configuration Peripherals Bus Figure 2-1. C674x Megamodule Block Diagram 2.4.1 C674x DSP CPU Description The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 13 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types. The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions. The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support. Other new features include: • SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible. • Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools. • Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication. • Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration). • Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions. • Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls. For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents: • TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8) • TMS320C64x Technical Overview (literature number SPRU395) 14 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated www.ti.com Data path A Data path B ST1b ST1a 32 MSB 32 LSB LD1b Á LD1a 32 MSB 32 LSB ÁÁDA1 ÁÁÁDA2 LD2a 32 LSB LD2b 32 MSB ST2a ST2b 32 MSB 32 LSB ÁÁÁÁ src1 ÁÁÁÁÁÁ .L1 src2 odd dst even dst long src 8 long src even dst odd dst .S1 src1 src2 dst2 dst1 .M1 src1 src2 8 ÁÁÁÁ32 ÁÁÁ32 dst .D1 src1 src2 src2 .D2 src1 dst src2 .M2 src1 dst2 32 dst1 32 src2 src1 .S2 odd dst even dst long src 8 8 long src even dst odd dst .L2 src2 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Odd register file A Á (A1, A3, A5...A31) ÁÁ (D) ÁÁ (D) ÁÁÁ (A) (B) ÁÁÁÁÁ (C) 2x Á 1x Odd Á register file B Á (B1, B3, B5...B31) ÁÁ (C) Á (B) Á (A) ÁÁÁÁ (D) ÁÁÁÁ (D) Even register file A (A0, A2, A4...A30) Even register file B (B0, B2, B4...B30) src1 Control Register A. On .M unit, dst2 is 32 MSB. B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files. Figure 2-2. TMS320C674x CPU (DSP Core) Data Paths Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 15 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.4.2 DSP Memory Mapping The DSP memory map is shown in Section 2.5. By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM RAM, ROM, and AINTC interrupt controller. Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit. 2.4.2.1 ARM Internal Memories The DSP does not have access to the ARM internal memory. 2.4.2.2 External Memories The DSP has access to the following External memories: • Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA) • SDRAM (DDR2) 2.4.2.3 DSP Internal Memories The DSP has access to the following DSP memories: • L2 RAM • L1P RAM • L1D RAM 2.4.2.4 C674x CPU The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. Table 2-2 shows a memory map of the C674x CPU cache registers for the device. Byte Address 0x0184 0000 0x0184 0020 0x0184 0024 0x0184 0040 0x0184 0044 0x0184 0048 - 0x0184 0FFC 0x0184 1000 0x0184 1004 - 0x0184 1FFC 0x0184 2000 0x0184 2004 0x0184 2008 0x0184 200C 0x0184 2010 - 0x0184 3FFF 0x0184 4000 0x0184 4004 0x0184 4010 0x0184 4014 0x0184 4018 Table 2-2. C674x Cache Registers Register Name L2CFG L1PCFG L1PCC L1DCFG L1DCC - EDMAWEIGHT - L2ALLOC0 L2ALLOC1 L2ALLOC2 L2ALLOC3 L2WBAR L2WWC L2WIBAR L2WIWC L2IBAR Register Description L2 Cache configuration register L1P Size Cache configuration register L1P Freeze Mode Cache configuration register L1D Size Cache configuration register L1D Freeze Mode Cache configuration register Reserved L2 EDMA access control register Reserved L2 allocation register 0 L2 allocation register 1 L2 allocation register 2 L2 allocation register 3 Reserved L2 writeback base address register L2 writeback word count register L2 writeback invalidate base address register L2 writeback invalidate word count register L2 invalidate base address register 16 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com Byte Address 0x0184 401C 0x0184 4020 0x0184 4024 0x0184 4030 0x0184 4034 0x0184 4038 0x0184 4040 0x0184 4044 0x0184 4048 0x0184 404C 0x0184 4050 - 0x0184 4FFF 0x0184 5000 0x0184 5004 0x0184 5008 0x0184 500C - 0x0184 5027 0x0184 5028 0x0184 502C - 0x0184 5039 0x0184 5040 0x0184 5044 0x0184 5048 0x0184 8000 – 0x0184 80FF 0x0184 8100 – 0x0184 817F 0x0184 8180 – 0x0184 8187 0x0184 8188 – 0x0184 818F 0x0184 8190 – 0x0184 8197 0x0184 8198 – 0x0184 819F 0x0184 81A0 – 0x0184 81FF 0x0184 8200 0x0184 8204 – 0x0184 82FF 0x0184 8300 – 0x0184 837F 0x0184 8380 – 0x0184 83FF SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-2. C674x Cache Registers (continued) Register Name L2IWC L1PIBAR L1PIWC L1DWIBAR L1DWIWC L1DWBAR L1DWWC L1DIBAR L1DIWC - L2WB L2WBINV L2INV - L1PINV - L1DWB L1DWBINV L1DINV MAR0 - MAR63 MAR64 – MAR95 MAR96 - MAR97 MAR98 – MAR99 MAR100 – MAR101 MAR102 – MAR103 MAR104 – MAR127 MAR128 MAR129 – MAR191 MAR192 – MAR223 MAR224 – MAR255 Register Description L2 invalidate word count register L1P invalidate base address register L1P invalidate word count register L1D writeback invalidate base address register L1D writeback invalidate word count register Reserved L1D Block Writeback L1D Block Writeback L1D invalidate base address register L1D invalidate word count register Reserved L2 writeback all register L2 writeback invalidate all register L2 Global Invalidate without writeback Reserved L1P Global Invalidate Reserved L1D Global Writeback L1D Global Writeback with Invalidate L1D Global Invalidate without writeback Reserved 0x0000 0000 – 0x3FFF FFFF Memory Attribute Registers for EMIFA SDRAM Data (CS0) External memory addresses 0x4000 0000 – 0x5FFF FFFF Memory Attribute Registers for EMIFA Async Data (CS2) External memory addresses 0x6000 0000 – 0x61FF FFFF Memory Attribute Registers for EMIFA Async Data (CS3) External memory addresses 0x6200 0000 – 0x63FF FFFF Memory Attribute Registers for EMIFA Async Data (CS4) External memory addresses 0x6400 0000 – 0x65FF FFFF Memory Attribute Registers for EMIFA Async Data (CS5) External memory addresses 0x6600 0000 – 0x67FF FFFF Reserved 0x6800 0000 – 0x7FFF FFFF Memory Attribute Register for Shared RAM External memory addresses 0x8000 0000 – 0x8001 FFFF Reserved 0x8002 0000 – 0x81FF FFFF Reserved 0x8200 0000 – 0xBFFF FFFF Memory Attribute Registers for DDR2 Data (CS2) External memory addresses 0xC000 0000 – 0xDFFF FFFF Reserved 0xE000 0000 – 0xFFFF FFFF HEX ADDRESS RANGE 0x0184 A000 0x0184 A004 0x0184 A008 0x0184 A00C - 0x0184 A0FF 0x0184 A100 0x0184 A104 0x0184 A108 Table 2-3. C674x L1/L2 Memory Protection Registers REGISTER ACRONYM L2MPFAR L2MPFSR L2MPFCR L2MPLK0 L2MPLK1 L2MPLK2 DESCRIPTION L2 memory protection fault address register L2 memory protection fault status register L2 memory protection fault command register Reserved L2 memory protection lock key bits [31:0] L2 memory protection lock key bits [63:32] L2 memory protection lock key bits [95:64] Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 17 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 0x0184 A10C 0x0184 A110 0x0184 A114 0x0184 A118 - 0x0184 A1FF 0x0184 A200 0x0184 A204 0x0184 A208 0x0184 A20C 0x0184 A210 0x0184 A214 0x0184 A218 0x0184 A21C 0x0184 A220 0x0184 A224 0x0184 A228 0x0184 A22C 0x0184 A230 0x0184 A234 0x0184 A238 0x0184 A23C 0x0184 A240 0x0184 A244 0x0184 A248 0x0184 A24C 0x0184 A250 0x0184 A254 0x0184 A258 0x0184 A25C 0x0184 A260 REGISTER ACRONYM L2MPLK3 L2MPLKCMD L2MPLKSTAT L2MPPA0 L2MPPA1 L2MPPA2 L2MPPA3 L2MPPA4 L2MPPA5 L2MPPA6 L2MPPA7 L2MPPA8 L2MPPA9 L2MPPA10 L2MPPA11 L2MPPA12 L2MPPA13 L2MPPA14 L2MPPA15 L2MPPA16 L2MPPA17 L2MPPA18 L2MPPA19 L2MPPA20 L2MPPA21 L2MPPA22 L2MPPA23 L2MPPA24 DESCRIPTION L2 memory protection lock key bits [127:96] L2 memory protection lock key command register L2 memory protection lock key status register Reserved L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF) L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF) L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF) L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF) L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF) L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF) L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF) L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF) L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF) L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF) L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF) L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF) L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF) L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF) L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF) L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF) L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF) L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF) L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF) L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF) L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF) L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF) L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF) L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF) L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF) 18 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 0x0184 A264 0x0184 A268 0x0184 A26C 0x0184 A270 0x0184 A274 0x0184 A278 0x0184 A27C 0x0184 A280 0x0184 A284 0x0184 A288 0x0184 A28C 0x0184 A290 0x0184 A294 0x0184 A298 0x0184 A29C 0x0184 A2A0 0x0184 A2A4 0x0184 A2A8 0x0184 A2AC 0x0184 A2B0 0x0184 A2B4 0x0184 A2B8 0x0184 A2BC 0x0184 A2C0 0x0184 A2C4 0x0184 A2C8 0x0184 A2CC 0x0184 A2D0 REGISTER ACRONYM L2MPPA25 L2MPPA26 L2MPPA27 L2MPPA28 L2MPPA29 L2MPPA30 L2MPPA31 L2MPPA32 L2MPPA33 L2MPPA34 L2MPPA35 L2MPPA36 L2MPPA37 L2MPPA38 L2MPPA39 L2MPPA40 L2MPPA41 L2MPPA42 L2MPPA43 L2MPPA44 L2MPPA45 L2MPPA46 L2MPPA47 L2MPPA48 L2MPPA49 L2MPPA50 L2MPPA51 L2MPPA52 DESCRIPTION L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF) L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF) L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF) L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF) L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF) L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF) L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF) L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF) L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF) L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF) L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF) L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF) L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF) L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF) L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF) L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF) L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF) L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF) L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF) L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF) L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF) L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF) L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF) L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF) L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF) L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF) L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF) L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF) Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 19 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 0x0184 A2D4 0x0184 A2D8 0x0184 A2DC 0x0184 A2E0 0x0184 A2E4 0x0184 A2E8 0x0184 A2EC 0x0184 A2F0 0x0184 A2F4 0x0184 A2F8 0x0184 A2FC 0x0184 A300 - 0x0184 A3FF 0x0184 A400 0x0184 A404 0x0184 A408 0x0184 A40C - 0x0184 A4FF 0x0184 A500 0x0184 A504 0x0184 A508 0x0184 A50C 0x0184 A510 0x0184 A514 0x0184 A518 - 0x0184 A5FF 0x0184 A600 - 0x0184 A63F 0x0184 A640 0x0184 A644 0x0184 A648 0x0184 A64C 0x0184 A650 0x0184 A654 0x0184 A658 0x0184 A65C REGISTER ACRONYM L2MPPA53 L2MPPA54 L2MPPA55 L2MPPA56 L2MPPA57 L2MPPA58 L2MPPA59 L2MPPA60 L2MPPA61 L2MPPA62 L2MPPA63 - L1PMPFAR L1PMPFSR L1PMPFCR L1PMPLK0 L1PMPLK1 L1PMPLK2 L1PMPLK3 L1PMPLKCMD L1PMPLKSTAT L1PMPPA16 L1PMPPA17 L1PMPPA18 L1PMPPA19 L1PMPPA20 L1PMPPA21 L1PMPPA22 L1PMPPA23 DESCRIPTION L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF) L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF) L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF) L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF) L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF) L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF) L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF) L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF) L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF) L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF) L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF) Reserved L1P memory protection fault address register L1P memory protection fault status register L1P memory protection fault command register Reserved L1P memory protection lock key bits [31:0] L1P memory protection lock key bits [63:32] L1P memory protection lock key bits [95:64] L1P memory protection lock key bits [127:96] L1P memory protection lock key command register L1P memory protection lock key status register Reserved Reserved (1) L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF) L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF) L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF) L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF) L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF) L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF) L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF) L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF) (1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x megamaodule. These registers are not supported for this device. 20 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 0x0184 A660 0x0184 A664 0x0184 A668 0x0184 A66C 0x0184 A670 0x0184 A674 0x0184 A678 0x0184 A67C 0x0184 A67F – 0x0184 ABFF 0x0184 AC00 0x0184 AC04 0x0184 AC08 0x0184 AC0C - 0x0184 ACFF 0x0184 AD00 0x0184 AD04 0x0184 AD08 0x0184 AD0C 0x0184 AD10 0x0184 AD14 0x0184 AD18 - 0x0184 ADFF 0x0184 AE00 - 0x0184 AE3F 0x0184 AE40 0x0184 AE44 0x0184 AE48 0x0184 AE4C 0x0184 AE50 0x0184 AE54 0x0184 AE58 0x0184 AE5C 0x0184 AE60 0x0184 AE64 0x0184 AE68 REGISTER ACRONYM L1PMPPA24 L1PMPPA25 L1PMPPA26 L1PMPPA27 L1PMPPA28 L1PMPPA29 L1PMPPA30 L1PMPPA31 - L1DMPFAR L1DMPFSR L1DMPFCR L1DMPLK0 L1DMPLK1 L1DMPLK2 L1DMPLK3 L1DMPLKCMD L1DMPLKSTAT L1DMPPA16 L1DMPPA17 L1DMPPA18 L1DMPPA19 L1DMPPA20 L1DMPPA21 L1DMPPA22 L1DMPPA23 L1DMPPA24 L1DMPPA25 L1DMPPA26 DESCRIPTION L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF) L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF) L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF) L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF) L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF) L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF) L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF) L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF) Reserved L1D memory protection fault address register L1D memory protection fault status register L1D memory protection fault command register Reserved L1D memory protection lock key bits [31:0] L1D memory protection lock key bits [63:32] L1D memory protection lock key bits [95:64] L1D memory protection lock key bits [127:96] L1D memory protection lock key command register L1D memory protection lock key status register Reserved Reserved (2) L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF) L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF) L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF) L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF) L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF) L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF) L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF) L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF) L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF) L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF) L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF) (2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x megamaodule. These registers are not supported for this device. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 21 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 0x0184 AE6C 0x0184 AE70 0x0184 AE74 0x0184 AE78 0x0184 AE7C 0x0184 AE80 – 0x0185 FFFF REGISTER ACRONYM L1DMPPA27 L1DMPPA28 L1DMPPA29 L1DMPPA30 L1DMPPA31 - DESCRIPTION L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF) L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF) L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF) L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF) L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF) Reserved 22 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.5 Memory Map Summary Table 2-4. Top Level Memory Map Start Address End Address Size ARM Mem Map 0x0000 0000 0x0000 0FFF 4K 0x0000 1000 0x0070 0000 0x0080 0000 0x0084 0000 0x00E0 0000 0x00E0 8000 0x00F0 0000 0x00F0 8000 0x0180 0000 0x006F FFFF 0x007F FFFF 0x0083 FFFF 0x00DF FFFF 0x00E0 7FFF 0x00EF FFFF 0x00F0 7FFF 0x017F FFFF 0x0180 FFFF 1024K 256K 32K 32K 64K 0x0181 0000 0x0181 0FFF 4K 0x0181 1000 0x0181 1FFF 4K 0x0181 2000 0x0181 2FFF 4K 0x0181 3000 0x0181 FFFF 52K 0x0182 0000 0x0182 FFFF 64K 0x0183 0000 0x0183 FFFF 64K 0x0184 0000 0x0184 FFFF 64K 0x0185 0000 0x01BB FFFF 0x01BC 0000 0x01BC 0FFF 4K ARM ETB memory 0x01BC 1000 0x01BC 17FF 2K ARM ETB reg 0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher 0x01BC 1900 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K 0x01C0 8000 0x01C0 83FF 1K 0x01C0 8400 0x01C0 87FF 1K 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K 0x01C1 1000 0x01C1 1FFF 4K 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 4K 0x01C1 5000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K 0x01C2 1000 0x01C2 1FFF 4K 0x01C2 2000 0x01C2 2FFF 4K 0x01C2 3000 0x01C2 3FFF 4K 0x01C2 4000 0x01C3 FFFF 0x01C4 0000 0x01C4 0FFF 4K 0x01C4 1000 0x01C4 1FFF 4K 0x01C4 2000 0x01C4 2FFF 4K DSP Mem Map EDMA Mem Map PRUSS Mem Map PRUSS Local Address Space Master Peripheral Mem Map DSP L2 ROM (1) DSP L2 RAM DSP L1P RAM DSP L1D RAM DSP Interrupt Controller DSP Powerdown Controller DSP Security ID DSP Revision ID - DSP EMC DSP Internal Reserved DSP Memory System EDMA3 CC EDMA3 TC0 EDMA3 TC1 PSC 0 PLL Controller 0 SYSCFG0 Timer0 Timer1 I2C 0 RTC MMC/SD 0 SPI 0 UART 0 LCDC Mem Map (1) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 23 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Start Address End Address 0x01C4 3000 0x01D0 0000 0x01D0 1000 0x01D0 2000 0x01D0 3000 0x01D0 C000 0x01D0 D000 0x01D0 E000 0x01D1 0000 0x01D1 0800 0x01D1 1000 0x01D1 1800 0x01D1 2000 0x01E0 0000 0x01E1 0000 0x01E1 1000 0x01E1 3000 0x01E1 4000 0x01E1 5000 0x01E1 6000 0x01E1 7000 0x01E1 8000 0x01E1 A000 0x01E1 B000 0x01E1 C000 0x01E2 0000 0x01E2 2000 0x01E2 3000 0x01E2 4000 0x01E2 5000 0x01E2 6000 0x01E2 7000 0x01E2 8000 0x01E2 9000 0x01E2 C000 0x01E2 D000 0x01E3 0000 0x01E3 8000 0x01E3 8400 0x01F0 0000 0x01F0 1000 0x01F0 2000 0x01F0 3000 0x01F0 4000 0x01F0 6000 0x01F0 7000 0x01CF FFFF 0x01D0 0FFF 0x01D0 1FFF 0x01D0 2FFF 0x01D0 BFFF 0x01D0 CFFF 0x01D0 DFFF 0x01D0 FFFF 0x01D1 07FF 0x01D1 0FFF 0x01D1 17FF 0x01D1 1FFF 0x01DF FFFF 0x01E0 FFFF 0x01E1 0FFF 0x01E1 2FFF 0x01E1 3FFF 0x01E1 4FFF 0x01E1 5FFF 0x01E1 6FFF 0x01E1 7FFF 0x01E1 9FFF 0x01E1 AFFF 0x01E1 BFFF 0x01E1 FFFF 0x01E2 1FFF 0x01E2 2FFF 0x01E2 3FFF 0x01E2 4FFF 0x01E2 5FFF 0x01E2 6FFF 0x01E2 7FFF 0x01E2 8FFF 0x01E2 BFFF 0x01E2 CFFF 0x01E2 FFFF 0x01E3 7FFF 0x01E3 83FF 0x01EF FFFF 0x01F0 0FFF 0x01F0 1FFF 0x01F0 2FFF 0x01F0 3FFF 0x01F0 5FFF 0x01F0 6FFF 0x01F0 7FFF Table 2-4. Top Level Memory Map (continued) Size ARM Mem Map DSP Mem Map EDMA Mem PRUSS Mem Map Map 4K McASP 0 Control 4K McASP 0 AFIFO Ctrl 4K McASP 0 Data 4K UART 1 4K UART 2 2K McBSP0 2K McBSP0 FIFO Ctrl 2K McBSP1 2K McBSP1 FIFO Ctrl 64K USB0 4K UHPI 4K LCD Controller 4K Memory Protection Unit 1 (MPU 1) 4K Memory Protection Unit 2 (MPU 2) 4K UPP 4K VPIF 8K SATA 4K PLL Controller 1 4K MMCSD1 8K EMAC Control Module RAM 4K EMAC Control Module Registers 4K EMAC Control Registers 4K EMAC MDIO port 4K USB1 4K GPIO 4K PSC 1 4K I2C 1 4K SYSCFG1 32K EDMA3 CC1 1K EDMA3 TC2 4K eHRPWM 0 4K HRPWM 0 4K eHRPWM 1 4K HRPWM 1 4K ECAP 0 4K ECAP 1 Master Peripheral Mem Map LCDC Mem Map 24 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Start Address End Address Table 2-4. Top Level Memory Map (continued) Size ARM Mem Map DSP Mem Map EDMA Mem PRUSS Mem Map Map 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 0x01F0 9000 0x01F0 BFFF 0x01F0 C000 0x01F0 CFFF 4K Timer2 0x01F0 D000 0x01F0 DFFF 4K Timer3 0x01F0 E000 0x01F0 EFFF 4K SPI1 0x01F0 F000 0x01F0 FFFF 0x01F1 0000 0x01F1 0FFF 4K McBSP0 FIFO Data 0x01F1 1000 0x01F1 1FFF 4K McBSP1 FIFO Data 0x01F1 2000 0x116F FFFF 0x1170 0000 0x117F FFFF 1024K DSP L2 ROM(2) 0x1180 0000 0x1183 FFFF 256K DSP L2 RAM 0x1184 0000 0x11DF FFFF 0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM 0x11E0 8000 0x11EF FFFF 0x11F0 0000 0x11F0 7FFF 32K DSP L1D RAM 0x11F0 8000 0x3FFF FFFF 0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0) 0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) 0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) 0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) 0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) 0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs 0x6800 8000 0x7FFF FFFF 0x8000 0000 0x8001 FFFF 128K Shared RAM 0x8002 0000 0xAFFF FFFF 0xB000 0000 0xB000 7FFF 32K DDR2 Control Regs 0xB000 8000 0xBFFF FFFF 0xC000 0000 0xDFFF FFFF 512M DDR2 Data 0xE000 0000 0xFFFC FFFF 0xFFFD 0000 0xFFFD FFFF 64K ARM local ROM 0xFFFE 0000 0xFFFE DFFF 0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt Controller 0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM ARM Local RAM (PRU0 only) 0xFFFF 2000 0xFFFF FFFF (2) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code Master Peripheral Mem Map LCDC Mem Map Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 25 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.6 Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. 2.6.1 Pin Map (Bottom View) The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four quadrants (A, B, C, and D). The pin assignments for both packages are identical. 1 2 3 4 5 6 7 8 9 10 VP_DOUT[0]/ LCD_D[0]/ W UPP_XD[8]/ GP7[8]/ PRU1_R31[8] VP_DOUT[1]/ LCD_D[1]/ UPP_XD[9]/ GP7[9]/ PRU1_R31[9] VP_DOUT[2]/ LCD_D[2]/ UPP_XD[10]/ GP7[10]/ PRU1_R31[10] DDR_A[10] DDR_A[6] DDR_A[2] DDR_CLKN DDR_CLKP DDR_RAS DDR_D[15] W VP_DOUT[3]/ VP_DOUT[4]/ VP_DOUT[5]/ LCD_D[3]/ LCD_D[4]/ LCD_D[5]/ V UPP_XD[11]/ UPP_XD[12]/ UPP_XD[13]/ GP7[11]/ GP7[12]/ GP7[13]/ PRU1_R31[11] PRU1_R31[12] PRU1_R31[13] DDR_A[12] DDR_A[5] DDR_A[3] DDR_CKE DDR_BA[0] DDR_CS DDR_D[13] V VP_DOUT[6]/ VP_DOUT[7]/ LCD_D[6]/ LCD_D[7]/ U UPP_XD[14]/ UPP_XD[15]/ GP7[14]/ GP7[15]/ PRU1_R31[14] PRU1_R31[15] VP_DOUT[8]/ LCD_D[8]/ UPP_XD[0]/ GP7[0]/ BOOT[0] DDR_A[8] DDR_A[4] DDR_A[7] DDR_A[0] DDR_BA[2] DDR_CAS DDR_D[12] U VP_DOUT[9]/ VP_DOUT[10]/ VP_DOUT[11]/ LCD_D[9]/ LCD_D[10]/ LCD_D[11]/ T UPP_XD[1]/ GP7[1]/ UPP_XD[2]/ GP7[2]/ UPP_XD[3]/ GP7[3]/ BOOT[1] BOOT[2] BOOT[3] DDR_A[11] DDR_A[13] DDR_A[9] DDR_A[1] DDR_WE DDR_BA[1] DDR_D[10] T VP_DOUT[12]/ VP_DOUT[13]/ VP_DOUT[14]/ LCD_D[12]/ LCD_D[13]/ LCD_D[14]/ LCD_AC_ENB_CS/ R UPP_XD[4]/ GP7[4]/ UPP_XD[5]/ GP7[5]/ UPP_XD[6]/ GP7[6]/ DVDD3318_C GP6[0]/ PRU1_R31[28] DDR_VREF BOOT[4] BOOT[5] BOOT[6] DDR_DVDD18 DDR_DVDD18 DDR_DVDD18 DDR_DQM[1] R P SATA_VDD SATA_VDD SATA_VDDR VP_DOUT[15]/ LCD_D[15]/ UPP_XD[7]/ GP7[7]/ BOOT[7] DVDD3318_C DVDD3318_C DDR_DVDD18 DDR_DVDD18 DDR_DVDD18 DDR_DVDD18 P N SATA_REFCLKN SATA_REFCLKP SATA_REG SATA_VDD VSS DDR_DVDD18 RVDD CVDD DDR_DVDD18 DDR_DVDD18 N M SATA_VSS SATA_VDD NC VSS VSS VSS VSS CVDD CVDD VSS M L SATA_RXP SATA_RXN SATA_VSS DVDD3318_C VSS DVDD18 VSS VSS VSS VSS L K SATA_VSS SATA_VSS VP_CLKOUT2/ MMCSD1_DAT[2]/ PRU1_R30[2]/ GP6[3]/ PRU1_R31[3] VP_CLKOUT3/ PRU1_R30[0]/ GP6[1]/ PRU1_R31[1] DVDD18 CVDD VSS VSS VSS VSS K 1 2 3 4 5 6 7 8 9 10 26 Device Overview Figure 2-3. Pin Map (Quad A) Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com W V U T SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 11 12 13 14 15 16 17 18 19 DDR_D[7] DDR_DQS[1] DDR_D[14] DDR_D[6] DDR_D[5] DDR_ZP DDR_DQM[0] VP_CLKIN0/ UHPI_HCS/ PRU1_R30[10]/ GP6[7]/ UPP_2xTXCLK PRU0_R30[28]/ UHPI_HCNTL1/ UPP_CHA_START/ GP6[10] VP_DIN[4]/ UHPI_HD[12]/ UPP_D[12]/ RMII_RXD[1]/ PRU0_R31[26] VP_DIN[2]/ UHPI_HD[10]/ UPP_D[10]/ RMII_RXER / PRU0_R31[24] VP_DIN[1]/ UHPI_HD[9]/ UPP_D[9]/ RMII_MHZ_50 _CLK / PRU0_R31[23] VP_DIN[0]/ UHPI_HD[8]/ UPP_D[8]/ RMII_CRS_DV/ PRU1_R31[29] W DDR_D[4] DDR_D[2] VP_CLKIN1/ UHPI_HDS1/ PRU1_R30[9]/ GP6[6]/ PRU1_R31[16] VP_DIN[6]/ UHPI_HD[14]/ UPP_D[14]/ RMII_TXD[0]/ PRU0_R31[28] VP_DIN[3]/ UHPI_HD[11]/ UPP_D[11]/ RMII_RXD[0]/ PRU0_R31[25] VP_DIN[15]_ VSYNC/ UHPI_HD[7]/ UPP_D[7]/ PRU0_R30[15]/ PRU0_R31[15] VP_DIN[14]_ HSYNC/ UHPI_HD[6]/ UPP_D[6]/ PRU0_R30[14]/ PRU0_R31[14] V DDR_D[3] DDR_D[1] DDR_D[0] PRU0_R30[27]/ UHPI_HHWIL/ UPP_CHA _ENABLE/ GP6[9] PRU0_R30[29]/ UHPI_HCNTL0/ UPP_CHA_CLOCK/ GP6[11] VP_DIN[7]/ UHPI_HD[15]/ UPP_D[15]/ RMII_TXD[1]/ PRU0_R31[29] VP_DIN[13]_ FIELD/ UHPI_HD[5]/ UPP_D[5]/ PRU0_R30[13]/ PRU0_R31[13] U DDR_D[9] DDR_D[11] DDR_D[8] DDR_DQS[0] PRU0_R30[26]/ UHPI_HRW/ UPP_CHA_WAIT/ GP6[8]/ PRU1_R31[17] VP_DIN[12]/ UHPI_HD[4]/ UPP_D[4]/ PRU0_R30[12]/ PRU0_R31[12] RESETOUT/ UHPI_HAS/ PRU1_R30[14]/ GP6[15] CLKOUT/ UHPI_HDS2/ PRU1_R30[13]/ GP6[14] RSV2 T R DDR_DQGATE0 DDR_DQGATE1 DVDD18 VP_DIN[5]/ UHPI_HD[13]/ UPP_D[13]/ RMII_TXEN/ PRU0_R31[27] VP_DIN[9]/ UHPI_HD[1]/ UPP_D[1]/ PRU0_R30[9]/ PRU0_R31[9] PRU0_R30[30] / UHPI_HINT/ PRU1_R30[11]/ GP6[12] PRU0_R30[31]/ UHPI_HRDY/ PRU1_R30[12] GP6[13] VP_DIN[11]/ UHPI_HD[3]/ UPP_D[3]/ PRU0_R30[11]/ PRU0_R31[11] VP_DIN[10]/ UHPI_HD[2]/ UPP_D[2]/ PRU0_R30[10]/ PRU0_R31[10] R VP_DIN[8]/ P VSS DVDD3318_C DVDD18 USB1_VDDA18 USB1_VDDA33 USB0_ID UHPI_HD[0]/ UPP_D[0]/ USB1_DM USB1_DP P GP6[5]/ PRU1_R31[0] N VSS VSS DVDD3318_C USB0_VDDA18 PLL1_VDDA NC USB0_VDDA12 USB0_VDDA33 USB0_VBUS N M VSS USB_CVDD DVDD3318_C NC PLL1_VSSA TDI PLL0_VSSA USB0_DM USB0_DP M L VSS CVDD DVDD3318_C RTC_CVDD PLL0_VDDA TMS TRST OSCVSS OSCIN L K VSS CVDD DVDD3318_C RESET DVDD3318_B EMU1 RTCK/ GP8[0] USB0_DRVVBUS OSCOUT K 11 12 13 14 15 16 17 18 19 Figure 2-4. Pin Map (Quad B) Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 27 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 11 12 13 14 15 16 17 J VSS CVDD DVDD18 DVDD3318_B TCK EMU0 NMI 18 TDO 19 RTC_XI J H CVDD CVDD CVDD RVDD VSS SPI1_ENA/ GP2[12] SPI1_SOMI/ GP2[11] RTC_VSS RTC_XO H G DVDD18 DVDD18 CVDD DVDD3318_A DVDD3318_A SPI1_SCS[7]/ I2C0_SCL/ TM64P2_OUT12/ GP1[5] SPI1_SIMO/ GP2[10] SPI1_SCS[6]/ I2C0_SDA/ TM64P3_OUT12/ GP1[4] SPI1_CLK/ GP2[13] G F DVDD3318_B DVDD3318_B DVDD3318_B DVDD18 DVDD3318_A SPI1_SCS[4]/ UART2_TXD/ I2C1_SDA/ GP1[2] SPI1_SCS[5]/ UART2_RXD/ I2C1_SCL/ GP1[3] SPI1_SCS[1]/ EPWM1A/ PRU0_R30[8]/ GP2[15]/ TM64P2_IN12 SPI1_SCS[2]/ UART1_TXD/ SATA_CP_POD/ F GP1[0] EMA_A[18]/ EMA_A[16]/ MMCSD0_DAT[3]/ MMCSD0_DAT[5]/ E PRU1_R30[26]/ PRU1_R30[24]/ GP4[2] GP4[0] EMA_A[6]/ GP5[6] DVDD3318_B CVDD SPI0_SCS[1]/ TM64P0_OUT12/ GP1[7]/ MDIO_CLK/ TM64P0_IN12 SPI0_SCS[3]/ UART0_CTS/ GP8[2]/ MII_RXD[1]/ SATA_MP_SWITCH SPI1_SCS[3]/ UART1_RXD/ SATA_LED/ GP1[1] SPI1_SCS[0]/ EPWM1B/ PRU0_R30[7]/ E GP2[14]/ TM64P3_IN12 D EMA_A[13]/ PRU0_R30[21]/ PRU1_R30[21] / GP5[13]/ PRU1_R31[21] EMA_A[9]/ PRU1_R30[17]/ GP5[9] EMA_A[12]/ PRU1_R30[20]/ GP5[12]/ PRU1_R31[20] EMA_A[3]/ GP5[3] EMA_A[1]/ GP5[1] SPI0_SCS[2]/ UART0_RTS/ GP8[1]/ MII_RXD[0]/ SATA_CP_DET SPI0_SCS[0]/ TM64P1_OUT12/ GP1[6]/ MDIO_D/ TM64P1_IN12 SPI0_SCS[4]/ UART0_TXD/ GP8[3]/ MII_RXD[2] SPI0_CLK/ EPWM0A/ GP1[8]/ D MII_RXCLK C EMA_A[15]/ MMCSD0_DAT[6]/ PRU1_R30[23]/ GP5[15]/ PRU1_R31[23] EMA_A[10]/ PRU1_R30[18]/ GP5[10]/ PRU1_R31[18] EMA_A[5]/ GP5[5] EMA_A[0]/ GP5[0] EMA_BA[0]/ GP2[8] SPI0_SOMI/ EPWMSYNCI/ GP8[6]/ MII_RXER SPI0_ENA/ EPWM0B/ PRU0_R30[6]/ MII_RXDV SPI0_SIMO/ EPWMSYNCO/ GP8[5]/ MII_CRS SPI0_SCS[5]/ UART0_RXD/ GP8[4]/ C MII_RXD[3] EMA_A[17]/ EMA_A[11]/ MMCSD0_DAT[4]/ PRU1_R30[19]/ B PRU1_R30[25] GP5[11]/ GP4[1] PRU1_R31[19] EMA_A[7]/ PRU1_R30[15]/ GP5[7] EMA_A[2]/ GP5[2] EMA_OE/ GP3[10] EMA_CS[5]/ GP3[12] EMA_CS[2]/ GP3[15] EMA_WAIT[0]/ PRU0_R30[0]/ GP3[8]/ PRU0_R31[0] EMA_WAIT[1]/ PRU0_R30[1]/ GP2[1]/ B PRU0_R31[1] A EMA_A[20]/ MMCSD0_DAT[1]/ PRU1_R30[28]/ GP4[4] EMA_A[14]/ MMCSD0_DAT[7]/ PRU1_R30[22]/ GP5[14]/ PRU1_R31[22] EMA_A[8]/ PRU1_R30[16]/ GP5[8] EMA_A[4]/ GP5[4] EMA_BA[1]/ GP2[9] EMA_RAS/ PRU0_R30[3]/ GP2[5]/ PRU0_R31[3] 11 12 13 14 15 16 Figure 2-5. Pin Map (Quad C) EMA_CS[3]/ GP3[14] 17 EMA_CS[0]/ GP2[0] 18 VSS A 19 28 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated www.ti.com OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 1 2 3 4 5 6 7 8 9 10 VP_CLKIN3/ PRU0_R30[23]/ MMCSD1_DAT[1]/ MMCSD1_CMD/ J SATA_TXP SATA_TXN PRU1_R30[1]/ UPP_CHB_ENABLE/ DVDD3318_C CVDD VSS VSS VSS VSS J GP6[2]/ GP8[13]/ PRU1_R31[2] PRU1_R31[25] VP_CLKIN2/ MMCSD1_DAT[5]/ MMCSD1_DAT[3]/ LCD_HSYNC/ H SATA_VSS SATA_VSS PRU1_R30[3]/ PRU1_R30[5]/ DVDD3318_A CVDD CVDD VSS GP6[4]/ GP8[9]/ PRU1_R31[4] PRU1_R31[6] VSS CVDD H PRU0_R30[25]/ PRU0_R30[24]/ PRU0_R30[22]/ MMCSD1_DAT[4]/ MMCSD1_DAT[0]/ MMCSD1_CLK/ PRU1_R30[8]/ LCD_VSYNC/ G UPP_CHB_CLOCK/ UPP_CHB_START/ UPP_CHB_WAIT/ GP8[15]/ GP8[14]/ GP8[12]/ PRU1_R30[4]/ GP8[8]/ PRU1_R31[27] PRU1_R31[26] PRU1_R31[24] PRU1_R31[5] DVDD3318_A DVDD18 CVDD CVDD DVDD3318_B DVDD18 G F MMCSD1_DAT[7]/ LCD_PCLK/ PRU1_R30[7]/ GP8[11] MMCSD1_DAT[6]/ LCD_MCLK/ PRU1_R30[6]/ GP8[10]/ PRU1_R31[7] AXR0/ ECAP0_APWM0/ GP8[7]/ MII_TXD[0]/ CLKS0 RTC_ALARM/ UART2_CTS/ GP0[8]/ DEEPSLEEP DVDD3318_A DVDD3318_B DVDD3318_B DVDD3318_B EMA_CS[4]/ GP3[13] DVDD3318_B F AXR1/ DX0/ E GP1[9]/ MII_TXD[1] AXR2/ DR0/ GP1[10]/ MII_TXD[2] AXR3/ FSX0/ GP1[11]/ MII_TXD[3] AXR8/ CLKS1/ ECAP1_APWM1/ GP0[0]/ PRU0_R31[8] RVDD EMA_D[15]/ GP3[7] EMA_D[5]/ GP4[13] EMA_D[3]/ GP4[11] MMCSD0_CLK/ PRU1_R30[31]/ GP4[7] EMA_D[8]/ GP3[0] E D AXR4/ FSR0/ GP1[12]/ MII_COL AXR7/ EPWM1TZ[0]/ PRU0_R30[17] GP1[15]/ PRU0_R31[7] AXR5/ CLKX0/ GP1[13]/ MII_TXCLK AXR10/ DR1/ GP0[2] AMUTE/ PRU0_R30[16]/ UART2_RTS/ GP0[9]/ PRU0_R31[16] EMA_D[11]/ GP3[3] EMA_D[7]/ GP4[15] EMA_SDCKE/ PRU0_R30[4]/ GP2[6]/ PRU0_R31[4] EMA_D[9]/ GP3[1] EMA_A_RW/ GP3[9] D AXR6/ CLKR0/ AFSR/ C GP1[14]/ GP0[13]/ MII_TXEN/ PRU0_R31[20] PRU0_R31[6] AXR9/ DX1/ GP0[1] AXR12/ FSR1/ GP0[4] AXR11/ FSX1/ GP0[3] EMA_D[6]/ GP4[14] EMA_A[19]/ EMA_D[14]/ GP3[6] EMA_WEN_DQM[0]/ GP2[3] EMA_D[0]/ GP4[8] MMCSD0_DAT[2]/ PRU1_R30[27]/ C GP4[3] B ACLKX/ PRU0_R30[19]/ GP0[14]/ PRU0_R31[21] AFSX/ GP0[12]/ PRU0_R31[19] AXR13/ CLKX1/ GP0[5] AXR14/ CLKR1/ GP0[6] EMA_D[4]/ GP4[12] EMA_D[13]/ GP3[5] EMA_CLK/ PRU0_R30[5]/ GP2[7]/ PRU0_R31[5] EMA_D[2]/ GP4[10] EMA_A[21]/ EMA_WE/ GP3[11] MMCSD0_DAT[0]/ PRU1_R30[29]/ B GP4[5] A ACLKR/ PRU0_R30[20]/ GP0[15]/ PRU0_R31[22] AHCLKR/ PRU0_R30[18]/ UART1_RTS/ GP0[11]/ PRU0_R31[18] AHCLKX/ USB_REFCLKIN/ UART1_CTS/ GP0[10]/ PRU0_R31[17] AXR15/ EPWM0TZ[0]/ ECAP2_APWM2/ GP0[7] EMA_WEN_DQM[1]/ GP2[2] EMA_D[12]/ GP3[4] EMA_D[10]/ GP3[2] EMA_D[1]/ GP4[9] EMA_CAS/ EMA_A[22]/ PRU0_R30[2]/ GP2[4]/ MMCSD0_CMD/ PRU1_R30[30]/ A PRU0_R31[2] GP4[6] 1 2 3 4 5 6 7 8 9 10 Figure 2-6. Pin Map (Quad D) 2.7 Pin Multiplexing Control Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module. For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed with several different functions has a corresponding 4-bit field in one of the PINMUX registers. Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data and output enable values only. The default pin multiplexing control for almost every pin is to select 'none' of the peripheral functions in which case the pin's IO buffer is held tri-stated. Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX registers have no effect on input from a pin. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 29 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8 Terminal Functions Table 2-5 to Table 2-31 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 2.8.1 Device Reset, NMI and JTAG Table 2-5. Reset, NMI and JTAG Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION RESET RESET K14 I IPU B Device reset input NMI J17 I IPU B Non-Maskable Interrupt RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 O (4) CP[21] C Reset output JTAG TMS L16 I IPU B JTAG test mode select TDI M16 I IPU B JTAG test data input TDO J18 O IPU B JTAG test data output TCK J15 I IPU B JTAG test clock TRST L17 I IPD B JTAG test reset EMU0 J16 I/O IPU B Emulation pin EMU1 RTCK/ GP8[0](5) K16 I/O IPU K17 I/O IPD B Emulation pin B General-purpose input/output (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. (4) Open drain mode for RESETOUT function. (5) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an unknown state after reset. 30 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.2 High-Frequency Oscillator and PLL Table 2-6. High-Frequency Oscillator and PLL Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 O CP[22] C PLL Observation Clock 1.2-V OSCILLATOR OSCIN L19 I — — Oscillator input OSCOUT K19 O — — Oscillator output OSCVSS L18 GND — — Oscillator ground 1.2-V PLL0 PLL0_VDDA PLL0_VSSA L15 PWR M17 GND — — — — 1.2-V PLL1 PLL analog VDD (1.2-V filtered supply) PLL analog VSS (for filter) PLL1_VDDA PLL1_VSSA N15 PWR — M15 GND — — PLL analog VDD (1.2-V filtered supply) — PLL analog VSS (for filter) (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 31 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.3 Real-Time Clock and 32-kHz Oscillator Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION RTC_XI J19 I — — RTC 32-kHz oscillator input RTC_XO H19 O — — RTC 32-kHz oscillator output RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 O CP[0] A RTC Alarm RTC_CVDD RTC_Vss L14 PWR — H18 GND — — RTC module core power (isolated from chip CVDD) — Oscillator ground (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 2.8.4 DEEPSLEEP Power Control Table 2-8. DEEPSLEEP Power Control Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A DEEPSLEEP power control output (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 32 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.5 External Memory Interface A (EMIFA) Table 2-9. External Memory Interface A (EMIFA) Terminal Functions SIGNAL NAME NO. EMA_D[15] / GP3[7] E6 EMA_D[14] / GP3[6] C7 EMA_D[13] / GP3[5] B6 EMA_D[12] / GP3[4] A6 EMA_D[11] / GP3[3] D6 EMA_D[10] / GP3[2] A7 EMA_D[9] / GP3[1] D9 EMA_D[8] / GP3[0] E10 EMA_D[7] / GP4[15] D7 EMA_D[6] / GP4[14] C6 EMA_D[5] / GP4[13] E7 EMA_D[4] / GP4[12] B5 EMA_D[3] / GP4[11] E8 EMA_D[2] / GP4[10] B8 EMA_D[1] / GP4[9] A8 EMA_D[0] / GP4[8] C9 EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O O O O O O O O O O O O PULL (2) CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[19] CP[19] CP[19] CP[19] POWER GROUP (3) DESCRIPTION B B B B B B B B EMIFA data bus B B B B B B B B B B B B B B EMIFA address bus B B B B B (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 33 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-9. External Memory Interface A (EMIFA) Terminal Functions (continued) SIGNAL NAME EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] EMA_A[9] / PRU1_R30[17] / GP5[9] EMA_A[8] / PRU1_R30[16] / GP5[8] EMA_A[7] / PRU1_R30[15] / GP5[7] EMA_A[6] / GP5[6] EMA_A[5] / GP5[5] EMA_A[4] / GP5[4] EMA_A[3] / GP5[3] EMA_A[2] / GP5[2] EMA_A[1] / GP5[1] EMA_A[0] / GP5[0] EMA_BA[0] / GP2[8] EMA_BA[1] / GP2[9] EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] EMA_CS[0] / GP2[0] EMA_CS[2] / GP3[15] EMA_CS[3] / GP3[14] EMA_CS[4] / GP3[13] EMA_CS[5] / GP3[12] EMA_A_RW / GP3[9] EMA_WE / GP3[11] EMA_WEN_DQM[1] / GP2[2] EMA_WEN_DQM[0] / GP2[3] EMA_OE / GP3[10] EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] TYPE (1) NO. B12 O PULL (2) CP[19] POWER GROUP (3) B DESCRIPTION C12 O D12 O A13 O B13 O E13 O C13 O A14 O D14 O B14 O D15 O C14 O C15 O A15 O B7 O CP[19] CP[19] CP[19] CP[20] CP[20] CP[20] CP[20] CP[20] CP[20] CP[20] CP[20] CP[16] CP[16] CP[16] B B B B B EMIFA address bus B B B B B B B EMIFA bank address B B EMIFA clock D8 O CP[16] B EMIFA SDRAM clock enable A16 O CP[16] B EMIFA SDRAM row address strobe A9 O A18 O B17 O A17 O F9 O B16 O D10 O B9 O A5 O C8 O B15 O B18 I B19 I CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] B EMIFA SDRAM column address strobe B EMIFA SDRAM Chip Select B B EMIFA Async chip select B B B EMIFA Async Read/Write control B EMIFA SDRAM write enable B EMIFA write enable/data mask for EMA_D[15:8] B EMIFA write enable/data mask for EMA_D[7:0] B EMIFA output enable B EMIFA wait input/interrupt B 34 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.6 DDR2 Controller (DDR2) DDR_D[15] DDR_D[14] DDR_D[13] DDR_D[12] DDR_D[11] DDR_D[10] DDR_D[9] DDR_D[8] DDR_D[7] DDR_D[6] DDR_D[5] DDR_D[4] DDR_D[3] DDR_D[2] DDR_D[1] DDR_D[0] DDR_A[13] DDR_A[12] DDR_A[11] DDR_A[10] DDR_A[9] DDR_A[8] DDR_A[7] DDR_A[6] DDR_A[5] DDR_A[4] DDR_A[3] DDR_A[2] DDR_A[1] DDR_A[0] DDR_CLKP DDR_CLKN DDR_CKE DDR_WE DDR_RAS DDR_CAS DDR_CS DDR_DQM[0] DDR_DQM[1] SIGNAL NAME Table 2-10. DDR2 Controller (DDR2) Terminal Functions NO. W10 U11 V10 U10 T12 T10 T11 T13 W11 W12 V12 V13 U13 V14 U14 U15 T5 V4 T4 W4 T6 U4 U6 W5 V5 U5 V6 W6 T7 U7 W8 W7 V7 T8 W9 U9 V9 W13 R10 TYPE(1) PULL(2) DESCRIPTION I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD DDR2 SDRAM data bus I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD I/O IPD O IPD O IPD O IPD O IPD O IPD O IPD O IPD DDR2 row/column address O IPD O IPD O IPD O IPD O IPD O IPD O IPD O IPD DDR2 clock (positive) O IPD DDR2 clock (negative) O IPD DDR2 clock enable O IPD DDR2 write enable O IPD DDR2 row address strobe O IPD DDR2 column address strobe O IPD DDR2 chip select O IPD DDR2 data mask outputs O IPD (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 35 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-10. DDR2 Controller (DDR2) Terminal Functions (continued) DDR_DQS[0] DDR_DQS[1] DDR_BA[2] DDR_BA[1] DDR_BA[0] SIGNAL NAME DDR_DQGATE0 DDR_DQGATE1 DDR_ZP DDR_VREF DDR_DVDD18 TYPE (1) NO. T14 I/O V11 I/O U8 O T9 O V8 O R11 O R12 I U12 O R6 I N6, N9, N10, P7, P8, P9, P10, R7, R8, R9 PWR PULL (2) DESCRIPTION IPD DDR2 data strobe inputs/outputs IPD IPD IPD DDR2 SDRAM bank address IPD DDR2 loopback signal for external DQS gating. IPD Route to DDR and back to DDR_DQGATE1 with same constraints as used for DDR clock and data. DDR2 loopback signal for external DQS gating. IPD Route to DDR and back to DDR_DQGATE0 with same constraints as used for DDR clock and data. DDR2 reference output for drive strength calibration — of N and P channel outputs. Tie to ground via 50 ohm resistor @ 5% tolerance. DDR voltage input for the DDR2/mDDR I/O buffers. — Note even in the case of mDDR an external resistor divider connected to this pin is necessary. — DDR PHY 1.8V power supply pins 36 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.7 Serial Peripheral Interface Modules (SPI) Table 2-11. Serial Peripheral Interface (SPI) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION SPI0 SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A SPI0 clock SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A SPI0 enable SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 I/O CP[10] A SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / TM64P0_IN12 E16 I/O CP[10] A SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /SATA_CP_DET D16 I/O SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I/O CP[9] CP[9] A SPI0 chip selects A SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A SPI0 data slave-in-master-out SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A SPI0 data slave-out-master-in SPI1 SPI1_CLK / GP2[13] G19 I/O CP[15] A SPI1 clock SPI1_ENA / GP2[12] H16 I/O CP[15] A SPI1 enable SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] E18 I/O F16 I/O CP[13] CP[12] A SPI1 chip selects A SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A SPI1_SIMO / GP2[10] G17 I/O CP[15] A SPI1 data slave-in-master-out SPI1_SOMI / GP2[11] H17 I/O CP[15] A SPI1 data slave-out-master-in (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 37 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.8 Programmable Real-Time Unit (PRU) Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions SIGNAL NAME PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] PRU0_R30[29]/ UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27] PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] NO. R17 R16 U17 W15 U16 TYPE (1) O O O O O T15 O G1 O G2 O J4 O G3 O D11 O A1 O B1 O A2 O D2 O PULL (2) CP[23] CP[23] CP[24] CP[24] CP[24] CP[24] CP30] CP[30] CP[30] CP[30] CP[19] CP[0] CP[0] CP[0] CP[4] POWER GROUP (3) C C C C C C DESCRIPTION C C PRU0 Output Signals C C B A A A A (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 38 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] TYPE (1) NO. D5 O V18 O V19 O U19 O T16 O R18 O R19 O R15 O F18 O E19 O C17 O B7 O D8 O A16 O A9 O B19 O B18 O PULL (2) CP[0] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[14] CP[14] CP[7] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] POWER GROUP (3) A C DESCRIPTION C C C C C C PRU0 Output Signals A A A B B B B B B Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 39 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] VP_DIN[4] / UHPI_HD[11] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] AFSR / GP0[13] / PRU0_R31[20] AFSX / GP0[12] / PRU0_R31[19] AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] NO. U18 V16 R14 W16 V17 W17 TYPE (1) I I I I I I W18 I A1 I B1 I C2 I B2 I A2 I A3 I D5 I V18 I V19 I U19 I T16 I R18 I R19 I R15 I E4 I D2 I C1 I B7 I D8 I A16 I A9 I B19 I B18 I PULL (2) CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[0] CP[0] CP[0] CP[0] CP[0] CP[0] CP[0] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[3] CP[4] CP[5] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] POWER GROUP (3) C C C C C C DESCRIPTION C A A A A A A A C PRU0 Input Signals C C C C C C A A A B B B B B B 40 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME NO. MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 EMA_A[9] / PRU1_R30[17] / GP5[9] D12 EMA_A[8] / PRU1_R30[16] / GP5[8] A13 EMA_A[7] / PRU1_R30[15] / GP5[7] B13 RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 TYPE (1) O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O PULL (2) CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[19] CP[19] CP[19] CP[19] CP[19] CP[19] CP[19] CP[19] CP[20] CP[21] CP[22] CP[23] CP[23] CP[25] CP[25] CP[30] CP[31] CP[31] CP[31] CP[31] CP[30] CP[30] CP[30] CP[30] POWER GROUP (3) B B B B B B B B B DESCRIPTION B B B B B B B PRU1 Output B Signals C C C C C C C C C C C C C C C Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 41 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued) SIGNAL NAME NO. VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27] G1 PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] G2 PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 EMA_A[15]/MMCSD0_DAT[6]/PRU1_R30[23]/GP5[15]/PRU1_R31[23] C11 EMA_A[14]/MMCSD0_DAT[7]/PRU1_R30[22]/GP5[14]/PRU1_R31[22] A12 EMA_A[13]/PRU0_R30[21]/PRU1_R30[21]/GP5[13]/PRU1_R31[21] D11 EMA_A[12]/PRU1_R30[20]/GP5[12]/PRU1_R31[20] D13 EMA_A[11]/PRU1_R30[19]/GP5[11]/PRU1_R31[19] B12 EMA_A[10]/PRU1_R30[18]/GP5[10]/PRU1_R31[18] C12 PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] T15 VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 TYPE (1) I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I PULL (2) CP[26] CP[31] CP[30] CP[30] CP[30] CP[30] CP[19] CP[19] CP[19] CP[19] CP[19] CP[19] CP[24] CP[25] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[31] CP[31] CP[31] CP[30] CP[30] CP[30] CP[30] CP[27] POWER GROUP (3) C C C DESCRIPTION C C C B B B B B B C C PRU1 Input Signals C C C C C C C C C C C C C C C C 42 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.9 Enhanced Capture/Auxiliary PWM Modules (eCAP0) The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 2-13. Enhanced Capture Module (eCAP) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION eCAP0 AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I/O CP[6] A enhanced capture 0 input or auxiliary PWM 0 output eCAP1 AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O CP[3] A enhanced capture 1 input or auxiliary PWM 1 output eCAP2 AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A enhanced capture 2 input or auxiliary PWM 2 output (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 43 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.10 Enhanced Pulse Width Modulators (eHRPWM) Table 2-14. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION eHRPWM0 SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A eHRPWM0 A output (with high-resolution) SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A eHRPWM0 B output AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I CP[1] A eHRPWM0 trip zone input SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A eHRPWM0 sync input SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A eHRPWM0 sync output eHRPWM1 SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A eHRPWM1 A output (with high-resolution) SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A eHRPWM1 B output AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I CP[4] A eHRPWM1 trip zone input (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 44 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.11 Boot Table 2-15. Boot Mode Selection Terminal Functions(1) SIGNAL NAME TYPE (2) NO. PULL (3) POWER GROUP (4) DESCRIPTION VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I CP[29] CP[29] C Boot Mode Selection Pins C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I CP[29] C (1) Boot decoding is defined in the bootloader application report. (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (3) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (4) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 45 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.12 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2) Table 2-16. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION UART0 SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A UART0 receive data SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 O CP[8] A UART0 transmit data SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 O CP[9] A UART0 ready-to-send output SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I CP[9] A UART0 clear-to-send input UART1 SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I CP[13] A UART1 receive data SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 O CP[13] A UART1 transmit data AHCLKR / PRU0_R30[18] / UART1_RTS /GP0[11] / PRU0_R31[18] A2 O CP[0] A UART1 ready-to-send output AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A UART1 clear-to-send input UART2 SPI1_SCS[5] / UART2_RXD / I2C1_SCL /GP1[3] F17 I CP[12] A UART2 receive data SPI1_SCS[4] / UART2_TXD / I2C1_SDA /GP1[2] F16 O CP[12] A UART2 transmit data AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 O CP[0] A UART2 ready-to-send output RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A UART2 clear-to-send input (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 46 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.13 Inter-Integrated Circuit Modules(I2C0, I2C1) Table 2-17. Inter-Integrated Circuit (I2C) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION I2C0 SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A I2C0 serial data SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A I2C0 serial clock I2C1 SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A I2C1 serial data SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A I2C1 serial clock (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 47 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.14 Timers Table 2-18. Timers Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION TIMER0 SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK /TM64P0_IN12 E16 I CP[10] A Timer0 lower input SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / TM64P0_IN12 E16 O CP[10] A Timer0 lower output TIMER1 (Watchdog) SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 I CP[10] A Timer1 lower input SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 O CP[10] A Timer1 lower output TIMER2 SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I CP[14] A Timer2 lower input SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 O CP[11] A Timer2 lower output TIMER3 SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I CP[14] A Timer3 lower input SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 O CP[11] A Timer3 lower output (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 48 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.15 Multichannel Audio Serial Ports (McASP) Table 2-19. Multichannel Audio Serial Ports Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION McASP0 AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A AXR10 / DR1 / GP0[2] D4 I/O CP[2] A AXR9 / DX1 / GP0[1] C3 I/O CP[2] A AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I/O CP[3] CP[4] A McASP0 serial data A AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A AXR0 / ECAP0_APWM0 / GP8[7]/ MII_TXD[0] / CLKS0 F3 I/O CP[6] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I/O CP[0] A McASP0 transmit master clock ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A McASP0 transmit bit clock AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A McASP0 transmit frame sync AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I/O CP[0] A McASP0 receive master clock ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A McASP0 receive bit clock AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A McASP0 receive frame sync AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I/O CP[0] A McASP0 mute output (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 49 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.16 Multichannel Buffered Serial Ports (McBSP) Table 2-20. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION McBSP0 AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I CP[6] A McBSP0 sample rate generator clock input AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A McBSP0 receive clock AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A McBSP0 receive frame sync AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I CP[5] A McBSP0 receive data AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A McBSP0 transmit clock AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A McBSP0 transmit frame sync AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A McBSP0 transmit data McBSP1 AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I CP[3] A McBSP1 sample rate generator clock input AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A McBSP1 receive clock AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A McBSP1 receive frame sync AXR10 / DR1 / GP0[2] D4 I CP[2] A McBSP1 receive data AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A McBSP1 transmit clock AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A McBSP1 transmit frame sync AXR9 / DX1 / GP0[1] C3 O CP[2] A McBSP1 transmit data (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 50 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.17 Universal Serial Bus Modules (USB0, USB1) Table 2-21. Universal Serial Bus (USB) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION USB0 2.0 OTG (USB0) USB0_DM USB0_DP USB0_VDDA33 USB0_ID M18 A IPD M19 A IPD N18 PWR — P16 A — — USB0 PHY data minus — USB0 PHY data plus — USB0 PHY 3.3-V supply — USB0 PHY identification (mini-A or mini-B plug) USB0_VBUS USB0_DRVVBUS N19 A — K18 0 IPD — USB0 bus voltage B USB0 controller VBUS control output. AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A USB_REFCLKIN. Optional clock input USB0_VDDA18 USB0_VDDA12 USB_CVDD N14 PWR — N17 A — M12 PWR — — USB0 PHY 1.8-V supply input — USB0 PHY 1.2-V LDO output for bypass cap — USB0 and USB1 core logic 1.2-V supply input USB1 1.1 OHCI (USB1) USB1_DM l P18 A USB1_DP P19 A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I — — CP[0] — USB1 PHY data minus — USB1 PHY data plus A USB_REFCLKIN. Optional clock input USB1_VDDA33 USB1_VDDA18 USB_CVDD P15 PWR — P14 PWR — M12 PWR — — USB1 PHY 3.3-V supply — USB1 PHY 1.8-V supply — USB0 and USB1 core logic 1.2-V supply input (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 51 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.18 Ethernet Media Access Controller (EMAC) Table 2-22. Ethernet Media Access Controller (EMAC) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION MII AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 O CP[5] A EMAC MII Transmit enable output AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I CP[5] A EMAC MII Transmit clock input AXR4 / FSR0 / GP1[12] / MII_COL D1 I CP[5] A EMAC MII Collision detect input AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] AXR1 / DX0 / GP1[9] / MII_TXD[1] E2 O E1 O CP[5] CP[5] A A EMAC MII transmit data AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 O CP[6] A SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A EMAC MII receive error input SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I CP[7] A EMAC MII carrier sense input SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I CP[7] A EMAC MII receive clock input SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I CP[7] A EMAC MII receive data valid input SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2] D18 I CP[8] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 I CP[9] A EMAC MII receive data SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 I CP[9] A (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 52 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-22. Ethernet Media Access Controller (EMAC) Terminal Functions (continued) SIGNAL NAME NO. VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] V17 VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /PRU0_R31[26] W16 VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 D17 SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / TM64P0_IN12 E16 TYPE (1) RMII I/O I I I I O O O MDIO I/O O PULL (2) CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[10] CP[10] POWER GROUP (3) DESCRIPTION C EMAC 50-MHz clock input or output C EMAC RMII receiver error C EMAC RMII receive data C C EMAC RMII carrier sense data valid C EMAC RMII transmit enable C EMAC RMII transmit data C A MDIO serial data A MDIO clock Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 53 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.19 Multimedia Card/Secure Digital (MMC/SD) Table 2-23. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION MMCSD0 MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B MMCSD0 Clock EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B MMCSD0 Command EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] A12 I/O CP[19] B EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] C11 I/O CP[19] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] E12 I/O B11 I/O CP[18] CP[18] B B MMC/SD0 data EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B MMCSD1 PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26]/ G2 O CP[30] C MMCSD1 Clock PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 I/O CP[30] C MMCSD1 Command MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 I/O CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 I/O CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] G4 I/O H3 I/O CP[31] CP[30] C MMC/SD1 data C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 I/O CP[30] C VP_CLKIN3 / MMCSD1_DAT[1]/ PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I/O CP[30] C PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/ PRU1_R31[27] G1 I/O CP[30] C (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 54 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.20 Liquid Crystal Display Controller(LCD) Table 2-24. Liquid Crystal Display Controller (LCD) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U2 I/O U1 I/O CP[28] CP[28] C LCD data bus C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I/O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I/O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I/O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I/O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C LCD pixel clock MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 O CP[31] C LCD horizontal sync MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 O CP[31] C LCD vertical sync LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 O CP[31] C LCD AC bias enable chip select MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 O CP[31] C LCD memory clock (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 55 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.21 Serial ATA Controller (SATA) Table 2-25. Serial ATA Controller (SATA) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION SATA_RXP SATA_RXN SATA_TXP SATA_TXN SATA_REFCLKP SATA_REFCLKN SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH L1 I L2 I J1 O J2 O N2 I N1 I E17 I — — — — — — CP[9] — SATA receive data (positive) — SATA receive data (negative) — SATA transmit data (positive) — SATA transmit data (negative) — SATA PHY reference clock (positive) — SATA PHY reference clock (negative) A SATA mechanical presence switch input SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 I CP[9] A SATA cold presence detect input SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 O CP[13] A SATA cold presence power-on output SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 O CP[13] A SATA LED control output SATA_REG N3 A — — SATA PHY PLL regulator output. Requires an external 0.1uF filter capacitor. SATA_VDDR SATA_VDD P3 PWR — M2, P1, P2, PWR — N4 — SATA PHY 1.8V internal regulator supply — SATA PHY 1.2V logic supply SATA_VSS H1, H2, K1, K2, GND — L3, M1 — SATA PHY ground reference (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. 56 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.22 Universal Host-Port Interface (UHPI) Table 2-26. Universal Host-Port Interface (UHPI) Terminal Functions SIGNAL NAME VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] NO. U18 V16 R14 W16 V17 W17 W18 W19 V18 V19 U19 T16 R18 R19 R15 P17 U17 W15 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8]/PRU1_R31[17] T15 I VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 I VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O PULL (2) CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[24] CP[24] CP[24] CP[24] CP[25] CP[25] CP[22] CP[23] POWER GROUP (3) C DESCRIPTION C C C C C C C UHPI data bus C C C C C C C C C UHPI access control C C UHPI half-word identification control C UHPI read/write C UHPI chip select C UHPI data strobe C C UHPI host interrupt (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 57 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-26. Universal Host-Port Interface (UHPI) Terminal Functions (continued) SIGNAL NAME PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] /GP6[13] RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] TYPE (1) NO. R17 O T17 I PULL (2) CP[23] CP[21] POWER GROUP (3) DESCRIPTION C UHPI ready C UHPI address strobe 58 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.23 Universal Parallel Port (uPP) Table 2-27. Universal Parallel Port (uPP) Terminal Functions SIGNAL NAME VP_CLKIN0 / UHPI_HCS /PRU1_R30[10] / GP6[7] / UPP_2xTXCLK PRU0_R30[25] /MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/PRU1_R31[27] PRU0_R30[24]/ MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13]/PRU1_R31[25] PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12]/ PRU1_R31[24] PRU0_R30[29] /UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] PRU0_R30[26] /UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] NO. W14 G1 G2 J4 G3 U17 W15 U16 T15 TYPE (1) I I/O I/O I/O I/O I/O I/O I/O I/O PULL (2) CP[25] CP[30] CP[30] CP[30] CP[30] CP[24] CP[24] CP[24] CP[24] POWER GROUP (3) DESCRIPTION C uPP 2x transmit clock input C uPP channel B clock C uPP channel B start C uPP channel B enable C uPP channel B wait C uPP channel A clock C uPP channel A start C uPP channel A enable C uPP channel A wait (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 59 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-27. Universal Parallel Port (uPP) Terminal Functions (continued) SIGNAL NAME VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7]/PRU0_R30[15] / PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6]/ PRU0_R30[14] / PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] /PRU0_R30[13] / PRU0_R31[13] VP_DIN[12] / UHPI_HD[4] / UPP_D[4]/ PRU0_R30[12] / PRU0_R31[12] VP_DIN[11] / UHPI_HD[3] / UPP_D[3]/ PRU0_R30[11] / PRU0_R31[11] VP_DIN[10] / UHPI_HD[2] / UPP_D[2]/ PRU0_R30[10] / PRU0_R31[10] VP_DIN[9] / UHPI_HD[1] / UPP_D[1]/ PRU0_R30[9] / PRU0_R31[9] VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] NO. U2 U1 V3 V2 V1 W3 W2 W1 P4 R3 R2 R1 T3 T2 T1 U3 U18 V16 R14 W16 V17 W17 W18 W19 V18 V19 U19 T16 R18 R19 R15 P17 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PULL (2) CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[26] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] CP[27] POWER GROUP (3) C DESCRIPTION C C C C C C C C C C C C C C C C C uPP data bus C C C C C C C C C C C C C C 60 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.24 Video Port Interface (VPIF) Table 2-28. Video Port Interface (VPIF) Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION VIDEO INPUT VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 I CP[25] C VPIF capture channel 0 input clock VP_CLKIN1 / UHPI_HDS1/PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C VPIF capture channel 1 input clock VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15] V18 I CP[27] C VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / RU0_R30[14] / PRU0_R31[14] V19 I CP[27] C VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13] U19 I CP[27] C VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 I CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 I CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 I CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I CP[27] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] P17 I U18 I CP[27] CP[26] C VPIF capture data bus C VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 I CP[26] C VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 I CP[26] C VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] W16 I CP[26] C VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / MII_RXD[0] / PRU0_R31[25] V17 I CP[26] C VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I CP[26] C VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23] W18 I CP[26] C VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 I CP[26] C (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 61 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-28. Video Port Interface (VPIF) Terminal Functions (continued) SIGNAL NAME TYPE (1) NO. VIDEO OUTPUT VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 I VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 O VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 O VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 O VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 O VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 O VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 O VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 O VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 O VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 O VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 O VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 O VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 O VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 O VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 O VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 O VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 O VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 O PULL (2) CP[30] CP[30] CP[30] CP[30] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] POWER GROUP (3) DESCRIPTION C VPIF display channel 2 input clock C VPIF display channel 2 output clock C VPIF display channel 3 input clock C VPIF display channel 3 output clock C C C C C C C C VPIF display data bus C C C C C C C C 62 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.25 General Purpose Input Output Table 2-29. General Purpose Input Output Terminal Functions SIGNAL NAME TYPE (1) NO. PULL (2) POWER GROUP (3) DESCRIPTION GP0 ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I/O CP[0] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I/O CP[0] A AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I/O RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I/O CP[0] CP[0] A A GPIO Bank 0 AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A AXR10 / DR1 / GP0[2] D4 I/O CP[2] A AXR9 / DX1 / GP0[1] C3 I/O CP[2] A AXR8 / CLKS1 / ECAP1_APWM1 /GP0[0] / PRU0_R31[8] E4 I/O CP[3] A (1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For electrical specifications on the pull-up and and internal pull-down circuits, see the Device Operating Conditions section. (3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 63 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] AXR5 / CLKX0 / GP1[13] / MII_TXCLK AXR4 / FSR0 / GP1[12] / MII_COL AXR3 / FSX0 / GP1[11] / MII_TXD[3] AXR2 / DR0 / GP1[10] / MII_TXD[2] AXR1 / DX0 / GP1[9] / MII_TXD[1] SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK / TM64P0_IN12 SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12 SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] NO. GP1 D2 C1 D3 D1 E3 E2 E1 D19 E16 D17 G16 G18 F17 F16 E18 F19 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PULL (2) CP[4] CP[5] CP[5] CP[5] CP[5] CP[5] CP[5] CP[7] CP[10] CP[10] CP[11] CP[11] CP[12] CP[12] CP[13] CP[13] POWER GROUP (3) DESCRIPTION A A A A A A A A A GPIO Bank 1 A A A A A A A 64 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. GP2 SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 SPI1_CLK / GP2[13] G19 SPI1_ENA / GP2[12] H16 SPI1_SOMI / GP2[11] H17 SPI1_SIMO / GP2[10] G17 EMA_BA[1] / GP2[9] A15 EMA_BA[0] / GP2[8] C15 EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 EMA_WEN_DQM[0] / GP2[3] C8 EMA_WEN_DQM[1] / GP2[2] A5 EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 EMA_CS[0] / GP2[0] A18 GP3 EMA_CS[2] / GP3[15] B17 EMA_CS[3] / GP3[14] A17 EMA_CS[4] / GP3[13] F9 EMA_CS[5] / GP3[12] B16 EMA_WE / GP3[11] B9 EMA_OE / GP3[10] B15 EMA_A_RW / GP3[9] D10 EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 EMA_D[15] / GP3[7] E6 EMA_D[14] / GP3[6] C7 EMA_D[13] / GP3[5] B6 EMA_D[12] / GP3[4] A6 EMA_D[11] / GP3[3] D6 EMA_D[10] / GP3[2] A7 EMA_D[9] / GP3[1] D9 EMA_D[8] / GP3[0] E10 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PULL (2) CP[14] CP[14] CP[15] CP[15] CP[15] CP[15] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[16] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] POWER GROUP (3) DESCRIPTION A A A A A A B B GPIO Bank 2 B B B B B B B B B B B B B B B B GPIO Bank 3 B B B B B B B B Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 65 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME EMA_D[7] / GP4[15] EMA_D[6] / GP4[14] EMA_D[5] / GP4[13] EMA_D[4] / GP4[12] EMA_D[3] / GP4[11] EMA_D[2] / GP4[10] EMA_D[1] / GP4[9] EMA_D[0] / GP4[8] MMCSD0_CLK / PRU1_R30[31] / GP4[7] EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23] EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22] EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] EMA_A[9] / PRU1_R30[17] / GP5[9] EMA_A[8] / PRU1_R30[16] / GP5[8] EMA_A[7] / PRU1_R30[15] / GP5[7] EMA_A[6] / GP5[6] EMA_A[5] / GP5[5] EMA_A[4] / GP5[4] EMA_A[3] / GP5[3] EMA_A[2] / GP5[2] EMA_A[1] / GP5[1] EMA_A[0] / GP5[0] NO. GP4 D7 C6 E7 B5 E8 B8 A8 C9 E9 A10 B10 A11 C10 E11 B11 E12 GP5 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O C11 I/O PULL (2) CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[17] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[18] CP[19] POWER GROUP (3) DESCRIPTION B B B B B B B B GPIO Bank 4 B B B B B B B B B A12 I/O CP[19] B D11 I/O D13 I/O B12 I/O C12 I/O D12 I/O A13 I/O B13 I/O E13 I/O C13 I/O A14 I/O D14 I/O B14 I/O D15 I/O C14 I/O CP[19] CP[19] CP[19] CP[19] CP[19] CP[19] CP[20] CP[20] CP[20] CP[20] CP[20] CP[20] CP[20] CP[20] B B B B B GPIO Bank 5 B B B B B B B B B 66 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. GP6 RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT/GP6[8] / PRU1_R31[17] T15 VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] GP6[7] / UPP_2xTXCLK W14 VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] / PRU1_R31[3] K3 VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 GP7 VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5]/ BOOT[5] R2 VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PULL (2) CP[21] CP[22] CP[23] CP[23] CP[24] CP[24] CP[24] CP[24] CP[25] CP[25] CP[27] CP[30] CP[30] CP[30] CP[30] CP[31] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[28] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] CP[29] POWER GROUP (3) DESCRIPTION C C C C C C C C C GPIO Bank 6 C C C C C C C C C C C C C C C GPIO Bank 7 C C C C C C C C Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 67 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 2-29. General Purpose Input Output Terminal Functions (continued) SIGNAL NAME NO. GP8 PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27] G1 PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26] G2 PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25] J4 PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24] G3 MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH E17 SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET D16 RTCK / GP8[0](1) K17 TYPE (1) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O PULL (2) CP30] CP[30] CP[30] CP[30] CP[31] CP[31] CP[31] CP[31] CP[6] CP[7] CP[7] CP[8] CP[8] CP[9] CP[9] IPD POWER GROUP (3) DESCRIPTION C C C C C C C GPIO Bank 8 C A A A A A A A B (1) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an unknown state after reset. 68 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.8.26 Reserved and No Connect Table 2-30. Reserved and No Connect Terminal Functions RSV2 SIGNAL NAME NC (1) PWR = Supply voltage. NO. T19 M3, M14, N16 TYPE (1) PWR DESCRIPTION Reserved. For proper device operation, this pin must be tied either directly to CVDD or left unconnected (do not connect to ground). Pin M3 should be left unconnected (do not connect to power or ground) Pins M14 and N16 may be left unconnected or connected to ground (VSS) Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 69 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 2.8.27 Supply and Ground Table 2-31. Supply and Ground Terminal Functions SIGNAL NAME CVDD (Core supply) NO. E15, G7, G8, G13, H6, H7, H10, H11, H12, H13, J6, J12, K6, K12, L12, M8, M9, N8 RVDD (Internal RAM supply) E5, H14, N7 DVDD18 (I/O supply) DVDD3318_A (I/O supply) DVDD3318_B (I/O supply) DVDD3318_C (I/O supply) VSS (Ground) USB0_VDDA33 USB0_VDDA18 USB0_VDDA12 USB_CVDD USB1_VDDA33 USB1_VDDA18 SATA_VDD SATA_VSS DDR_DVDD18 F14, G6, G10, G11, G12, J13, K5, L6, P13, R13 F5, F15, G5, G14, G15, H5 E14, F6, F7, F8, F10, F11, F12, F13, G9, J14, K15 J5, K13, L4, L13, M13, N13, P5, P6, P12, R4 A19, H8, H9, H15, J7, J8, J9, J10, J11, K7, K8, K9, K10, K11, L5, L7, L8, L9, L10, L11, M4, M5, M6, M7, M10, M11, N5, N11, N12, P11 N18 N14 N17 M12 P15 P14 M2, N4, P1, P2 H1, H2, K1, K2, L3, M1 N6, N9, N10, P7, P8, P9, P10, R7, R8, R9 (1) PWR = Supply voltage, GND - Ground. TYPE (1) PWR PWR PWR PWR PWR PWR GND PWR PWR A PWR PWR PWR PWR GND PWR DESCRIPTION Variable (1.3V - 1.0V) core supply voltage pins 1.3V internal ram supply voltage pins (for 456 MHz versions) 1.2V internal ram supply voltage pins (for 375 MHz versions) 1.8V I/O supply voltage pins. DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V. 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C Ground pins. USB0 PHY 3.3-V supply USB0 PHY 1.8-V supply input USB0 PHY 1.2-V LDO output for bypass cap USB0 core logic 1.2-V supply input USB1 PHY 3.3-V supply USB1 PHY 1.8-V supply SATA PHY 1.2V logic supply SATA PHY ground reference DDR PHY 1.8V power supply pins 70 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2.9 Unused Pin Configurations All signals multiplexed with multiple functions may be used as an alternate function if a given peripheral is not used. Unused non-multiplexed signals and some other specific signals should be handled as specified in the tables below. If NMI is unused, it should be pulled-high externally through a 10k-ohm resistor to supply DVDD3318_B. SIGNAL NAME USB0_DM USB0_DP USB0_ID USB0_VBUS USB0_DRVVBUS USB0_VDDA33 USB0_VDDA18 USB0_VDDA12 USB1_DM USB1_DP USB1_VDDA33 USB1_VDDA18 USB_REFCLKIN USB_CVDD Table 2-32. Unused USB0 and USB1 Signal Configurations Configuration (When USB0 and USB1 are not used) No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect or other peripheral function 1.2V Configuration (When only USB1 is not used) Use as USB0 function Use as USB0 function Use as USB0 function Use as USB0 function Use as USB0 function 3.3V 1.8V Internal USB PHY output connected to an external filter capacitor VSS or No Connect VSS or No Connect No Connect No Connect Use for USB0 or other peripheral function 1.2V SIGNAL NAME SATA_RXP SATA_RXN SATA_TXP SATA_TXN SATA_REFCLKP SATA_REFCLKN SATA_MP_SWITCH SATA_CP_DET SATA_CP_POD SATA_LED SATA_REG SATA_VDDR SATA_VDD SATA_VSS Table 2-33. Unused SATA Signal Configuration Configuration No Connect No Connect No Connect No Connect No Connect No Connect May be used as GPIO or other peripheral function May be used as GPIO or other peripheral function May be used as GPIO or other peripheral function May be used as GPIO or other peripheral function No Connect No Connect Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply. For silicon revision 2.0 and later, this supply may be left unconnected for additional power conservation. VSS SIGNAL NAME RTC_XI RTC_XO RTC_ALARM Table 2-34. Unused RTC Signal Configuration Configuration May be held high (CVDD) or low No Connect May be used as GPIO or other peripheral function Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Overview 71 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 2-34. Unused RTC Signal Configuration (continued) SIGNAL NAME RTC_CVDD RTC_VSS Configuration Connect to CVDD VSS www.ti.com Table 2-35. Unused DDR2/mDDR Controller Signal Configuration SIGNAL NAME DDR_D[15:0] DDR_A[13:0] DDR_CLKP DDR_CLKN DDR_CKE DDR_WE DDR_RAS DDR_CAS DDS_CS DDR_DQM[1:0] DDR_DQS[1:0] DDR_BA[2:0] DDR_DQGATE0 DDR_DQGATE1 DDR_ZP DDR_VREF DDR_DVDD18 Configuration (1) No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect No Connect (1) To minimize power consumption, the DDR2/mDDR controller input receivers should be placed in power-down mode by setting VTPIO[14]=1. 72 Device Overview Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com 3 Device Configuration SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 3.1 Boot Modes This device supports a variety of boot modes through an internal ARM ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ARM ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins. See Using the OMAP-L132/L138 Bootloader Application Report (SPRAB41) for more details on the ROM Boot Loader. The following boot modes are supported: • NAND Flash boot – 8-bit NAND – 16-bit NAND (supported on ROM revisions after d800k002 -- see the bootloader documents mentioned above to determine the ROM revision) • NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit) • HPI Boot • I2C0/I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode) • SPI0/SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode) • UART0/UART1/UART2 Boot – External Host • MMC/SD0 Boot 3.2 SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT pin values and make them available to software • Control of the DeepSleep power management function • Enable and selection of the programmable pin pullups and pulldowns Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Configuration 73 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com • Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 transfer controllers – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the McASP – Control of the reference clock source and other side-band signals for both of the integrated USB PHYs – Clock source selection for EMIFA – DDR2 Controller PHY settings – SATA PHY power management controls • Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting this function. • Control of on-chip inter-processor interrupts for signaling between ARM and DSP Many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). BYTE ADDRESS 0x01C1 4000 0x01C1 4008 0x01C1 400C 0x01C1 4010 0x01C1 4014 0x01C1 4020 0x01C1 4038 0x01C1 403C 0x01C1 4040 0x01C1 4044 0x01C1 40E0 0x01C1 40E4 0x01C1 40E8 0x01C1 40EC 0x01C1 40F0 0x01C1 40F4 0x01C1 40F8 0x01C1 4110 0x01C1 4114 0x01C1 4118 0x01C1 4120 0x01C1 4124 0x01C1 4128 0x01C1 412C 0x01C1 4130 0x01C1 4134 0x01C1 4138 0x01C1 413C 0x01C1 4140 0x01C1 4144 0x01C1 4148 Table 3-1. System Configuration (SYSCFG) Module Register Access ACRONYM REVID DIEIDR0 DIEIDR1 DIEIDR2 DIEIDR3 BOOTCFG KICK0R KICK1R HOST0CFG HOST1CFG IRAWSTAT IENSTAT IENSET IENCLR EOI FLTADDRR FLTSTAT MSTPRI0 MSTPRI1 MSTPRI2 PINMUX0 PINMUX1 PINMUX2 PINMUX3 PINMUX4 PINMUX5 PINMUX6 PINMUX7 PINMUX8 PINMUX9 PINMUX10 REGISTER DESCRIPTION Revision Identification Register Device Identification Register 0 Device Identification Register 1 Device Identification Register 2 Device Identification Register 3 Boot Configuration Register Kick 0 Register Kick 1 Register Host 0 Configuration Register Host 1 Configuration Register Interrupt Raw Status/Set Register Interrupt Enable Status/Clear Register Interrupt Enable Register Interrupt Enable Clear Register End of Interrupt Register Fault Address Register Fault Status Register Master Priority 0 Registers Master Priority 1 Registers Master Priority 2 Registers Pin Multiplexing Control 0 Register Pin Multiplexing Control 1 Register Pin Multiplexing Control 2 Register Pin Multiplexing Control 3 Register Pin Multiplexing Control 4 Register Pin Multiplexing Control 5 Register Pin Multiplexing Control 6 Register Pin Multiplexing Control 7 Register Pin Multiplexing Control 8 Register Pin Multiplexing Control 9 Register Pin Multiplexing Control 10 Register REGISTER ACCESS — — — — — Privileged mode Privileged mode Privileged mode — — Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode — Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode 74 Device Configuration Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 3-1. System Configuration (SYSCFG) Module Register Access (continued) BYTE ADDRESS 0x01C1 414C 0x01C1 4150 0x01C1 4154 0x01C1 4158 0x01C1 415C 0x01C1 4160 0x01C1 4164 0x01C1 4168 0x01C1 416C 0x01C1 4170 0x01C1 4174 0x01C1 4178 0x01C1 417C 0x01C1 4180 0x01C1 4184 0x01C1 4188 0x01C1 418C 0x01E2 C000 0x01E2 C004 0x01E2 C008 0x01E2 C00C 0x01E2 C010 0x01E2 C014 0x01E2 C018 ACRONYM PINMUX11 PINMUX12 PINMUX13 PINMUX14 PINMUX15 PINMUX16 PINMUX17 PINMUX18 PINMUX19 SUSPSRC CHIPSIG CHIPSIG_CLR CFGCHIP0 CFGCHIP1 CFGCHIP2 CFGCHIP3 CFGCHIP4 VTPIO_CTL DDR_SLEW DeepSleep PUPD_ENA PUPD_SEL RXACTIVE PWRDN REGISTER DESCRIPTION Pin Multiplexing Control 11 Register Pin Multiplexing Control 12 Register Pin Multiplexing Control 13 Register Pin Multiplexing Control 14 Register Pin Multiplexing Control 15 Register Pin Multiplexing Control 16 Register Pin Multiplexing Control 17 Register Pin Multiplexing Control 18 Register Pin Multiplexing Control 19 Register Suspend Source Register Chip Signal Register Chip Signal Clear Register Chip Configuration 0 Register Chip Configuration 1 Register Chip Configuration 2 Register Chip Configuration 3 Register Chip Configuration 4 Register VTPIO COntrol Register DDR Slew Register DeepSleep Register Pullup / Pulldown Enable Register Pullup / Pulldown Selection Register RXACTIVE Control Register PWRDN Control Register REGISTER ACCESS Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode — — Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Privileged mode Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Configuration 75 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 3.3 Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the IO supply rail. • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 4.2, Recommended Operating Conditions. • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table. 76 Device Operating Conditions Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated www.ti.com 4 Device Operating Conditions OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 4.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) (1) Supply voltage ranges Input voltage (VI) ranges Core Logic, Variable and Fixed (CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA , SATA_VDD, USB_CVDD )(2) I/O, 1.8V (USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18)(2) I/O, 3.3V (DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33, USB1_VDDA33) (2) Oscillator inputs (OSCIN, RTC_XI), 1.2V Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State) Dual-voltage LVCMOS inputs, operated at 3.3V(Transient) Dual-voltage LVCMOS inputs, operated at 1.8V(Transient) Output voltage (VO) ranges USB 5V Tolerant IOs: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) USB0 VBUS Pin Dual-voltage LVCMOS outputs, 3.3V or 1.8V (Steady State) Dual-voltage LVCMOS outputs, operated at 3.3V(Transient) (Transient) Dual-voltage LVCMOS outputs, operated at 1.8V(Transient) (Transient) Clamp Current Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. Operating Junction Temperature ranges, TJ Commercial (default) Industrial (D suffix) Extended (A suffix) Storage temperature range, Tstg ESD Stress Voltage, VESD (4) (default) Human Body Model (HBM) (5) Charged Device Model (CDM) (6) -0.5 V to 1.4 V -0.5 V to 2 V -0.5 V to 3.8V -0.3 V to CVDD + 0.3V -0.3V to DVDD + 0.3V DVDD + 20% up to 20% of Signal Period DVDD + 30% up to 30% of Signal Period 5.25V (3) 5.50V (3) -0.5 V to DVDD + 0.3V DVDD + 20% up to 20% of Signal Period DVDD + 30% up to 30% of Signal Period ±20mA 0°C to 90°C -40°C to 90°C -40°C to 105°C -55°C to 150°C >1000 V >500 V (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS (3) Up to a maximum of 24 hours. (4) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. (5) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance. (6) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Operating Conditions 77 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 4.2 Recommended Operating Conditions NAME DESCRIPTION CONDITION MIN 1.3V operating point 1.25 CVDD 1.2V operating point 1.14 Core Logic Supply Voltage (variable) 1.1V operating point 1.05 1.0V operating point 0.95 456 MHz versions 1.25 RVDD Internal RAM Supply Voltage 375 MHz versions 1.14 RTC_CVDD (1) RTC Core Logic Supply Voltage 0.9 PLL0_VDDA PLL0 Supply Voltage 1.14 PLL1_VDDA PLL1 Supply Voltage 1.14 SATA_VDD SATA Core Logic Supply Voltage 1.14 USB_CVDD USB0, USB1 Core Logic Supply Voltage 1.14 USB0_VDDA18 USB0 PHY Supply Voltage 1.71 USB0_VDDA33 USB0 PHY Supply Voltage 3.15 Supply USB1_VDDA18 USB1 PHY Supply Voltage 1.71 Voltage USB1_VDDA33 USB1 PHY Supply Voltage 3.15 DVDD18 (2) 1.8V Logic Supply 1.71 SATA_VDDR SATA PHY Internal Regulator Supply Voltage 1.71 DDR_DVDD18 ( 2) DDR2 PHY Supply Voltage 1.71 NOM 1.3 1.2 1.1 1.0 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.8 3.3 1.8 3.3 1.8 1.8 1.8 MAX 1.35 1.32 1.16 1.05 1.35 1.32 1.32 1.32 1.32 1.32 1.32 1.89 3.45 1.89 3.45 1.89 1.89 1.89 Supply Ground Voltage Input High Voltage Input Low DDR_VREF DDR2/mDDR reference voltage DDR_ZP DDR2/mDDR impedance control, connected via 50Ω resistor to Vss DVDD3318_A Power Group A Dual-voltage IO Supply Voltage 1.8V operating point 3.3V operating point DVDD3318_B Power Group B Dual-voltage IO Supply Voltage 1.8V operating point 3.3V operating point DVDD3318_C Power Group C Dual-voltage IO Supply Voltage 1.8V operating point 3.3V operating point VSS Core Logic Digital Ground PLL0_VSSA PLL0 Ground PLL1_VSSA PLL1 Ground SATA_VSS OSCVSS (3) SATA PHY Ground Oscillator Ground RTC_VSS(3) RTC Oscillator Ground USB0_VSSA USB0 PHY Ground USB0_VSSA33 VIH USB0 PHY Ground High-level input voltage, Dual-voltage I/O, 3.3V(4) High-level input voltage, Dual-voltage I/O, 1.8V (4) High-level input voltage, RTC_XI High-level input voltage, OSCIN Low-level input voltage, Dual-voltage I/O, 3.3V(4) Low-level input voltage, Dual-voltage I/O, 1.8V (4) VIL Low-level input voltage, RTC_XI Low-level input voltage, OSCIN 0.49* DDR_DVDD18 1.71 3.15 1.71 3.15 1.71 3.15 0 2 0.65*DVDD 0.8*RTC_CVDD 0.8*CVDD 0.5* DDR_DVDD18 Vss 1.8 3.3 1.8 3.3 1.8 3.3 0 0.51* DDR_DVDD18 1.89 3.45 1.89 3.45 1.89 3.45 0 0.8 0.35*DVDD 0.2*RTC_CVDD 0.2*CVDD UNIT V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V (1) The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD. If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD. (2) DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V. (3) When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. (4) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are 1.8V IOs and adhere to the JESD79-2A standard. 78 Device Operating Conditions Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Recommended Operating Conditions (continued) NAME DESCRIPTION CONDITION MIN USB USB0_VBUS USB external charge pump input 0 Differential Clock Input Voltage Differential input voltage, SATA_REFCLKP and SATA_REFCLKN 250 Transition Time tt Transition time, 10%-90%, All Inputs (unless otherwise specified in the electrical data sections) CVDD = 1.3V operating point 0 Commercial temperature grade CVDD = 1.2V operating point 0 (default) CVDD = 1.1V operating point 0 CVDD = 1.0V operating point 0 CVDD = 1.3V operating point 0 Operating Frequency FPLL0_SYSCLK1,6 Industrial temperature grade CVDD = 1.2V operating point 0 (D suffix) CVDD = 1.1V operating point 0 CVDD = 1.0V operating point 0 CVDD = 1.2V operating point 0 Extended temperature grade (A suffix) CVDD = 1.1V operating point 0 CVDD = 1.0V operating point 0 NOM MAX 5.25 2000 UNIT V mV 0.25P or 10 (5) 456 (6) 375 (7) 200 (6) 100 (6) 456 (6) 375 (7) 200 (6) 100 (6) 375 (7) 200 (6) 100 (6) ns MHz MHz MHz (5) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. (6) This operating point is not supported on revision 1.x silicon. (7) This operating point is 300 MHz on revision 1.x silicon. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Operating Conditions 79 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 4.3 Notes on Recommended Power-On Hours (POH) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. To avoid significant degradation, the device power-on hours (POH) must be limited to the following: Table 4-1. Recommended Power-On Hours Silicon Revision A B B B B B Speed Grade 300 MHZ 300 MHz 375 MHz 375 MHz 456 MHz 456 MHz Operating Junction Temperature (Tj) 0 to 90 °C 0 to 90 °C 0 to 90 °C -40 to 105 °C 0 to 90 °C -40 to 90 °C Nominal CVDD Voltage (V) 1.2V 1.2V 1.2V 1.2V 1.3V 1.3V (1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz Power-On Hours [POH] (hours) 100,000 100,000 100,000 75,000 (1) 100,000 100,000 Note: Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products. 80 Device Operating Conditions Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 4.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) VOH VOL II (2) IOH IOL Capacitance PARAMETER TEST CONDITIONS MIN TYP High-level output voltage (dual-voltage LVCMOS IOs at 3.3V)(1) High-level output voltage (dual-voltage LVCMOS IOs at 1.8V)(1) DVDD= 3.15V, IOH = -4 mA DVDD= 3.15V, IOH = -100 μA DVDD= 1.71V, IOH = -2 mA 2.4 2.95 DVDD-0.45 Low-level output voltage (dual-voltage LVCMOS I/Os at 3.3V) Low-level output voltage (dual-voltage LVCMOS I/Os at 1.8V) DVDD= 3.15V, IOL = 4mA DVDD= 3.15V, IOL = 100 μA DVDD= 1.71V, IOL = 2mA VI = VSS to DVDD without opposing internal resistor Input current(1) (dual-voltage LVCMOS I/Os) VI = VSS to DVDD with opposing internal pullup 70 resistor (3) VI = VSS to DVDD with opposing internal pulldown -75 resistor (3) Input current (DDR2/mDDR I/Os) High-level output current(1) (dual-voltage LVCMOS I/Os) VI = VSS to DVDD with opposing internal pulldown -77 resistor (3) Low-level output current(1) (dual-voltage LVCMOS I/Os) Input capacitance (dual-voltage LVCMOS) 3 Output capacitance (dual-voltage LVCMOS) 3 MAX 0.4 0.2 0.45 ±9 310 UNIT V V V V V V μA μA -270 μA -286 μA -6 mA 6 mA pF pF (1) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are 1.8V IOs and adhere to the JESD79-2A standard. USB0 I/Os adhere to the USB2.0 standard. USB1 I/Os adhere to the USB1.1 standard. SATA I/Os adhere to the SATA-I and SATA-II standards. (2) II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. (3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. The pull-up and pull-down strengths shown represent the minimum and maximum strength across process variation. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device Operating Conditions 81 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5 Peripheral Information and Electrical Specifications 5.1 Parameter Information 5.1.1 Parameter Information Device-Specific Information www.ti.com Tester Pin Electronics Data Sheet Timing Reference Point 42 Ω 4.0 pF 3.5 nH 1.85 pF Transmission Line Z0 = 50 Ω (see note) Output Under Test Device Pin (see note) A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal. Figure 5-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 5.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V. Vref Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels 82 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.2 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 5.3 Power Supplies 5.3.1 Power-On Sequence The device should be powered-on in the following order: 1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered. 2. Core logic supplies: (a) All variable 1.3V - 1.0V core logic supplies (CVDD) (b) All static core logic supplies (RVDD, PLL0_VDDA, PLL1_VDDA, USB_CVDD, SATA_VDD). If voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from the same power supply and powered up together. 3. All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18, USB1_VDDA18 and SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C). 4. All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C). There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V supplies by more than 2 volts. RESET must be maintained active until all power supplies have reached their nominal values. 5.3.2 Power-Off Sequence The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts. There is no specific required voltage ramp down rate for any of the supplies (except as required to meet the above mentioned voltage condition). Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 83 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.4 Reset 5.4.1 Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. RTCK is maintained active through a POR. A summary of the effects of Power-On Reset is given below: • All internal logic (including emulation logic and the PLL logic) is reset to its default state • Internal memory is not maintained through a POR • RESETOUT goes active • All device pins go to a high-impedance state • The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC A watchdog reset triggers a POR. 5.4.2 Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. RTCK is maintained active through a POR. A summary of the effects of Warm Reset is given below: • All internal logic (except for the emulation logic and the PLL logic) is reset to its default state • Internal memory is maintained through a warm reset • RESETOUT goes active • All device pins go to a high-impedance state • The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC 84 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.4.3 Reset Electrical Data Timings Table 5-1 assumes testing over the recommended operating conditions. Table 5-1. Reset Timing Requirements ((1), (2)) NO. PARAMETER 1.3V, 1.2V 1.1V 1.0V MIN MAX MIN MAX MIN MAX UNIT 1 tw(RSTL) Pulse width, RESET/TRST low 2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 4 td(RSTH-RESETOUTH) RESET high to RESETOUT high; Warm reset RESET high to RESETOUT high; Power-on Reset 100 20 20 4096 6169 100 20 20 4096 6169 100 20 20 4096 6169 ns ns ns cycles (3) 5 td(RSTL-RESETOUTL) Delay time, RESET/TRST low to RESETOUT low 14 16 20 ns (1) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details. (2) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). (3) OSCIN cycles. Power Supplies Ramping OSCIN Clock Source Stable Power Supplies Stable 1 RESET TRST RESETOUT Boot Pins 4 2 3 Config Figure 5-4. Power-On Reset (RESET and TRST active) Timing Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 85 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Power Supplies Stable OSCIN TRST 1 RESET 5 4 RESETOUT Boot Pins Driven or Hi-Z 3 2 Config Figure 5-5. Warm Reset (RESET active, TRST high) Timing www.ti.com 86 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.5 Crystal Oscillator or External Clock Input The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to generate high-frequency system clocks. These options are illustrated in Figure 5-6 and Figure 5-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled. Figure 5-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 5-7 illustrates the option that uses an external 1.2V clock input. C2 OSCIN X1 OSCOUT C1 Clock Input to PLL OSCVSS Figure 5-6. On-Chip Oscillator Table 5-2. Oscillator Timing Requirements PARAMETER fosc Oscillator frequency range (OSCIN/OSCOUT) MIN MAX UNIT 12 30 MHz Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 87 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 OSCIN OSCOUT NC OSCVSS Clock Input to PLL www.ti.com Figure 5-7. External 1.2V Clock Source Table 5-3. OSCIN Timing Requirements for an Externally Driven Clock PARAMETER MIN MAX UNIT fOSCIN tc(OSCIN) tw(OSCINH) tw(OSCINL) tt(OSCIN) tj(OSCIN) OSCIN frequency range Cycle time, external clock driven on OSCIN Pulse width high, external clock on OSCIN Pulse width low, external clock on OSCIN Transition time, OSCIN Period jitter, OSCIN 12 20 0.4 tc(OSCIN) 0.4 tc(OSCIN) 50 0.25P or 10 (1) 0.02P MHz ns ns ns ns ns (1) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 5.6 Clock PLLs The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the mDDR/DDR2 Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0. The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN 88 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.6.1 PLL Device-Specific Information The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 5-8. 1.14V - 1.32V VSS 50R 0.1 µF 50R 0.01 µF PLL0_VDDA PLL0_VSSA 1.14V - 1.32V VSS 50R 0.1 µF 50R 0.01 µF PLL1_VDDA PLL1_VSSA Ferrite Bead: Murata BLM31PG500SN1L or Equivalent Figure 5-8. PLL External Filtering Components The external filtering components shown above provide noise immunity for the PLLs. PLL0_VDDA and PLL1_VDDA should not be connected together to provide noise immunity between the two PLLs. Likewise, PLL0_VSSA and PLL1_VSSA should not be connected together. The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0 outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have programmable divider options. Figure 5-9 illustrates the high-level view of the PLL Topology. The PLLs are disabled by default after a device reset. They must be configured by software according to the allowable operating conditions listed in Table 5-4 before enabling the device to run from the PLL by setting PLLEN = 1. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 89 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com PLLCTL[CLKMODE] OSCIN Square Wave 1 Crystal 0 PLLCTL[EXTCLKSRC] PLL1_SYSCLK3 1 0 PLLCTL[PLLEN] 0 PREDIV PLL POSTDIV 1 PLLM 14h SYSCLK1 17h SYSCLK2 18h SYSCLK3 19h SYSCLK4 1Ah SYSCLK5 1Bh SYSCLK6 1Ch SYSCLK7 1Dh PLLC1 OBSCLK 1Eh ODSICVD4.I5V PLL Controller 0 PLLDIV1 (/1) PLLDIV2 (/2) PLLDIV4 (/4) PLLDIV5 (/3) PLLDIV6 (/1) PLLDIV7 (/6) PLLDIV3 (/3) DIV4.5 SYSCLK1 SYSCLK2 SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7 SYSCLK3 0 EMIFA Internal Clock 1 Source CFGCHIP3[EMA_CLKSRC] AUXCLK PLLC0 OBSCLK (CLKOUT Pin) OCSEL[OCSRC] PLLCTL[PLLEN] 0 PLL POSTDIV 1 PLLM 14h SYSCLK1 17h SYSCLK2 18h SYSCLK3 19h OSCDIV PLL Controller 1 PLLDIV2 (/2) SYSCLK2 PLLDIV3 (/3) SYSCLK3 PLLDIV1 (/1) SYSCLK1 DDR2/mDDR Internal Clock Source PLLC1 OBSCLK OCSEL[OCSRC] Figure 5-9. PLL Topology 90 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-4. Allowed PLL Operating Conditions (PLL0 and PLL1) NO. PARAMETER 1 PLLRST: Assertion time during initialization Default Value N/A Lock time: The time that the application has to wait for 2 the PLL to acquire lock before setting PLLEN, after N/A changing PREDIV, PLLM, or OSCIN MIN 1000 N/A MAX N/A Max PLL Lock Time = 2000 N m where N = Pre-Divider Ratio M = PLL Multiplier (1) UNIT ns OSCIN cycles 3 PREDIV: Pre-divider value 4 PLLREF: PLL input frequency 5 PLLM: PLL multiplier values 6 PLLOUT: PLL output frequency 7 POSTDIV: Post-divider value /1 /1 /32 - 12 30 (if internal oscillator is used) 50 (if external clock is used) MHz x20 x4 x32 N/A 300 600 MHz /1 /1 /32 - (1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between300 and 600 MHz, but the frequency going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point. 5.6.2 Device Clock Generation PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1 manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test points. PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the mDDR/DDR2 Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on the application requirements. In addition, some peripherals have specific clock options independent of the ASYNC clock domain. 5.6.3 Dynamic Voltage and Frequency Scaling (DVFS) The processor supports multiple operating points by scaling voltage and frequency to minimize power consumption for a given level of processor performance. Frequency scaling is achieved by modifying the setting of the PLL controllers’ multipliers, post-dividers (POSTDIV), and system clock dividers (SYSCLKn). Modification of the POSTDIV and SYSCLK values does not require relocking the PLL and provides lower latency to switch between operating points, but at the expense of the frequencies being limited by the integer divide values (only the divide values are altered the PLL multiplier is left unmodified). Non integer divide frequency values can be achieved by changing both the multiplier and the divide values, but when the PLL multiplier is changed the PLL must relock, incurring additional latency to change between operating points. Detailed information on modifying the PLL Controller settings can be found in the OMAP-L138 C6-Integra DSP+ARM Technical Reference Manual (SPRUH77). Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 91 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Voltage scaling is enabled from outside the device by controlling an external voltage regulator. The processor may communicate with the regulator using GPIOs, I2C or some other interface. When switching between voltage-frequency operating points, the voltage must always support the desired frequency. When moving from a high-performance operating point to a lower performance operating point, the frequency should be lowered first followed by the voltage. When moving from a low-performance operating point to a higher performance operating point, the voltage should be raised first followed by the frequency. Voltage operating points refer to the CVdd voltage at that point. Other static supplies must be maintained at their nominal voltages at all operating points. The maximum voltage slew rate for CVdd supply changes is 1 mV/us. For additional information on power management solutions from TI for this processor, follow the Power Management link in the Product Folder on www.ti.com for this processor. The processor supports multiple clock domains some of which have clock ratio requirements to each other. SYSCLK1:SYSCLK2:SYSCLK4:SYSCLK6 are synchronous to each other and the SYSCLKn dividers must always be configured such that the ratio between these domains is 1:2:4:1. The ASYNC and ASYNC3 clock domains are asynchronous to the other clock domains and have no specific ratio requirement. Table 5-5 summarizes the maximum internal clock frequencies at each of the voltage operating points. Table 5-5. Maximum Internal Clock Frequencies at Each Voltage Operating Point CLOCK SOURCE CLOCK DOMAIN PLL0_SYSCLK1 DSP subsystem PLL0_SYSCLK2 SYSCLK2 clock domain peripherals and optional clock source for ASYNC3 clock domain peripherals PLL0_SYSCLK3 Optional clock for ASYNC1 clock domain (See ASYNC1 row) PLL0_SYSCLK4 SYSCLK4 domain peripherals PLL0_SYSCLK5 Not used on this processor PLL0_SYSCLK6 ARM subsystem PLL0_SYSCLK7 Optional 50 MHz clock source for EMAC RMII interface PLL1_SYSCLK1 DDR2/mDDR Interface clock source (memory interface clock is one-half of the value shown) PLL1_SYSCLK2 Optional clock source for ASYNC3 clock domain peripherals PLL1_SYSCLK3 Alternate clock source input to PLL Controller 0 McASP AUXCLK Bypass clock source for the McASP PLL0_AUXCLK Bypass clock source for the USB0 and USB1 ASYNC1 ASYNC Clock Domain (EMIFA) Async Mode SDRAM Mode ASYNC2 ASYNC2 Clock Domain (multiple peripherals) ASYNC3 ASYNC3 Clock Domain (multiple peripherals) 1.3V NOM 456 MHz 228 MHz 114 MHz - 456 MHz 50 MHz 312 MHz 152 MHz 75 MHz 50 MHz 48 MHz 148 MHz 100 MHz 50 MHz 152 MHz 1.2V NOM 375 MHz 187.5 MHz 93.75 MHz - 375 MHz 50 MHz 312 MHz 150 MHz 75 MHz 50 MHz 48 MHz 148 MHz 100 MHz 50 MHz 150 MHz 1.1V NOM 200 MHz 100 MHz 50 MHz - 200 MHz - 300 MHz 100 MHz 75 MHz 50 MHz 48 MHz 75 MHz 66.6 MHz 50 MHz 100 MHz 1.0V NOM 100 MHz 50 MHz 25 MHz - 100 MHz - 266 MHz 75 MHz 75 MHz 50 MHz 48 MHz 50 MHz 50 MHz 50 MHz 75 MHz Some interfaces have specific limitations on supported modes/speeds at each operating point. See the corresponding peripheral sections of this document for more information. TI provides software components (called the Power Manager) to perform DVFS and abstract the task from the user. The Power Manager controls changing operating points (both frequency and voltage) and handles the related tasks involved such as informing/controlling peripherals to provide graceful transitions between operating points. The Power Manager is bundled as a component of DSP/BIOS. 92 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.7 Interrupts The device has a large number of interrupts to service the needs of its many peripherals and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with each other through interrupts controlled by registers in the SYSCFG module. 5.7.1 ARM CPU Interrupts The ARM9 CPU core supports two direct interrupts: FIQ and IRQ. The ARM Interrupt Controller (AINTC) extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. 5.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy The ARM Interrupt controller organizes interrupts into the following hierarchy: • Peripheral Interrupt Requests – Individual Interrupt Sources from Peripherals • 101 System Interrupts – One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt. – After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt • 32 Interrupt Channels – Each System Interrupt is mapped to one of the 32 Interrupt Channels – Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest. – If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority) • Host Interrupts (FIQ and IRQ) – Interrupt Channels 0 and 1 generate the ARM FIQ interrupt – Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt • Debug Interrupts – Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem – Sources can be selected from any of the System Interrupts or Host Interrupts 5.7.1.2 AINTC Hardware Vector Generation The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as: VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE) Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively). Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 93 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.7.1.3 AINTC Hardware Interrupt Nesting Support Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting. 5.7.1.4 AINTC System Interrupt Assignments Table 5-6. AINTC System Interrupt Assignments System Interrupt 0 1 2 3 4 5 6 7 8 9 10 11 Interrupt Name COMMTX COMMRX NINT PRU_EVTOUT0 PRU_EVTOUT1 PRU_EVTOUT2 PRU_EVTOUT3 PRU_EVTOUT4 PRU_EVTOUT5 PRU_EVTOUT6 PRU_EVTOUT7 EDMA3_0_CC0_INT0 12 EDMA3_0_CC0_ERRINT 13 EDMA3_0_TC0_ERRINT 14 EMIFA_INT 15 IIC0_INT 16 MMCSD0_INT0 17 MMCSD0_INT1 18 PSC0_ALLINT 19 RTC_IRQS[1:0] 20 SPI0_INT 21 T64P0_TINT12 22 T64P0_TINT34 23 T64P1_TINT12 24 T64P1_TINT34 25 UART0_INT 26 - 27 PROTERR 28 SYSCFG_CHIPINT0 29 SYSCFG_CHIPINT1 30 SYSCFG_CHIPINT2 31 SYSCFG_CHIPINT3 32 EDMA3_0_TC1_ERRINT 33 EMAC_C0RXTHRESH 34 EMAC_C0RX Source ARM ARM ARM PRUSS Interrupt PRUSS Interrupt PRUSS Interrupt PRUSS Interrupt PRUSS Interrupt PRUSS Interrupt PRUSS Interrupt PRUSS Interrupt EDMA3_0 Channel Controller 0 Shadow Region 0 Transfer Completion Interrupt EDMA3_0 Channel Controller 0 Error Interrupt EDMA3_0 Transfer Controller 0 Error Interrupt EMIFA I2C0 MMCSD0 MMC/SD Interrupt MMCSD0 SDIO Interrupt PSC0 RTC SPI0 Timer64P0 Interrupt 12 Timer64P0 Interrupt 34 Timer64P1 Interrupt 12 Timer64P1 Interrupt 34 UART0 Reserved SYSCFG Protection Shared Interrupt SYSCFG CHIPSIG Register SYSCFG CHIPSIG Register SYSCFG CHIPSIG Register SYSCFG CHIPSIG Register EDMA3_0 Transfer Controller 1 Error Interrupt EMAC - Core 0 Receive Threshold Interrupt EMAC - Core 0 Receive Interrupt 94 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 System Interrupt 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 Table 5-6. AINTC System Interrupt Assignments (continued) Interrupt Name EMAC_C0TX EMAC_C0MISC EMAC_C1RXTHRESH EMAC_C1RX EMAC_C1TX EMAC_C1MISC DDR2_MEMERR GPIO_B0INT GPIO_B1INT GPIO_B2INT GPIO_B3INT GPIO_B4INT GPIO_B5INT GPIO_B6INT GPIO_B7INT GPIO_B8INT IIC1_INT LCDC_INT UART_INT1 MCASP_INT PSC1_ALLINT SPI1_INT UHPI_ARMINT USB0_INT USB1_HCINT USB1_RWAKEUP UART2_INT EHRPWM0 EHRPWM0TZ EHRPWM1 EHRPWM1TZ SATA_INT T64P2_ALL ECAP0 ECAP1 ECAP2 MMCSD1_INT0 MMCSD1_INT1 T64P2_CMPINT0 T64P2_CMPINT1 T64P2_CMPINT2 T64P2_CMPINT3 T64P2_CMPINT4 T64P2_CMPINT5 T64P2_CMPINT6 T64P2_CMPINT7 Source EMAC - Core 0 Transmit Interrupt EMAC - Core 0 Miscellaneous Interrupt EMAC - Core 1 Receive Threshold Interrupt EMAC - Core 1 Receive Interrupt EMAC - Core 1 Transmit Interrupt EMAC - Core 1 Miscellaneous Interrupt DDR2 Controller GPIO Bank 0 Interrupt GPIO Bank 1 Interrupt GPIO Bank 2 Interrupt GPIO Bank 3 Interrupt GPIO Bank 4 Interrupt GPIO Bank 5 Interrupt GPIO Bank 6 Interrupt GPIO Bank 7 Interrupt GPIO Bank 8 Interrupt I2C1 LCD Controller UART1 McASP0 Combined RX / TX Interrupts PSC1 SPI1 UHPI ARM Interrupt USB0 Interrupt USB1 OHCI Host Controller Interrupt USB1 Remote Wakeup Interrupt UART2 Reserved HiResTimer / PWM0 Interrupt HiResTimer / PWM0 Trip Zone Interrupt HiResTimer / PWM1 Interrupt HiResTimer / PWM1 Trip Zone Interrupt SATA Controller Timer64P2 - Combined TINT12 and TINT34 ECAP0 ECAP1 ECAP2 MMCSD1 MMC/SD Interrupt MMCSD1 SDIO Interrupt Timer64P2 - Compare 0 Timer64P2 - Compare 1 Timer64P2 - Compare 2 Timer64P2 - Compare 3 Timer64P2 - Compare 4 Timer64P2 - Compare 5 Timer64P2 - Compare 6 Timer64P2 - Compare 7 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 95 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com System Interrupt 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Table 5-6. AINTC System Interrupt Assignments (continued) Interrupt Name T64P3_CMPINT0 T64P3_CMPINT1 T64P3_CMPINT2 T64P3_CMPINT3 T64P3_CMPINT4 T64P3_CMPINT5 T64P3_CMPINT6 T64P3_CMPINT7 ARMCLKSTOPREQ uPP_ALLINT VPIF_ALLINT EDMA3_1_CC0_INT0 EDMA3_1_CC0_ERRINT EDMA3_1_TC0_ERRINT T64P3_ALL MCBSP0_RINT MCBSP0_XINT MCBSP1_RINT MCBSP1_XINT Source Timer64P3 - Compare 0 Timer64P3 - Compare 1 Timer64P3 - Compare 2 Timer64P3 - Compare 3 Timer64P3 - Compare 4 Timer64P3 - Compare 5 Timer64P3 - Compare 6 Timer64P3 - Compare 7 PSC0 uPP Combined Interrupt • Channel I End-of-Line Interrupt • Channel I End-of-Window Interrupt • Channel I DMA Access Interrupt • Channel I Overflow-Underrun Interrupt • Channel I DMA Programming Error Interrupt • Channel Q End-of-Line Interrupt • Channel Q End-of-Window Interrupt • Channel Q DMA Access Interrupt • Channel Q Overflow-Underrun Interrupt • Channel Q DMA Programming Error Interrupt VPIF Combined Interrupt • Channel 0 Frame Interrupt • Channel 1 Frame Interrupt • Channel 2 Frame Interrupt • Channel 3 Frame Interrupt • Error Interrupt EDMA3_1 Channel Controller 0 Shadow Region 0 Transfer Completion Interrupt EDMA3_1Channel Controller 0 Error Interrupt EDMA3_1 Transfer Controller 0 Error Interrupt Timer64P 3 - Combined TINT12 and TINT34 McBSP0 Receive Interrupt McBSP0 Transmit Interrupt McBSP1 Receive Interrupt McBSP1 Transmit Interrupt 96 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com 5.7.1.5 AINTC Memory Map BYTE ADDRESS 0xFFFE E000 0xFFFE E004 0xFFFE E008 - 0xFFFE E00F 0xFFFE E010 0xFFFE E014 - 0xFFFE E01B 0xFFFE E01C 0xFFFE E020 0xFFFE E024 0xFFFE E028 0xFFFE E02C 0xFFFE E030 0xFFFE E034 0xFFFE E038 0xFFFE E03C - 0xFFFE E04F 0xFFFE E050 0xFFFE E054 0xFFFE E058 0xFFFE E05C - 0xFFFE E07F 0xFFFE E080 0xFFFE E084 0xFFFE E088 - 0xFFFE E1FF 0xFFFE E200 0xFFFE E204 0xFFFE E208 0xFFFE E20C 0xFFFE E210- 0xFFFE E27F 0xFFFE E280 0xFFFE E284 0xFFFE E288 0xFFFE E28C 0xFFFE E290 - 0xFFFE E2FF 0xFFFE E300 0xFFFE E304 0xFFFE E308 0xFFFE E30C 0xFFFE E310 - 0xFFFE E37F 0xFFFE E380 0xFFFE E384 0xFFFE E388 0xFFFE E38C 0xFFFE E390 - 0xFFFE E3FF OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-7. AINTC Memory Map ACRONYM REV CR GER GNLR SISR SICR EISR EICR - HIEISR HIEICR VBR VSR VNR GPIR GPVR SRSR[1] SRSR[2] SRSR[3] SRSR[4] SECR[1] SECR[2] SECR[3] SECR[4] ESR[1] ESR[2] ESR[3] ESR[4] ECR[1] ECR[2] ECR[3] ECR[4] - DESCRIPTION Revision Register Control Register Reserved Global Enable Register Reserved Global Nesting Level Register System Interrupt Status Indexed Set Register System Interrupt Status Indexed Clear Register System Interrupt Enable Indexed Set Register System Interrupt Enable Indexed Clear Register Reserved Host Interrupt Enable Indexed Set Register Host Interrupt Enable Indexed Clear Register Reserved Vector Base Register Vector Size Register Vector Null Register Reserved Global Prioritized Index Register Global Prioritized Vector Register Reserved System Interrupt Status Raw / Set Registers Reserved System Interrupt Status Enabled / Clear Registers Reserved System Interrupt Enable Set Registers Reserved System Interrupt Enable Clear Registers Reserved Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 97 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 BYTE ADDRESS 0xFFFE E400 - 0xFFFE E45B 0xFFFE E404 0xFFFE E408 0xFFFE E40C 0xFFFE E410 0xFFFE E414 0xFFFE E418 0xFFFE E41C 0xFFFE E420 0xFFFE E424 0xFFFE E428 0xFFFE E42C 0xFFFE E430 0xFFFE E434 0xFFFE E438 0xFFFE E43C 0xFFFE E440 0xFFFE E444 0xFFFE E448 0xFFFE E44C 0xFFFE E450 0xFFFE E454 0xFFFE E458 0xFFFE E45C 0xFFFE E460 0xFFFE E464 0xFFFE E468 - 0xFFFE E8FF 0xFFFE E900 0xFFFE E904 0xFFFE E908 - 0xFFFE F0FF 0xFFFE F100 0xFFFE F104 0xFFFE F108 - 0xFFFE F4FF 0xFFFE F500 0xFFFE F504 - 0xFFFE F5FF 0xFFFE F600 0xFFFE F604 0xFFFE F608 - 0xFFFE FFFF Table 5-7. AINTC Memory Map (continued) ACRONYM CMR[0] CMR[1] CMR[2] CMR[3] CMR[4] CMR[5] CMR[6] CMR[7] CMR[8] CMR[9] CMR[10] CMR[11] CMR[12] CMR[13] CMR[14] CMR[15] CMR[16] CMR[17] CMR[18] CMR[19] CMR[20] CMR[21] CMR[22] CMR[23] CMR[24] CMR[25] HIPIR[1] HIPIR[2] HINLR[1] HINLR[2] HIER HIPVR[1] HIPVR[2] - Channel Map Registers DESCRIPTION Reserved Host Interrupt Prioritized Index Registers Reserved Host Interrupt Nesting Level Registers Reserved Host Interrupt Enable Register Reserved Host Interrupt Prioritized Vector Registers Reserved www.ti.com 98 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.7.2 DSP Interrupts The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 5-8. Also, the interrupt controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 5-9 summarizes the C674x interrupt controller registers and memory locations. Refer to the C674x DSP MegaModule Reference Guide (SPRUFK5) and the TMS320C674x DSP CPU and Instruction Set Reference Guide (SPRUFE8) for details of the C674x interrupts. EVT# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Table 5-8. OMAP-L138 DSP Interrupts Interrupt Name EVT0 EVT1 EVT2 EVT3 T64P0_TINT12 SYSCFG_CHIPINT2 PRU_EVTOUT0 EHRPWM0 EDMA3_0_CC0_INT1 EMU_DTDMA EHRPWM0TZ EMU_RTDXRX EMU_RTDXTX IDMAINT0 IDMAINT1 MMCSD0_INT0 MMCSD0_INT1 PRU_EVTOUT1 EHRPWM1 USB0_INT USB1_HCINT USB1_RWAKEUP PRU_EVTOUT2 EHRPWM1TZ SATA_INT T64P2_TINTALL EMAC_C0RXTHRESH EMAC_C0RX EMAC_C0TX EMAC_C0MISC EMAC_C1RXTHRESH EMAC_C1RX EMAC_C1TX EMAC_C1MISC UHPI_DSPINT PRU_EVTOUT3 IIC0_INT SP0_INT Source C674x Int Ctl 0 C674x Int Ctl 1 C674x Int Ctl 2 C674x Int Ctl 3 Timer64P0 - TINT12 SYSCFG CHIPSIG Register PRUSS Interrupt HiResTimer/PWM0 Interrupt EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer Completion Interrupt C674x-ECM HiResTimer/PWM0 Trip Zone Interrupt C674x-RTDX C674x-RTDX C674x-EMC C674x-EMC MMCSD0 MMC/SD Interrupt MMCSD0 SDIO Interrupt PRUSS Interrupt HiResTimer/PWM1 Interrupt USB0 Interrupt USB1 OHCI Host Controller Interrupt USB1 Remote Wakeup Interrupt PRUSS Interrupt HiResTimer/PWM1 Trip Zone Interrupt SATA Controller Timer64P2 Combined TINT12 and TINT 34 Interrupt EMAC - Core 0 Receive Threshold Interrupt EMAC - Core 0 Receive Interrupt EMAC - Core 0 Transmit Interrupt EMAC - Core 0 Miscellaneous Interrupt EMAC - Core 1 Receive Threshold Interrupt EMAC - Core 1 Receive Interrupt EMAC - Core 1 Transmit Interrupt EMAC - Core 1 Miscellaneous Interrupt UHPI DSP Interrupt PRUSS Interrupt I2C0 SPI0 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 99 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 EVT# 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 - 77 78 79 80 81 82 83 84 85 Table 5-8. OMAP-L138 DSP Interrupts (continued) Interrupt Name UART0_INT PRU_EVTOUT5 T64P1_TINT12 GPIO_B1INT IIC1_INT SPI1_INT PRU_EVTOUT6 ECAP0 UART_INT1 ECAP1 T64P1_TINT34 GPIO_B2INT PRU_EVTOUT7 ECAP2 GPIO_B3INT MMCSD1_INT1 GPIO_B4INT EMIFA_INT EDMA3_0_CC0_ERRINT EDMA3_0_TC0_ERRINT EDMA3_0_TC1_ERRINT GPIO_B5INT DDR2_MEMERR MCASP0_INT GPIO_B6INT RTC_IRQS T64P0_TINT34 GPIO_B0INT PRU_EVTOUT4 SYSCFG_CHIPINT3 MMCSD1_INT0 UART2_INT PSC0_ALLINT PSC1_ALLINT GPIO_B7INT LCDC_INT PROTERR GPIO_B8INT T64P2_CMPINT0 T64P2_CMPINT1 T64P2_CMPINT2 T64P2_CMPINT3 T64P2_CMPINT4 T64P2_CMPINT5 T64P2_CMPINT6 T64P2_CMPINT7 Source UART0 PRUSS Interrupt Timer64P1 Interrupt 12 GPIO Bank 1 Interrupt I2C1 SPI1 PRUSS Interrupt ECAP0 UART1 ECAP1 Timer64P1 Interrupt 34 GPIO Bank 2 Interrupt PRUSS Interrupt ECAP2 GPIO Bank 3 Interrupt MMCSD1 SDIO Interrupt GPIO Bank 4 Interrupt EMIFA EDMA3_0 Channel Controller 0 Error Interrupt EDMA3_0 Transfer Controller 0 Error Interrupt EDMA3_0 Transfer Controller 1 Error Interrupt GPIO Bank 5 Interrupt DDR2 Memory Error Interrupt McASP0 Combined RX/TX Interrupts GPIO Bank 6 Interrupt RTC Combined Timer64P0 Interrupt 34 GPIO Bank 0 Interrupt PRUSS Interrupt SYSCFG_CHIPSIG Register MMCSD1 MMC/SD Interrupt UART2 PSC0 PSC1 GPIO Bank 7 Interrupt LDC Controller SYSCFG Protection Shared Interrupt GPIO Bank 8 Interrupt Reserved Timer64P2 - Compare Interrupt 0 Timer64P2 - Compare Interrupt 1 Timer64P2 - Compare Interrupt 2 Timer64P2 - Compare Interrupt 3 Timer64P2 - Compare Interrupt 4 Timer64P2 - Compare Interrupt 5 Timer64P2 - Compare Interrupt 6 Timer64P2 - Compare Interrupt 7 www.ti.com 100 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com EVT# 86 87 88 89 90 91 92 93 94 95 96 97 98 - 112 113 114 - 115 116 117 118 119 120 121 122 123 124 125 126 127 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-8. OMAP-L138 DSP Interrupts (continued) Interrupt Name T64P3_TINTALL MCBSP0_RINT MCBSP0_XINT MCBSP1_RINT MCBSP1_XINT EDMA3_1_CC0_INT1 EDMA3_1_CC0_ERRINT EDMA3_1_TC0_ERRINT UPP_INT VPIF_INT INTERR EMC_IDMAERR PMC_ED UMC_ED1 UMC_ED2 PDC_INT SYS_CMPA PMC_CMPA PMC_CMPA DMC_CMPA DMC_CMPA UMC_CMPA UMC_CMPA EMC_CMPA EMC_BUSERR Source Timer64P3 Combined TINT12 and TINT 34 Interrupt McBSP0 Receive Interrupt McBSP0 Transmit Interrupt McBSP1 Receive Interrupt McBSP1 Transmit Interrupt EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer Completion Interrupt EDMA3_1 Channel Controller 0 Error Interrupt EDMA3_1 Transfer Controller 0 Error Interrupt uPP Combined Interrupt VPIF Combined Interrupt C674x-Int Ctl C674x-EMC Reserved C674x-PMC Reserved C674x-UMC C674x-UMC C674x-PDC C674x-SYS C674x-PMC C674x-PMC C674x-DMC C674x-DMC C674x-UMC C674x-UMC C674x-EMC C674x-EMC Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 101 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-9. C674x DSP Interrupt Controller Registers BYTE ADDRESS 0x0180 0000 0x0180 0004 0x0180 0008 0x0180 000C 0x0180 0020 0x0180 0024 0x0180 0028 0x0180 002C 0x0180 0040 0x0180 0044 0x0180 0048 0x0180 004C 0x0180 0080 0x0180 0084 0x0180 0088 0x0180 008C 0x0180 00A0 0x0180 00A4 0x0180 00A8 0x0180 00AC 0x0180 00C0 0x0180 00C4 0x0180 00C8 0x0180 00CC 0x0180 00E0 0x0180 00E4 0x0180 00E8 0x0180 00EC 0x0180 0104 0x0180 0108 0x0180 010C 0x0180 0140 - 0x0180 0144 0x0180 0180 0x0180 0184 0x0180 0188 0x0180 01C0 ACRONYM EVTFLAG0 EVTFLAG1 EVTFLAG2 EVTFLAG3 EVTSET0 EVTSET1 EVTSET2 EVTSET3 EVTCLR0 EVTCLR1 EVTCLR2 EVTCLR3 EVTMASK0 EVTMASK1 EVTMASK2 EVTMASK3 MEVTFLAG0 MEVTFLAG1 MEVTFLAG2 MEVTFLAG3 EXPMASK0 EXPMASK1 EXPMASK2 EXPMASK3 MEXPFLAG0 MEXPFLAG1 MEXPFLAG2 MEXPFLAG3 INTMUX1 INTMUX2 INTMUX3 INTXSTAT INTXCLR INTDMASK EVTASRT DESCRIPTION Event flag register 0 Event flag register 1 Event flag register 2 Event flag register 3 Event set register 0 Event set register 1 Event set register 2 Event set register 3 Event clear register 0 Event clear register 1 Event clear register 2 Event clear register 3 Event mask register 0 Event mask register 1 Event mask register 2 Event mask register 3 Masked event flag register 0 Masked event flag register 1 Masked event flag register 2 Masked event flag register 3 Exception mask register 0 Exception mask register 1 Exception mask register 2 Exception mask register 3 Masked exception flag register 0 Masked exception flag register 1 Masked exception flag register 2 Masked exception flag register 3 Interrupt mux register 1 Interrupt mux register 2 Interrupt mux register 3 Reserved Interrupt exception status Interrupt exception clear Dropped interrupt mask register Event assert register 102 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.8 Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports IcePick emulation features: power, clock and reset PSC0 controls 16 local PSCs. PSC1 controls 32 local PSCs. PSC0 BYTE ADDRESS 0x01C1 0000 0x01C1 0018 0x01C1 0040 0x01C1 0050 0x01C1 0060 0x01C1 0068 0x01C1 0120 0x01C1 0128 0x01C1 0200 0x01C1 0204 0x01C1 0300 0x01C1 0304 0x01C1 0400 0x01C1 0404 0x01C1 0800 0x01C1 0804 0x01C1 0808 0x01C1 080C 0x01C1 0810 0x01C1 0814 0x01C1 0818 0x01C1 081C 0x01C1 0820 0x01C1 0824 0x01C1 0828 0x01C1 082C 0x01C1 0830 0x01C1 0834 Table 5-10. Power and Sleep Controller (PSC) Registers PSC1 BYTE ADDRESS 0x01E2 7000 0x01E2 7018 0x01E2 7040 0x01E2 7050 0x01E2 7060 0x01E2 7068 0x01E2 7120 0x01E2 7128 0x01E2 7200 0x01E2 7204 0x01E2 7300 0x01E2 7304 0x01E2 7400 0x01E2 7404 0x01E2 7800 0x01E2 7804 0x01E2 7808 0x01E2 780C 0x01E2 7810 0x01E2 7814 0x01E2 7818 0x01E2 781C 0x01E2 7820 0x01E2 7824 0x01E2 7828 0x01E2 782C 0x01E2 7830 0x01E2 7834 ACRONYM REVID INTEVAL MERRPR0 MERRCR0 PERRPR PERRCR PTCMD PTSTAT PDSTAT0 PDSTAT1 PDCTL0 PDCTL1 PDCFG0 PDCFG1 MDSTAT0 MDSTAT1 MDSTAT2 MDSTAT3 MDSTAT4 MDSTAT5 MDSTAT6 MDSTAT7 MDSTAT8 MDSTAT9 MDSTAT10 MDSTAT11 MDSTAT12 MDSTAT13 REGISTER DESCRIPTION Peripheral Revision and Class Information Register Interrupt Evaluation Register Module Error Pending Register 0 (module 0-15) (PSC0) Module Error Pending Register 0 (module 0-31) (PSC1) Module Error Clear Register 0 (module 0-15) (PSC0) Module Error Clear Register 0 (module 0-31) (PSC1) Power Error Pending Register Power Error Clear Register Power Domain Transition Command Register Power Domain Transition Status Register Power Domain 0 Status Register Power Domain 1 Status Register Power Domain 0 Control Register Power Domain 1 Control Register Power Domain 0 Configuration Register Power Domain 1 Configuration Register Module 0 Status Register Module 1 Status Register Module 2 Status Register Module 3 Status Register Module 4 Status Register Module 5 Status Register Module 6 Status Register Module 7 Status Register Module 8 Status Register Module 9 Status Register Module 10 Status Register Module 11 Status Register Module 12 Status Register Module 13 Status Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 103 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com PSC0 BYTE ADDRESS 0x01C1 0838 0x01C1 083C 0x01C1 0A00 0x01C1 0A04 0x01C1 0A08 0x01C1 0A0C 0x01C1 0A10 0x01C1 0A14 0x01C1 0A18 0x01C1 0A1C 0x01C1 0A20 0x01C1 0A24 0x01C1 0A28 0x01C1 0A2C 0x01C1 0A30 0x01C1 0A34 0x01C1 0A38 0x01C1 0A3C - Table 5-10. Power and Sleep Controller (PSC) Registers (continued) PSC1 BYTE ADDRESS 0x01E2 7838 0x01E2 783C 0x01E2 7840 0x01E2 7844 0x01E2 7848 0x01E2 784C 0x01E2 7850 0x01E2 7854 0x01E2 7858 0x01E2 785C 0x01E2 7860 0x01E2 7864 0x01E2 7868 0x01E2 786C 0x01E2 7870 0x01E2 7874 0x01E2 7878 0x01E2 787C 0x01E2 7A00 0x01E2 7A04 0x01E2 7A08 0x01E2 7A0C 0x01E2 7A10 0x01E2 7A14 0x01E2 7A18 0x01E2 7A1C 0x01E2 7A20 0x01E2 7A24 0x01E2 7A28 0x01E2 7A2C 0x01E2 7A30 0x01E2 7A34 0x01E2 7A38 0x01E2 7A3C 0x01E2 7A40 0x01E2 7A44 0x01E2 7A48 0x01E2 7A4C 0x01E2 7A50 0x01E2 7A54 0x01E2 7A58 0x01E2 7A5C 0x01E2 7A60 0x01E2 7A64 0x01E2 7A68 0x01E2 7A6C 0x01E2 7A70 ACRONYM MDSTAT14 MDSTAT15 MDSTAT16 MDSTAT17 MDSTAT18 MDSTAT19 MDSTAT20 MDSTAT21 MDSTAT22 MDSTAT23 MDSTAT24 MDSTAT25 MDSTAT26 MDSTAT27 MDSTAT28 MDSTAT29 MDSTAT30 MDSTAT31 MDCTL0 MDCTL1 MDCTL2 MDCTL3 MDCTL4 MDCTL5 MDCTL6 MDCTL7 MDCTL8 MDCTL9 MDCTL10 MDCTL11 MDCTL12 MDCTL13 MDCTL14 MDCTL15 MDCTL16 MDCTL17 MDCTL18 MDCTL19 MDCTL20 MDCTL21 MDCTL22 MDCTL23 MDCTL24 MDCTL25 MDCTL26 MDCTL27 MDCTL28 REGISTER DESCRIPTION Module 14 Status Register Module 15 Status Register Module 16 Status Register Module 17 Status Register Module 18 Status Register Module 19 Status Register Module 20 Status Register Module 21 Status Register Module 22 Status Register Module 23 Status Register Module 24 Status Register Module 25 Status Register Module 26 Status Register Module 27 Status Register Module 28 Status Register Module 29 Status Register Module 30 Status Register Module 31 Status Register Module 0 Control Register Module 1 Control Register Module 2 Control Register Module 3 Control Register Module 4 Control Register Module 5 Control Register Module 6 Control Register Module 7 Control Register Module 8 Control Register Module 9 Control Register Module 10 Control Register Module 11 Control Register Module 12 Control Register Module 13 Control Register Module 14 Control Register Module 15 Control Register Module 16 Control Register Module 17 Control Register Module 18 Control Register Module 19 Control Register Module 20 Control Register Module 21 Control Register Module 22 Control Register Module 23 Control Register Module 24 Control Register Module 25 Control Register Module 26 Control Register Module 27 Control Register Module 28 Control Register 104 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com PSC0 BYTE ADDRESS - SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-10. Power and Sleep Controller (PSC) Registers (continued) PSC1 BYTE ADDRESS 0x01E2 7A74 0x01E2 7A78 0x01E2 7A7C ACRONYM MDCTL29 MDCTL30 MDCTL31 REGISTER DESCRIPTION Module 29 Control Register Module 30 Control Register Module 31 Control Register 5.8.1 Power Domain and Module Topology The device includes two PSC modules. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 5-11 and Table 5-12 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. The module states and terminology are defined in Section 5.8.1.2. Table 5-11. PSC0 Default Module Configuration LPSC Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Module Name EDMA3 Channel Controller 0 EDMA3 Transfer Controller 0 EDMA3 Transfer Controller 1 EMIFA (Br7) SPI 0 MMC/SD 0 ARM Interrupt Controller ARM RAM/ROM — UART 0 SCR0 (Br 0, Br 1, Br 2, Br 8) SCR1 (Br 4) SCR2 (Br 3, Br 5, Br 6) PRUSS ARM DSP Power Domain AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) — AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) PD_DSP (PD1) Default Module State SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable Enable — SwRstDisable Enable Enable Enable SwRstDisable SwRstDisable Enable Auto Sleep/Wake Only — — — — — — — Yes — — Yes Yes Yes — — — Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 105 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-12. PSC1 Default Module Configuration LPSC Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Module Name EDMA3 Channel Controller 1 USB0 (USB2.0) USB1 (USB1.1) GPIO UHPI EMAC DDR2 (and SCR_F3) McASP0 ( + McASP0 FIFO) SATA VPIF SPI 1 I2C 1 UART 1 UART 2 McBSP0 ( + McBSP0 FIFO) McBSP1 ( + McBSP1 FIFO) LCDC eHRPWM0/1 MMCSD1 uPP ECAP0/1/2 EDMA3 Transfer Controller 2 — — SCR_F0 (and bridge F0) SCR_F1 (and bridge F1) SCR_F2 (and bridge F2) SCR_F6 (and bridge F3) SCR_F7 (and bridge F4) SCR_F8 (and bridge F5) Bridge F7 (DDR Controller path) Shared RAM (including SCR_F4 and bridge F6) Power Domain AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) — — AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) AlwaysON (PD0) PD_SHRAM Default Module State SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable SwRstDisable — — Enable Enable Enable Enable Enable Enable Enable Enable www.ti.com Auto Sleep/Wake Only — — — — — — — — — — — — — — — — — — — — — — — — Yes Yes Yes Yes Yes Yes Yes — 106 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.8.1.1 Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories • On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM 5.8.1.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 5-13. Module State Enable Module Reset De-asserted Module Clock On Disable De-asserted Off SyncReset Asserted On SwRstDisable Asserted Off Auto Sleep De-asserted Off Auto Wake De-asserted Off Table 5-13. Module States Module State Definition A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module A module in the disabled state has its module reset de-asserted and it has its module clock off. This state is typically used for disabling a module clock to save power. The device is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point. A module state in the SyncReset state has its module reset asserted and it has its clock on. Generally, software is not expected to initiate this state A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state A module in the Auto Sleep state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. A module in the Auto Wake state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 107 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.9 Enhanced Direct Memory Access Controller (EDMA3) The EDMA3 controller handles all data transfers between memories and the device slave peripherals on the device. These data transfers include cache servicing, non-cacheable memory accesses, user-programmed data transfers, and host accesses. 5.9.1 EDMA3 Channel Synchronization Events Each EDMA3 channel controller supports up to 32 channels which service peripherals and memory. Table 5-14 lists the source of the EDMA3 synchronization events associated with each of the programmable EDMA channels. Event 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Event 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Table 5-14. EDMA Synchronization Events EDMA3 Channel Controller 0 Event Name / Source Event McASP0 Receive 16 McASP0 Transmit 17 McBSP0 Receive 18 McBSP0 Transmit 19 McBSP1 Receive 20 McBSP1 Transmit 21 GPIO Bank 0 Interrupt 22 GPIO Bank 1 Interrup 23 UART0 Receive 24 UART0 Transmit 25 Timer64P0 Event Out 12 26 Timer64P0 Event Out 34 27 UART1 Receive 28 UART1 Transmit 29 SPI0 Receive 30 SPI0 Transmit 31 EDMA3 Channel Controller 1 Event Name / Source Event Timer64P2 Compare Event 0 16 Timer64P2 Compare Event 1 17 Timer64P2 Compare Event 2 18 Timer64P2 Compare Event 3 19 Timer64P2 Compare Event 4 20 Timer64P2 Compare Event 5 21 Timer64P2 Compare Event 6 22 Timer64P2 Compare Event 7 23 Timer64P3 Compare Event 0 24 Timer64P3 Compare Event 1 25 Timer64P3 Compare Event 2 26 Timer64P3 Compare Event 3 27 Timer64P3 Compare Event 4 28 Timer64P3 Compare Event 5 29 Timer64P3 Compare Event 6 30 Timer64P3 Compare Event 7 31 Event Name / Source MMCSD0 Receive MMCSD0 Transmit SPI1 Receive SPI1 Transmit PRU_EVTOUT6 PRU_EVTOUT7 GPIO Bank 2 Interrupt GPIO Bank 3 Interrupt I2C0 Receive I2C0 Transmit I2C1 Receive I2C1 Transmit GPIO Bank 4 Interrupt GPIO Bank 5 Interrupt UART2 Receive Event Name / Source GPIO Bank 6 Interrupt GPIO Bank 7 Interrupt GPIO Bank 8 Interrupt Reserved Reserved Reserved Reserved Reserved Timer64P2 Event Out 12 Timer64P2 Event Out 34 Timer64P3 Event Out 12 Timer64P3 Event Out 34 MMCSD1 Receive MMCSD1 Transmit Reserved Reserved 108 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.9.2 EDMA3 Peripheral Register Descriptions Table 5-15 is the list of EDMA3 Channel Controller Registers and Table 5-16 is the list of EDMA3 Transfer Controller registers. Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers EDMA3_0 Channel Controller 0 BYTE ADDRESS EDMA3_1 Channel Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C0 0000 0x01E3 0000 PID Peripheral Identification Register 0x01C0 0004 0x01E3 0004 CCCFG EDMA3CC Configuration Register Global Registers 0x01C0 0200 0x01E3 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 0x01E3 0204 QCHMAP1 QDMA Channel 1 Mapping Register 0x01C0 0208 0x01E3 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C 0x01E3 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 0x01E3 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 0x01E3 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 0x01E3 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C 0x01E3 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 0x01E3 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 0x01E3 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 0x01E3 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C 0x01E3 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 0x01C0 0284 0x01E3 0260 0x01E3 0284 QDMAQNUM QDMA Channel Queue Number Register QUEPRI Queue Priority Register(1) 0x01C0 0300 0x01E3 0300 EMR Event Missed Register 0x01C0 0308 0x01E3 0308 EMCR Event Missed Clear Register 0x01C0 0310 0x01E3 0310 QEMR QDMA Event Missed Register 0x01C0 0314 0x01E3 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 0x01E3 0318 CCERR EDMA3CC Error Register 0x01C0 031C 0x01E3 031C CCERRCLR EDMA3CC Error Clear Register 0x01C0 0320 0x01E3 0320 EEVAL Error Evaluate Register 0x01C0 0340 0x01E3 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 0x01E3 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 0x01E3 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 0x01E3 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 0x01E3 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 0x01E3 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 0x01E3 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C 0x01E3 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C 0x01E3 0400 - 0x01E3 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C 0x01E3 0440 - 0x01E3 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 0x01E3 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 0x01E3 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 0x01E3 0620 QWMTHRA Queue Watermark Threshold A Register 0x01C0 0640 0x01E3 0640 CCSTAT EDMA3CC Status Register (1) On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 109 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) EDMA3_0 Channel Controller 0 BYTE ADDRESS 0x01C0 1000 0x01C0 1008 0x01C0 1010 0x01C0 1018 0x01C0 1020 0x01C0 1028 0x01C0 1030 0x01C0 1038 0x01C0 1040 0x01C0 1050 0x01C0 1058 0x01C0 1060 0x01C0 1068 0x01C0 1070 0x01C0 1078 0x01C0 1080 0x01C0 1084 0x01C0 1088 0x01C0 108C 0x01C0 1090 0x01C0 1094 0x01C0 2000 0x01C0 2008 0x01C0 2010 0x01C0 2018 0x01C0 2020 0x01C0 2028 0x01C0 2030 0x01C0 2038 0x01C0 2040 0x01C0 2050 0x01C0 2058 0x01C0 2060 0x01C0 2068 0x01C0 2070 0x01C0 2078 0x01C0 2080 0x01C0 2084 0x01C0 2088 0x01C0 208C 0x01C0 2090 0x01C0 2094 EDMA3_1 Channel Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION Global Channel Registers 0x01E3 1000 ER Event Register 0x01E3 1008 ECR Event Clear Register 0x01E3 1010 ESR Event Set Register 0x01E3 1018 CER Chained Event Register 0x01E3 1020 EER Event Enable Register 0x01E3 1028 EECR Event Enable Clear Register 0x01E3 1030 EESR Event Enable Set Register 0x01E3 1038 SER Secondary Event Register 0x01E3 1040 SECR Secondary Event Clear Register 0x01E3 1050 IER Interrupt Enable Register 0x01E3 1058 IECR Interrupt Enable Clear Register 0x01E3 1060 IESR Interrupt Enable Set Register 0x01E3 1068 IPR Interrupt Pending Register 0x01E3 1070 ICR Interrupt Clear Register 0x01E3 1078 IEVAL Interrupt Evaluate Register 0x01E3 1080 QER QDMA Event Register 0x01E3 1084 QEER QDMA Event Enable Register 0x01E3 1088 QEECR QDMA Event Enable Clear Register 0x01E3 108C QEESR QDMA Event Enable Set Register 0x01E3 1090 QSER QDMA Secondary Event Register 0x01E3 1094 QSECR QDMA Secondary Event Clear Register Shadow Region 0 Channel Registers 0x01E3 2000 ER Event Register 0x01E3 2008 ECR Event Clear Register 0x01E3 2010 ESR Event Set Register 0x01E3 2018 CER Chained Event Register 0x01E3 2020 EER Event Enable Register 0x01E3 2028 EECR Event Enable Clear Register 0x01E3 2030 EESR Event Enable Set Register 0x01E3 2038 SER Secondary Event Register 0x01E3 2040 SECR Secondary Event Clear Register 0x01E3 2050 IER Interrupt Enable Register 0x01E3 2058 IECR Interrupt Enable Clear Register 0x01E3 2060 IESR Interrupt Enable Set Register 0x01E3 2068 IPR Interrupt Pending Register 0x01E3 2070 ICR Interrupt Clear Register 0x01E3 2078 IEVAL Interrupt Evaluate Register 0x01E3 2080 QER QDMA Event Register 0x01E3 2084 QEER QDMA Event Enable Register 0x01E3 2088 QEECR QDMA Event Enable Clear Register 0x01E3 208C QEESR QDMA Event Enable Set Register 0x01E3 2090 QSER QDMA Secondary Event Register 0x01E3 2094 QSECR QDMA Secondary Event Clear Register 110 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) EDMA3_0 Channel Controller 0 BYTE ADDRESS 0x01C0 2200 0x01C0 2208 0x01C0 2210 0x01C0 2218 0x01C0 2220 0x01C0 2228 0x01C0 2230 0x01C0 2238 0x01C0 2240 0x01C0 2250 0x01C0 2258 0x01C0 2260 0x01C0 2268 0x01C0 2270 0x01C0 2278 0x01C0 2280 0x01C0 2284 0x01C0 2288 0x01C0 228C 0x01C0 2290 0x01C0 2294 0x01C0 4000 - 0x01C0 4FFF EDMA3_1 Channel Controller 0 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION Shadow Region 1 Channel Registers 0x01E3 2200 ER Event Register 0x01E3 2208 ECR Event Clear Register 0x01E3 2210 ESR Event Set Register 0x01E3 2218 CER Chained Event Register 0x01E3 2220 EER Event Enable Register 0x01E3 2228 EECR Event Enable Clear Register 0x01E3 2230 EESR Event Enable Set Register 0x01E3 2238 SER Secondary Event Register 0x01E3 2240 SECR Secondary Event Clear Register 0x01E3 2250 IER Interrupt Enable Register 0x01E3 2258 IECR Interrupt Enable Clear Register 0x01E3 2260 IESR Interrupt Enable Set Register 0x01E3 2268 IPR Interrupt Pending Register 0x01E3 2270 ICR Interrupt Clear Register 0x01E3 2278 IEVAL Interrupt Evaluate Register 0x01E3 2280 QER QDMA Event Register 0x01E3 2284 QEER QDMA Event Enable Register 0x01E3 2288 QEECR QDMA Event Enable Clear Register 0x01E3 228C QEESR QDMA Event Enable Set Register 0x01E3 2290 QSER QDMA Secondary Event Register 0x01E3 2294 QSECR QDMA Secondary Event Clear Register 0x01E3 4000 - 0x01E3 4FFF — Parameter RAM (PaRAM) Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers EDMA3_0 Transfer Controller 0 BYTE ADDRESS 0x01C0 8000 0x01C0 8004 0x01C0 8100 0x01C0 8120 0x01C0 8124 0x01C0 8128 0x01C0 812C 0x01C0 8130 0x01C0 8140 0x01C0 8240 0x01C0 8244 0x01C0 8248 0x01C0 824C 0x01C0 8250 0x01C0 8254 0x01C0 8258 0x01C0 825C 0x01C0 8260 EDMA3_0 Transfer Controller 1 BYTE ADDRESS 0x01C0 8400 0x01C0 8404 0x01C0 8500 0x01C0 8520 0x01C0 8524 0x01C0 8528 0x01C0 852C 0x01C0 8530 0x01C0 8540 0x01C0 8640 0x01C0 8644 0x01C0 8648 0x01C0 864C 0x01C0 8650 0x01C0 8654 0x01C0 8658 0x01C0 865C 0x01C0 8660 EDMA3_1 Transfer Controller 0 BYTE ADDRESS 0x01E3 8000 0x01E3 8004 0x01E3 8100 0x01E3 8120 0x01E3 8124 0x01E3 8128 0x01E3 812C 0x01E3 8130 0x01E3 8140 0x01E3 8240 0x01E3 8244 0x01E3 8248 0x01E3 824C 0x01E3 8250 0x01E3 8254 0x01E3 8258 0x01E3 825C 0x01E3 8260 ACRONYM REGISTER DESCRIPTION PID TCCFG TCSTAT ERRSTAT ERREN ERRCLR ERRDET ERRCMD RDRATE SAOPT SASRC SACNT SADST SABIDX SAMPPRXY SACNTRLD SASRCBREF SADSTBREF Peripheral Identification Register EDMA3TC Configuration Register EDMA3TC Channel Status Register Error Status Register Error Enable Register Error Clear Register Error Details Register Error Interrupt Command Register Read Command Rate Register Source Active Options Register Source Active Source Address Register Source Active Count Register Source Active Destination Address Register Source Active B-Index Register Source Active Memory Protection Proxy Register Source Active Count Reload Register Source Active Source Address B-Reference Register Source Active Destination Address B-Reference Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 111 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) EDMA3_0 Transfer Controller 0 BYTE ADDRESS 0x01C0 8280 0x01C0 8284 EDMA3_0 Transfer Controller 1 BYTE ADDRESS 0x01C0 8680 0x01C0 8684 EDMA3_1 Transfer Controller 0 BYTE ADDRESS 0x01E3 8280 0x01E3 8284 0x01C0 8288 0x01C0 8688 0x01E3 8288 0x01C0 8300 0x01C0 8304 0x01C0 8308 0x01C0 830C 0x01C0 8310 0x01C0 8314 0x01C0 8340 0x01C0 8344 0x01C0 8348 0x01C0 834C 0x01C0 8350 0x01C0 8354 0x01C0 8380 0x01C0 8384 0x01C0 8388 0x01C0 838C 0x01C0 8390 0x01C0 8394 0x01C0 83C0 0x01C0 83C4 0x01C0 83C8 0x01C0 83CC 0x01C0 83D0 0x01C0 83D4 0x01C0 8700 0x01C0 8704 0x01C0 8708 0x01C0 870C 0x01C0 8710 0x01C0 8714 0x01C0 8740 0x01C0 8744 0x01C0 8748 0x01C0 874C 0x01C0 8750 0x01C0 8754 0x01C0 8780 0x01C0 8784 0x01C0 8788 0x01C0 878C 0x01C0 8790 0x01C0 8794 0x01C0 87C0 0x01C0 87C4 0x01C0 87C8 0x01C0 87CC 0x01C0 87D0 0x01C0 87D4 0x01E3 8300 0x01E3 8304 0x01E3 8308 0x01E3 830C 0x01E3 8310 0x01E3 8314 0x01E3 8340 0x01E3 8344 0x01E3 8348 0x01E3 834C 0x01E3 8350 0x01E3 8354 0x01E3 8380 0x01E3 8384 0x01E3 8388 0x01E3 838C 0x01E3 8390 0x01E3 8394 0x01E3 83C0 0x01E3 83C4 0x01E3 83C8 0x01E3 83CC 0x01E3 83D0 0x01E3 83D4 ACRONYM REGISTER DESCRIPTION DFCNTRLD DFSRCBREF DFDSTBREF DFOPT0 DFSRC0 DFCNT0 DFDST0 DFBIDX0 DFMPPRXY0 DFOPT1 DFSRC1 DFCNT1 DFDST1 DFBIDX1 DFMPPRXY1 DFOPT2 DFSRC2 DFCNT2 DFDST2 DFBIDX2 DFMPPRXY2 DFOPT3 DFSRC3 DFCNT3 DFDST3 DFBIDX3 DFMPPRXY3 Destination FIFO Set Count Reload Register Destination FIFO Set Source Address B-Reference Register Destination FIFO Set Destination Address B-Reference Register Destination FIFO Options Register 0 Destination FIFO Source Address Register 0 Destination FIFO Count Register 0 Destination FIFO Destination Address Register 0 Destination FIFO B-Index Register 0 Destination FIFO Memory Protection Proxy Register 0 Destination FIFO Options Register 1 Destination FIFO Source Address Register 1 Destination FIFO Count Register 1 Destination FIFO Destination Address Register 1 Destination FIFO B-Index Register 1 Destination FIFO Memory Protection Proxy Register 1 Destination FIFO Options Register 2 Destination FIFO Source Address Register 2 Destination FIFO Count Register 2 Destination FIFO Destination Address Register 2 Destination FIFO B-Index Register 2 Destination FIFO Memory Protection Proxy Register 2 Destination FIFO Options Register 3 Destination FIFO Source Address Register 3 Destination FIFO Count Register 3 Destination FIFO Destination Address Register 3 Destination FIFO B-Index Register 3 Destination FIFO Memory Protection Proxy Register 3 Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA3 events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. EDMA3_0 Channel Controller 0 BYTE ADDRESS RANGE 0x01C0 4000 - 0x01C0 401F 0x01C0 4020 - 0x01C0 403F 0x01C0 4040 - 0x01CC0 405F 0x01C0 4060 - 0x01C0 407F 0x01C0 4080 - 0x01C0 409F 0x01C0 40A0 - 0x01C0 40BF ... 0x01C0 4FC0 - 0x01C0 4FDF 0x01C0 4FE0 - 0x01C0 4FFF Table 5-17. EDMA3 Parameter Set RAM EDMA3_1 Channel Controller 0 BYTE ADDRESS RANGE 0x01E3 4000 - 0x01E3 401F 0x01E3 4020 - 0x01E3 403F 0x01E3 4040 - 0x01CE3 405F 0x01E3 4060 - 0x01E3 407F 0x01E3 4080 - 0x01E3 409F 0x01E3 40A0 - 0x01E3 40BF ... 0x01E3 4FC0 - 0x01E3 4FDF 0x01E3 4FE0 - 0x01E3 4FFF DESCRIPTION Parameters Set 0 (8 32-bit words) Parameters Set 1 (8 32-bit words) Parameters Set 2 (8 32-bit words) Parameters Set 3 (8 32-bit words) Parameters Set 4 (8 32-bit words) Parameters Set 5 (8 32-bit words) ... Parameters Set 126 (8 32-bit words) Parameters Set 127 (8 32-bit words) 112 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-18. Parameter Set Entries OFFSET BYTE ADDRESS WITHIN THE PARAMETER SET 0x0000 0x0004 0x0008 0x000C 0x0010 0x0014 0x0018 0x001C ACRONYM OPT SRC A_B_CNT DST SRC_DST_BIDX LINK_BCNTRLD SRC_DST_CIDX CCNT PARAMETER ENTRY Option Source Address A Count, B Count Destination Address Source B Index, Destination B Index Link Address, B Count Reload Source C Index, Destination C Index C Count Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 113 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.10 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on this device, EMIFA also provides a secondary interface to SDRAM. 5.10.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories The EMIFA data bus width is up to 16-bits.The device supports up to 23 address lines and two external wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 5.10.2 EMIFA Synchronous DRAM Memory Support The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 5.10.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are: • One, Two, and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • Sixteen Bit Data Bus Width Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown mode achieves even lower power, except the device must periodically wake the SDRAM up and issue refreshes if data retention is required. Finally, note that the EMIFA does not support Mobile SDRAM devices. Table 5-19 shows the supported SDRAM configurations for EMIFA. 114 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-19. EMIFA Supported SDRAM Configurations(1) SDRAM Memory Data Bus Width (bits) Number of Memories EMIFA Data Bus Size (bits) Rows Columns Banks Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) 1 16 16 8 1 256 32 256 1 16 16 8 2 512 64 512 1 16 16 8 4 1024 128 1024 1 16 16 9 1 512 64 512 1 16 16 9 2 1024 128 1024 16 1 16 16 9 4 2048 256 2048 1 16 16 10 1 1024 128 1024 1 16 16 10 2 2048 256 2048 1 16 16 10 4 4096 512 4096 1 16 16 11 1 2048 256 2048 1 16 16 11 2 4096 512 4096 1 16 15 11 4 4096 512 4096 2 16 16 8 1 256 32 128 2 16 16 8 2 512 64 256 2 16 16 8 4 1024 128 512 2 16 16 9 1 512 64 256 2 16 16 9 2 1024 128 512 8 2 16 16 9 4 2048 256 1024 2 16 16 10 1 1024 128 512 2 16 16 10 2 2048 256 1024 2 16 16 10 4 4096 512 2048 2 16 16 11 1 2048 256 1024 2 16 16 11 2 4096 512 2048 2 16 15 11 4 4096 512 2048 (1) The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. 5.10.3 EMIFA SDRAM Loading Limitations EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models. 5.10.4 EMIFA Connection Examples Figure 5-10 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2]. The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 115 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-11. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. EMA_CS[0] EMIFA EMA_CAS EMA_RAS EMA_WE EMA_CLK EMA_SDCKE EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[0] EMA_WE_DQM[1] EMA_D[15:0] EMA_CS[2] EMA_CS[3] EMA_WAIT EMA_OE RESET GPIO (6 Pins) RESET ... EMA_BA[1] CE CAS RAS WE CLK CKE SDRAM 2M x 16 x 4 Bank BA[1:0] A[11:0] LDQM UDQM DQ[15:0] A[0] A[12:1] DQ[15:0] CE NOR WE OE FLASH 512K x 16 RESET A[18:13] RY/BY DVDD EMA_A[1] ALE EMA_A[2] CLE DQ[15:0] CE WE RE RB NAND FLASH 1Gb x 16 Figure 5-10. Connection Diagram: SDRAM, NOR, NAND 116 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 EMIFA EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMA_WAIT DVDD EMA_CS[4] EMA_CS[5] ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane Figure 5-11. EMIFA Connection Diagram: Multiple NAND Flash Planes Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 117 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.10.5 External Memory Interface Register Descriptions BYTE ADDRESS 0x6800 0000 0x6800 0004 0x6800 0008 0x6800 000C 0x6800 0010 0x6800 0014 0x6800 0018 0x6800 001C 0x6800 0020 0x6800 003C 0x6800 0040 0x6800 0044 0x6800 0048 0x6800 004C 0x6800 0060 0x6800 0064 0x6800 0070 0x6800 0074 0x6800 0078 0x6800 007C 0x6800 00BC 0x6800 00C0 0x6800 00C4 0x6800 00C8 0x6800 00CC 0x6800 00D0 0x6800 00D4 0x6800 00D8 0x6800 00DC Table 5-20. External Memory Interface (EMIFA) Registers ACRONYM MIDR AWCC SDCR SDRCR CE2CFG CE3CFG CE4CFG CE5CFG SDTIMR SDSRETR INTRAW INTMSK INTMSKSET INTMSKCLR NANDFCR NANDFSR NANDF1ECC NANDF2ECC NANDF3ECC NANDF4ECC NAND4BITECCLOAD NAND4BITECC1 NAND4BITECC2 NAND4BITECC3 NAND4BITECC4 NANDERRADD1 NANDERRADD2 NANDERRVAL1 NANDERRVAL2 REGISTER DESCRIPTION Module ID Register Asynchronous Wait Cycle Configuration Register SDRAM Configuration Register SDRAM Refresh Control Register Asynchronous 1 Configuration Register Asynchronous 2 Configuration Register Asynchronous 3 Configuration Register Asynchronous 4 Configuration Register SDRAM Timing Register SDRAM Self Refresh Exit Timing Register EMIFA Interrupt Raw Register EMIFA Interrupt Mask Register EMIFA Interrupt Mask Set Register EMIFA Interrupt Mask Clear Register NAND Flash Control Register NAND Flash Status Register NAND Flash 1 ECC Register (CS2 Space) NAND Flash 2 ECC Register (CS3 Space) NAND Flash 3 ECC Register (CS4 Space) NAND Flash 4 ECC Register (CS5 Space) NAND Flash 4-Bit ECC Load Register NAND Flash 4-Bit ECC Register 1 NAND Flash 4-Bit ECC Register 2 NAND Flash 4-Bit ECC Register 3 NAND Flash 4-Bit ECC Register 4 NAND Flash 4-Bit ECC Error Address Register 1 NAND Flash 4-Bit ECC Error Address Register 2 NAND Flash 4-Bit ECC Error Value Register 1 NAND Flash 4-Bit ECC Error Value Register 2 www.ti.com 118 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.10.6 EMIFA Electrical Data/Timing Table 5-21 through Table 5-24 assume testing over recommended operating conditions. Table 5-21. Timing Requirements for EMIFA SDRAM Interface NO. PARAMETER 19 tsu(EMA_DV-EM_CLKH) Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising 1.3V, 1.2V 1.1V 1.0V UNIT MIN MAX MIN MAX MIN MAX 2 3 3 ns 1.6 1.6 1.6 ns NO. 1 tc(CLK) 2 tw(CLK) 3 td(CLKH-CSV) 4 toh(CLKH-CSIV) 5 td(CLKH-DQMV) 6 toh(CLKH-DQMIV) 7 td(CLKH-AV) 8 toh(CLKH-AIV) 9 td(CLKH-DV) 10 toh(CLKH-DIV) 11 td(CLKH-RASV) 12 toh(CLKH-RASIV) 13 td(CLKH-CASV) 14 toh(CLKH-CASIV) 15 td(CLKH-WEV) 16 toh(CLKH-WEIV) 17 tdis(CLKH-DHZ) 18 tena(CLKH-DLZ) Table 5-22. Switching Characteristics for EMIFA SDRAM Interface PARAMETER Cycle time, EMIF clock EMA_CLK Pulse width, EMIF clock EMA_CLK high or low Delay time, EMA_CLK rising to EMA_CS[0] valid Output hold time, EMA_CLK rising to EMA_CS[0] invalid Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid Delay time, EMA_CLK rising to EMA_D[15:0] valid Output hold time, EMA_CLK rising to EMA_D[15:0] invalid Delay time, EMA_CLK rising to EMA_RAS valid Output hold time, EMA_CLK rising to EMA_RAS invalid Delay time, EMA_CLK rising to EMA_CAS valid Output hold time, EMA_CLK rising to EMA_CAS invalid Delay time, EMA_CLK rising to EMA_WE valid Output hold time, EMA_CLK rising to EMA_WE invalid Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated Output hold time, EMA_CLK rising to EMA_D[15:0] driving 1.3V, 1.2V MIN MAX 10 3 7 1 7 1.1V MIN MAX 15 5 9.5 1 9.5 1.0V UNIT MIN MAX 20 ns 8 ns 13 ns 1 ns 13 ns 1 1 1 ns 7 9.5 13 ns 1 1 1 ns 7 9.5 13 ns 1 1 1 ns 7 9.5 13 ns 1 1 1 ns 7 9.5 13 ns 1 1 1 ns 7 9.5 13 ns 1 1 1 ns 7 9.5 13 ns 1 1 1 ns Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 119 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 EMA_CLK EMA_CS[0] EMA_WE_DQM[1:0] EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] EMA_RAS EMA_CAS EMA_WE BASIC SDRAM WRITE OPERATION 1 22 3 4 5 7 8 7 8 9 10 11 12 13 15 16 Figure 5-12. EMIFA Basic SDRAM Write Operation www.ti.com 6 EMA_CLK EMA_CS[0] EMA_WE_DQM[1:0] EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] EMA_RAS EMA_CAS EMA_WE BASIC SDRAM 1 READ OPERATION 2 2 3 4 5 7 8 7 8 17 11 12 13 14 6 19 20 2 EM_CLK Delay 18 Figure 5-13. EMIFA Basic SDRAM Read Operation 120 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-23. Timing Requirements for EMIFA Asynchronous Memory Interface (1) NO. PARAMETER READS and WRITES E tc(CLK) 2 tw(EM_WAIT) Cycle time, EMIFA module clock Pulse duration, EM_WAIT assertion and deassertion READS 12 tsu(EMDV-EMOEH) 13 th(EMOEH-EMDIV) 14 tsu (EMOEL-EMWAIT) Setup time, EM_D[15:0] valid before EM_OE high Hold time, EM_D[15:0] valid after EM_OE high Setup Time, EM_WAIT asserted before end of Strobe Phase (2) WRITES 28 tsu (EMWEL-EMWAIT) Setup Time, EM_WAIT asserted before end of Strobe Phase (2) 1.3V, 1.2V 1.1V 1.0V UNIT MIN MAX MIN MAX MIN MAX 6.75 15 20 ns 2E 2E 2E ns 3 5 7 ns 0 0 0 ns 4E+3 4E+3 4E+3 ns 4E+3 4E+3 4E+3 ns (1) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns (2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 5-16 and Figure 5-17 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 121 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com NO. 1 td(TURNAROUND) 3 tc(EMRCYCLE) 4 tsu(EMCEL-EMOEL) 5 th(EMOEH-EMCEH) 6 tsu(EMBAV-EMOEL) 7 th(EMOEH-EMBAIV) 8 tsu(EMBAV-EMOEL) 9 th(EMOEH-EMAIV) 10 tw(EMOEL) 11 td(EMWAITH-EMOEH) 15 tc(EMWCYCLE) 16 tsu(EMCEL-EMWEL) 17 th(EMWEH-EMCEH) 18 tsu(EMDQMV-EMWEL) 19 th(EMWEH-EMDQMIV) 20 tsu(EMBAV-EMWEL) 21 th(EMWEH-EMBAIV) 22 tsu(EMAV-EMWEL) 23 th(EMWEH-EMAIV) Table 5-24. Switching Characteristics for EMIFA Asynchronous Memory Interface (1) (2) (3) PARAMETER MIN READS and WRITES Turn around time (TA)*E - 3 READS EMIF read cycle time (EW = 0) (RS+RST+RH)*E - 3 EMIF read cycle time (EW = 1) (RS+RST+RH+(EWC*16))*E -3 Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 EMA_OE active low width (EW = 0) (RST)*E-3 EMA_OE active low width (EW = 1) (RST+(EWC*16))*E-3 Delay time from EMA_WAIT deasserted to EMA_OE high 3E-3 WRITES EMIF write cycle time (EW = 0) (WS+WST+WH)*E-3 EMIF write cycle time (EW = 1) (WS+WST+WH+(EWC*16))* E-3 Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 1.3V, 1.2V, 1.1V, 1.0V Nom MAX (TA)*E (TA)*E + 3 (RS+RST+RH)*E (RS+RST+RH)*E + 3 (RS+RST+RH+(EWC*16))*E (RS+RST+RH+(EWC*16))*E +3 (RS)*E (RS)*E+3 0 +3 (RH)*E (RH)*E + 3 0 +3 (RS)*E (RS)*E+3 (RH)*E (RH)*E+3 (RS)*E (RS)*E+3 (RH)*E (RH)*E+3 (RST)*E (RST)*E+3 (RST+(EWC*16))*E (RST+(EWC*16))*E+3 4E 4E+3 (WS+WST+WH)*E (WS+WST+WH)*E+3 (WS+WST+WH+(EWC*16))*E (WS+WST+WH+(EWC*16))* E+3 (WS)*E (WS)*E + 3 0 +3 (WH)*E (WH)*E+3 0 +3 (WS)*E (WS)*E+3 (WH)*E (WH)*E+3 (WS)*E (WS)*E+3 (WH)*E (WH)*E+3 (WS)*E (WS)*E+3 (WH)*E (WH)*E+3 UNIT ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns (1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. (2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL0 output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. (3) EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. 122 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com NO. 24 tw(EMWEL) 25 td(EMWAITH-EMWEH) 26 tsu(EMDV-EMWEL) 27 th(EMWEH-EMDIV) SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-24. Switching Characteristics for EMIFA Asynchronous Memory Interface (1) (2) (3) (continued) PARAMETER EMA_WE active low width (EW = 0) EMA_WE active low width (EW = 1) Delay time from EMA_WAIT deasserted to EMA_WE high Output setup time, EMA_D[15:0] valid to EMA_WE low Output hold time, EMA_WE high to EMA_D[15:0] invalid MIN (WST)*E-3 (WST+(EWC*16))*E-3 3E-3 (WS)*E-3 (WH)*E-3 1.3V, 1.2V, 1.1V, 1.0V Nom (WST)*E (WST+(EWC*16))*E 4E (WS)*E (WH)*E MAX (WST)*E+3 (WST+(EWC*16))*E+3 4E+3 (WS)*E+3 (WH)*E+3 UNIT ns ns ns ns ns EMA_CS[5:2] 3 1 EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] EMA_A_RW 4 8 6 EMA_OE EMA_D[15:0] 10 12 1 5 9 7 13 EMA_WE Figure 5-14. Asynchronous Memory Read Timing for EMIFA Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Peripheral Information and Electrical Specifications 123 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 15 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] www.ti.com 1 EMA_A_RW 16 17 1 18 19 20 21 22 23 24 EMA_WE 26 27 EMA_D[15:0] EMA_OE EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_D[15:0] EMA_A_RW EMA_OE EMA_WAIT Figure 5-15. Asynchronous Memory Write Timing for EMIFA SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD 14 11 2 Asserted 2 Deasserted Figure 5-16. EMA_WAIT Read Timing Requirements 124 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_D[15:0] EMA_A_RW EMA_WE EMA_WAIT OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Figure 5-17. EMA_WAIT Write Timing Requirements Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 125 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.11 DDR2/mDDR Controller The DDR2/mDDR Memory Controller is a dedicated interface to DDR2/mDDR SDRAM. It supports JESD79-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices. The DDR2/mDDR Memory Controller support the following features: • JESD79-2A standard compliant DDR2 SDRAM • Mobile DDR SDRAM • 512 MByte memory space for DDR2 • 256 MByte memory space for mDDR • CAS latencies: – DDR2: 2, 3, 4 and 5 – mDDR: 2 and 3 • Internal banks: – DDR2: 1, 2, 4 and 8 – mDDR:1, 2 and 4 • Burst length: 8 • Burst type: sequential • 1 chip select (CS) signal • Page sizes: 256, 512, 1024 and 2048 • SDRAM autoinitialization • Self-refresh mode • Partial array self-refresh (for mDDR) • Power down mode • Prioritized refresh • Programmable refresh rate and backlog counter • Programmable timing parameters • Little endian 5.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing Table 5-25. Switching Characteristics Over Recommended Operating Conditions for DDR2/mDDR Memory Controller No. PARAMETER 1 tc(DDR_CLK) Cycle time, DDR_CLKP / DDR_CLKN (1) DDR2 is not supported at this voltage operating point. DDR2 mDDR 1.3V, 1.2V MIN MAX 125 156 105 150 1.1V MIN MAX 125 150 100 133 1.0V MIN — (1) MAX — (1) 95 133 UNIT MHz 126 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.11.2 DDR2/mDDR Controller Register Description(s) BYTE ADDRESS 0xB000 0000 0xB000 0004 0xB000 0008 0xB000 000C 0xB000 0010 0xB000 0014 0xB000 001C 0xB000 0020 0xB000 0040 0xB000 0044 0xB000 0048 0xB000 004C 0xB000 0050 0xB000 00C0 0xB000 00C4 0xB000 00C8 0xB000 00CC 0xB000 00E4 0x01E2 C000 Table 5-26. DDR2/mDDR Controller Registers ACRONYM REVID SDRSTAT SDCR SDRCR SDTIMR1 SDTIMR2 SDCR2 PBBPR PC1 PC2 PCC PCMRS PCT IRR IMR IMSR IMCR DRPYC1R VTPIO_CTL REGISTER DESCRIPTION Revision ID Register SDRAM Status Register SDRAM Configuration Register SDRAM Refresh Control Register SDRAM Timing Register 1 SDRAM Timing Register 2 SDRAM Configuration Register 2 Peripheral Bus Burst Priority Register Performance Counter 1 Registers Performance Counter 2 Register Performance Counter Configuration Register Performance Counter Master Region Select Register Performance Counter Time Register Interrupt Raw Register Interrupt Mask Register Interrupt Mask Set Register Interrupt Mask Clear Register DDR PHY Control Register 1 VTP IO Control Register 5.11.3 DDR2/mDDR Interface This section provides the timing specification for the DDR2/mDDR interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2/mDDR memory system without the need for a complex timing closure process. For more information regarding guidelines for using this DDR2/mDDR specification, Understanding TI's PCB Routing Rule-Based DDR2 Timing Specification (SPRAAV0). 5.11.3.1 DDR2/mDDR Interface Schematic Figure 5-18 shows the DDR2/mDDR interface schematic for a single-memory DDR2/mDDR system. The dual-memory system shown in Figure 5-19. Pin numbers for the device can be obtained from the pin description section. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 127 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 DDR2/mDDR Memory Controller DDR_D[0] DDR_D[7] DDR_DQM[0] DDR_DQS[0] DDR_D[8] DDR_D[15] DDR_DQM[1] DDR_DQS[1] DDR_BA[0] DDR_BA[2] DDR_A[0] DDR_A[13] DDR_CS DDR_CAS DDR_RAS DDR_WE DDR_CKE DDR_CLKP DDR_CLKN DDR_ZP DDR_DQGATE0 DDR_DQGATE1 T T T T T T T T T T T T (1) T 50 Ω 5% DDR_VREF 0.1 μF(2) T T T T NC T T T T NC 0.1 μF(2) 0.1 μF(2) DDR2/mDDR ODT DQ0 DQ7 LDM LDQS LDQS DQ8 DQ15 UDM UDQS UDQS BA0 BA2 A0 A13 CS CAS RAS WE CKE CK CK VREF(3) www.ti.com DDR_DVDD18 0.1 μF 0.1 μF 1 K Ω 1% VREF 1 K Ω 1% T Terminator, if desired. See terminator comments. (1) See Figure 5-25 for DQGATE routing specifications. (2) For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR, these capacitors can be eliminated completely. (3) VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit. Figure 5-18. DDR2/mDDR Single-Memory High Level Schematic 128 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com DDR2/mDDR Memory Controller DDR_D[0:7] DDR_DQM[0] DDR_DQS[0] T T T NC DDR_BA[0:2] T DDR_A[0:13] T DDR_CLKP T DDR_CLKN T DDR_CS T DDR_CAS T DDR_RAS T DDR_WE T DDR_CKE T DDR_DQM1 DDR_DQS1 DDR_D[8:15] DDR_ZP DDR_DQGATE0 DDR_DQGATE1 (1) T T DDR_VREF 0.1 μF(2) T T NC T 0.1 μF(2) 0.1 μF(2) 50 Ω 5% OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 ODT DQ0 - DQ7 BA0-BA2 A0-A13 DM DQS DQS Lower Byte DDR2/mDDR CK CK CS CAS RAS WE CKE VREF BA0-BA2 A0-A13 CK CK CS CAS RAS WE CKE DM DQS DQS DQ0 - DQ7 ODT VREF(3) Upper Byte DDR2/mDDR DDR_DVDD18 0.1 μF 0.1 μF 1 K Ω 1% VREF 1 K Ω 1% T Terminator, if desired. See terminator comments. (1) See Figure 5-25 for DQGATE routing specifications. (2) For DDR2, one of these capacitors can be eliminated if the divider and its capacitors are placed near a device VREF pin. For mDDR, these capacitors can be eliminated completely. (3) VREF applies in the case of DDR2 memories. For mDDR, the DDR_VREF pin still needs to be connected to the divider circuit. Figure 5-19. DDR2/mDDR Dual-Memory High Level Schematic Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 129 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.11.3.2 Compatible JEDEC DDR2/mDDR Devices Table 5-27 shows the parameters of the JEDEC DDR2/mDDR devices that are compatible with this interface. Generally, the DDR2/mDDR interface is compatible with x16 DDR2/mDDR-400 speed grade DDR2/mDDR devices. The device also supports JEDEC DDR2/mDDR x8 devices in the dual chip configuration. In this case, one chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control signals are shared just like regular dual chip memory configurations. Table 5-27. Compatible JEDEC DDR2/mDDR Devices NO. PARAMETER 1 JEDEC DDR2/mDDR Device Speed Grade(1) MIN DDR2/mDDR-400 MAX 2 JEDEC DDR2/mDDR Device Bit Width 3 JEDEC DDR2/mDDR Device Count(2) x8 x16 1 2 (1) Higher DDR2/mDDR speed grades are supported due to inherent JEDEC DDR2/mDDR backwards compatibility. (2) Supported configurations are one 16-bit DDR2/mDDR memory or two 8-bit DDR2/mDDR memories UNIT Bits Devices 5.11.3.3 PCB Stackup The minimum stackup required for routing the device is a six layer stack as shown in Table 5-28. Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size of the PCB footprint.Complete stack up specifications are provided in Table 5-29. LAYER 1 2 3 4 5 6 Table 5-28. Device Minimum PCB Stack Up TYPE Signal Plane Plane Signal Plane Signal DESCRIPTION Top Routing Mostly Horizontal Ground Power Internal Routing Ground Bottom Routing Mostly Vertical Table 5-29. PCB Stack Up Specifications NO. PARAMETER MIN TYP 1 PCB Routing/Plane Layers 6 2 Signal Routing Layers 3 3 Full ground layers under DDR2/mDDR routing region 2 4 Number of ground plane cuts allowed within DDR routing region 5 Number of ground reference planes required for each DDR2/mDDR routing layer 1 6 Number of layers between DDR2/mDDR routing layer and reference ground plane 7 PCB Routing Feature Size 4 8 PCB Trace Width w 4 8 PCB BGA escape via pad size 18 9 PCB BGA escape via hole size 8 10 Device BGA pad size(1) 11 DDR2/mDDR Device BGA pad size(2) 12 Single Ended Impedance, Zo 13 Impedance Control(3) 50 Z-5 Z (1) Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size. (2) Please refer to the DDR2/mDDR device manufacturer documentation for the DDR2/mDDR device BGA pad size. (3) Z is the nominal singled ended impedance selected for the PCB specified by item 12. MAX 0 0 75 Z+5 UNIT Mils Mils Mils Mils Ω Ω 130 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.11.3.4 Placement Figure 5-19 shows the required placement for the device as well as the DDR2/mDDR devices. The dimensions for Figure 5-20 are defined in Table 5-30. The placement does not restrict the side of the PCB that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For single-memory DDR2/mDDR systems, the second DDR2/mDDR device is omitted from the placement. X A1 DDR2/mDDR Controller Y OFFSET Y DDR2/mDDR Device Y OFFSET A1 Recommended DDR2/mDDR Device Orientation Figure 5-20. OMAP-L138 and DDR2/mDDR Device Placement Table 5-30. Placement Specifications(1)(2) NO. PARAMETER MIN MAX UNIT 1X 1750 Mils 2Y 3 Y Offset 4 Clearance from non-DDR2/mDDR signal to DDR2/mDDR Keepout Region(4) 1280 Mils (3)650 Mils 4 w (5) (1) See Figure 5-20 for dimension definitions. (2) Measurements from center of device to center of DDR2/mDDR device. (3) For single memory systems it is recommended that Y Offset be as small as possible. (4) Non-DDR2/mDDR signals allowed within DDR2/mDDR keepout region provided they are separated from DDR2/mDDR routing layers by a ground plane. (5) w = PCB trace width as defined in Table 5-29. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 131 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.11.3.5 DDR2/mDDR Keep Out Region The region of the PCB used for the DDR2/mDDR circuitry must be isolated from other signals. The DDR2/mDDR keep out region is defined for this purpose and is shown in Figure 5-21. The size of this region varies with the placement and DDR routing. Additional clearances required for the keep out region are shown in Table 5-30. A1 DDR2/mDDR Controller DDR2/mDDR Device A1 Region should encompass all DDR2/mDDR circuitry and varies depending on placement. Non-DDR2/mDDR signals should not be routed on the DDR signal layers within the DDR2/mDDR keep out region. Non-DDR2/mDDR signals may be routed in the region provided they are routed on layers separated from DDR2/mDDR signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.8 V power plane should cover the entire keep out region. Figure 5-21. DDR2/mDDR Keepout Region 132 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.11.3.6 Bulk Bypass Capacitors Bulk bypass capacitors are required for moderate speed bypassing of the DDR2/mDDR and other circuitry. Table 5-31 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the Soc and DDR2/mDDR interfaces. Additional bulk bypass capacitance may be needed for other circuitry. Table 5-31. Bulk Bypass Capacitors NO. PARAMETER 1 DDR_DVDD18 Supply Bulk Bypass Capacitor Count(1) MIN MAX UNIT 3 Devices 2 DDR_DVDD18 Supply Bulk Bypass Total Capacitance 3 DDR#1 Bulk Bypass Capacitor Count(1) 30 μF 1 Devices 4 DDR#1 Bulk Bypass Total Capacitance 5 DDR#2 Bulk Bypass Capacitor Count(1)(2) 6 DDR#2 Bulk Bypass Total Capacitance(2) 22 μF 1 Devices 22 μF (1) These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed (HS) bypass caps. (2) Only used on dual-memory systems. 5.11.3.7 High-Speed Bypass Capacitors High-speed (HS) bypass capacitors are critical for proper DDR2/mDDR interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass cap, Soc/DDR2/mDDR power, and Soc/DDR2/mDDR ground connections. Table 5-32 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Table 5-32. High-Speed Bypass Capacitors NO. PARAMETER 1 HS Bypass Capacitor Package Size(1) MIN MAX 0402 2 Distance from HS bypass capacitor to device being bypassed 3 Number of connection vias for each HS bypass capacitor 250 2 (2) 4 Trace length from bypass capacitor contact to connection via 1 30 5 Number of connection vias for each DDR2/mDDR device power or ground balls 1 6 Trace length from DDR2/mDDR device power ball to connection via 7 DDR_DVDD18 Supply HS Bypass Capacitor Count(3) 35 10 8 DDR_DVDD18 Supply HS Bypass Capacitor Total Capacitance 0.6 9 DDR#1 HS Bypass Capacitor Count(3) 8 10 DDR#1 HS Bypass Capacitor Total Capacitance 0.4 11 DDR#2 HS Bypass Capacitor Count(3)(4) 8 12 DDR#2 HS Bypass Capacitor Total Capacitance(4) 0.4 (1) LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor (2) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. (3) These devices should be placed as close as possible to the device being bypassed. (4) Only used on dual-memory systems. UNIT 10 Mils Mils Vias Mils Vias Mils Devices μF Devices μF Devices μF Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 133 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.11.3.8 Net Classes Table 5-33 lists the clock net classes for the DDR2/mDDR interface. Table 5-34 lists the signal net classes, and associated clock net classes, for the signals in the DDR2/mDDR interface. These net classes are used for the termination and routing rules that follow. CLOCK NET CLASS CK DQS0 DQS1 Table 5-33. Clock Net Class Definitions Soc PIN NAMES DDR_CLKP / DDR_CLKN DDR_DQS[0] DDR_DQS[1] SIGNAL NET CLASS ADDR_CTRL D0 D1 DQGATE Table 5-34. Signal Net Class Definitions ASSOCIATED CLOCK NET CLASS CK DQS0 DQS1 CK, DQS0, DQS1 Soc PIN NAMES DDR_BA[2:0], DDR_A[13:0], DDR_CS, DDR_CAS, DDR_RAS, DDR_WE, DDR_CKE DDR_D[7:0], DDR_DQM0 DDR_D[15:8], DDR_DQM1 DDR_DQGATE0, DDR_DQGATE1 5.11.3.9 DDR2/mDDR Signal Termination No terminations of any kind are required in order to meet signal integrity and overshoot requirements. Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only type permitted. Table 5-35 shows the specifications for the series terminators. Table 5-35. DDR2/mDDR Signal Terminations(1)(2)(3) NO. PARAMETER MIN TYP MAX UNIT 1 CK Net Class 0 10 Ω 2 ADDR_CTRL Net Class 3 Data Byte Net Classes (DQS[0], DQS[1], D0, D1)(4) 0 22 Zo Ω 0 22 Zo Ω 4 DQGATE Net Class (DQGATE) 0 10 Zo Ω (1) Only series termination is permitted, parallel or SST specifically disallowed. (2) Terminator values larger than typical only recommended to address EMI issues. (3) Termination value should be uniform across net class. (4) When no termination is used on data lines (0 Ω), the DDR2/mDDR devices must be programmed to operate in 60% strength mode. 134 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.11.3.10 VREF Routing VREF is used as a reference by the input buffers of the DDR2/mDDR memories as well as the OMAP-L138. VREF is intended to be half the DDR2/mDDR power supply voltage and should be created using a resistive divider as shown in Figure 5-18. Other methods of creating VREF are not recommended. Figure 5-22 shows the layout guidelines for VREF. VREF Bypass Capacitor DDR2/mDDR Device A1 VREF Nominal Minimum Trace Width is 20 Mils DDR2/mDDR A1 Neck down to minimum in BGA escape regions is acceptable. Narrowing to accomodate via congestion for short distances is also acceptable. Best performance is obtained if the width of VREF is maximized. Figure 5-22. VREF Routing and Topology Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 135 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing Figure 5-23 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A should be maximized. A1 DDR2/mDDR Controller B T A C A1 Figure 5-23. CK and ADDR_CTRL Routing and Topology Table 5-36. CK and ADDR_CTRL Routing Specification NO. PARAMETER 1 Center to Center CK-CKN Spacing(1) 2 CK A to B/A to C Skew Length Mismatch(3) MIN TYP MAX UNIT 2w (2) 25 Mils 3 CK B to C Skew Length Mismatch 4 Center to center CK to other DDR2/mDDR trace spacing(1) 5 CK/ADDR_CTRL nominal trace length(4) 4w (2) CACLM-50 CACLM 25 Mils CACLM+50 Mils 6 ADDR_CTRL to CK Skew Length Mismatch 100 Mils 7 ADDR_CTRL to ADDR_CTRL Skew Length Mismatch 8 Center to center ADDR_CTRL to other DDR2/mDDR trace spacing(1) 9 Center to center ADDR_CTRL to other ADDR_CTRL trace spacing(1) 10 ADDR_CTRL A to B/A to C Skew Length Mismatch(3) 4w (2) 3w (2) 100 Mils 100 Mils 11 ADDR_CTRL B to C Skew Length Mismatch 100 Mils (1) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion. (2) w = PCB trace width as defined in Table 5-29. (3) Series terminator, if used, should be located closest to device. (4) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes. 136 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Figure 5-24 shows the topology and routing for the DQS and D net class; the routes are point to point. Skew matching across bytes is not needed nor recommended. T E0 A1 DDR2/mDDR Controller T E1 A1 Figure 5-24. DQS and D Routing and Topology Table 5-37. DQS and D Routing Specification NO. PARAMETER 1 Center to center DQS to other DDR2/mDDR trace spacing(1) 2 DQS/D nominal trace length(3)(4) 3 D to DQS Skew Length Mismatch(4) 4 D to D Skew Length Mismatch(4) 5 Center to center D to other DDR2/mDDR trace spacing(1)(5) 6 Center to Center D to other D trace spacing(1)(6) MIN 4w (2) DQLM-50 4w (2) 3w (2) TYP DQLM MAX UNIT DQLM+50 Mils 100 Mils 100 Mils (1) Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing congestion. (2) w = PCB trace width as defined in Table 5-29. (3) Series terminator, if used, should be located closest to DDR. (4) There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte 1. (5) D's from other DQS domains are considered other DDR2/mDDR trace. (6) DQLM is the longest Manhattan distance of each of the DQS and D net class. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 137 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Figure 5-25 shows the routing for the DQGATE net class. Table 5-38 contains the routing specification. A1 T F DDR2/mDDR Controller T A1 Figure 5-25. DQGATE Routing Table 5-38. DQGATE Routing Specification NO. PARAMETER 1 DQGATE Length F 2 Center to center DQGATE to any other trace spacing MIN 4w (2) TYP CKB0B (1) 3 DQS/D nominal trace length 4 DQGATE Skew(3) DQLM-50 DQLM (1) CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets. (2) w = PCB trace width as defined in Table 5-29. (3) Skew from CKB0B1 MAX DQLM+50 100 UNIT Mils Mils 5.11.3.12 MDDR/DDR2 Boundary Scan Limitations Due to DDR implementation and timing restrictions, it was not possible to place boundary scan cells between core logic and the IO like boundary scan cells for other IO. Instead, the boundary scan cells are tapped-off to the DDR PHY and there is the equivalent of a multiplexer inside the DDR PHY which selects between functional and boundary scan paths. The implication for boundary scan is that the DDR pins will not support the SAMPLE function of the output enable cells on the DDR pins and this is a violation of IEEE 1149.1. Full EXTEST and PRELOAD capability is still available. 138 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.12 Memory Protection Units The MPU performs memory protection checking. It receives requests from a bus master in the system and checks the address against the fixed and programmable regions to see if the access is allowed. If allowed, the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU: • Provides memory protection for fixed and programmable address ranges. • Supports multiple programmable address region. • Supports secure and debug access privileges. • Supports read, write, and execute access privileges. • Supports privid(8) associations with ranges. • Generates an interrupt when there is a protection violation, and saves violating transfer parameters. • MMR access is also protected. MPU1 BYTE ADDRESS 0x01E1 4000 0x01E1 4004 0x01E1 4010 0x01E1 4014 0x01E1 4018 0x01E1 401C 0x01E1 4020 - 0x01E1 41FF 0x01E1 4200 0x01E1 4204 0x01E1 4208 0x01E1 420C - 0x01E1 420F 0x01E1 4210 0x01E1 4214 0x01E1 4218 0x01E1 421C - 0x01E1 421F 0x01E1 4220 0x01E1 4224 0x01E1 4228 0x01E1 422C - 0x01E1 422F 0x01E1 4230 0x01E1 4234 0x01E1 4238 0x01E1 423C - 0x01E1 423F 0x01E1 4240 0x01E1 4244 0x01E1 4248 0x01E1 424C - 0x01E1 424F 0x01E1 4250 0x01E1 4254 0x01E1 4258 0x01E1 425C - 0x01E1 42FF Table 5-39. MPU1 Configuration Registers ACRONYM REVID CONFIG IRAWSTAT IENSTAT IENSET IENCLR PROG1_MPSAR PROG1_MPEAR PROG1_MPPA PROG2_MPSAR PROG2_MPEAR PROG2_MPPA PROG3_MPSAR PROG3_MPEAR PROG3_MPPA PROG4_MPSAR PROG4_MPEAR PROG4_MPPA PROG5_MPSAR PROG5_MPEAR PROG5_MPPA PROG6_MPSAR PROG6_MPEAR PROG6_MPPA - REGISTER DESCRIPTION Revision ID Configuration Interrupt raw status/set Interrupt enable status/clear Interrupt enable Interrupt enable clear Reserved Programmable range 1, start address Programmable range 1, end address Programmable range 1, memory page protection attributes Reserved Programmable range 2, start address Programmable range 2, end address Programmable range 2, memory page protection attributes Reserved Programmable range 3, start address Programmable range 3, end address Programmable range 3, memory page protection attributes Reserved Programmable range 4, start address Programmable range 4, end address Programmable range 4, memory page protection attributes Reserved Programmable range 5, start address Programmable range 5, end address Programmable range 5, memory page protection attributes Reserved Programmable range 6, start address Programmable range 6, end address Programmable range 6, memory page protection attributes Reserved Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 139 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 MPU1 BYTE ADDRESS 0x01E1 4300 0x01E1 4304 0x01E1 4308 0x01E1 430C - 0x01E1 4FFF Table 5-39. MPU1 Configuration Registers (continued) ACRONYM FLTADDRR FLTSTAT FLTCLR - Fault address Fault status Fault clear Reserved REGISTER DESCRIPTION www.ti.com Table 5-40. MPU2 Configuration Registers MPU2 BYTE ADDRESS 0x01E1 5000 0x01E1 5004 0x01E1 5010 0x01E1 5014 0x01E1 5018 0x01E1 501C 0x01E1 5020 - 0x01E1 51FF 0x01E1 5200 0x01E1 5204 0x01E1 5208 0x01E1 520C - 0x01E1 520F 0x01E1 5210 0x01E1 5214 0x01E1 5218 0x01E1 521C - 0x01E1 521F 0x01E1 5220 0x01E1 5224 0x01E1 5228 0x01E1 522C - 0x01E1 522F 0x01E1 5230 0x01E1 5234 0x01E1 5238 0x01E1 523C - 0x01E1 523F 0x01E1 5240 0x01E1 5244 0x01E1 5248 0x01E1 524C - 0x01E1 524F 0x01E1 5250 0x01E1 5254 0x01E1 5258 0x01E1 525C - 0x01E1 525F 0x01E1 5260 0x01E1 5264 0x01E1 5268 0x01E1 526C - 0x01E1 526F 0x01E1 5270 0x01E1 5274 0x01E1 5278 0x01E1 527C - 0x01E1 527F ACRONYM REVID CONFIG IRAWSTAT IENSTAT IENSET IENCLR PROG1_MPSAR PROG1_MPEAR PROG1_MPPA PROG2_MPSAR PROG2_MPEAR PROG2_MPPA PROG3_MPSAR PROG3_MPEAR PROG3_MPPA PROG4_MPSAR PROG4_MPEAR PROG4_MPPA PROG5_MPSAR PROG5_MPEAR PROG5_MPPA PROG6_MPSAR PROG6_MPEAR PROG6_MPPA PROG7_MPSAR PROG7_MPEAR PROG7_MPPA PROG8_MPSAR PROG8_MPEAR PROG8_MPPA - REGISTER DESCRIPTION Revision ID Configuration Interrupt raw status/set Interrupt enable status/clear Interrupt enable Interrupt enable clear Reserved Programmable range 1, start address Programmable range 1, end address Programmable range 1, memory page protection attributes Reserved Programmable range 2, start address Programmable range 2, end address Programmable range 2, memory page protection attributes Reserved Programmable range 3, start address Programmable range 3, end address Programmable range 3, memory page protection attributes Reserved Programmable range 4, start address Programmable range 4, end address Programmable range 4, memory page protection attributes Reserved Programmable range 5, start address Programmable range 5, end address Programmable range 5, memory page protection attributes Reserved Programmable range 6, start address Programmable range 6, end address Programmable range 6, memory page protection attributes Reserved Programmable range 7, start address Programmable range 7, end address Programmable range 7, memory page protection attributes Reserved Programmable range 8, start address Programmable range 8, end address Programmable range 8, memory page protection attributes Reserved 140 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 MPU2 BYTE ADDRESS 0x01E1 5280 0x01E1 5284 0x01E1 5288 0x01E1 528C - 0x01E1 528F 0x01E1 5290 0x01E1 5294 0x01E1 5298 0x01E1 529C - 0x01E1 529F 0x01E1 52A0 0x01E1 52A4 0x01E1 52A8 0x01E1 52AC - 0x01E1 52AF 0x01E1 52B0 0x01E1 52B4 0x01E1 52B8 0x01E1 52BC - 0x01E1 52FF 0x01E1 5300 0x01E1 5304 0x01E1 5308 0x01E1 530C - 0x01E1 5FFF Table 5-40. MPU2 Configuration Registers (continued) ACRONYM PROG9_MPSAR PROG9_MPEAR PROG9_MPPA PROG10_MPSAR PROG10_MPEAR PROG10_MPPA PROG11_MPSAR PROG11_MPEAR PROG11_MPPA PROG12_MPSAR PROG12_MPEAR PROG12_MPPA FLTADDRR FLTSTAT FLTCLR - REGISTER DESCRIPTION Programmable range 9, start address Programmable range 9, end address Programmable range 9, memory page protection attributes Reserved Programmable range 10, start address Programmable range 10, end address Programmable range 10, memory page protection attributes Reserved Programmable range 11, start address Programmable range 11, end address Programmable range 11, memory page protection attributes Reserved Programmable range 12, start address Programmable range 12, end address Programmable range 12, memory page protection attributes Reserved Fault address Fault status Fault clear Reserved Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 141 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.13 MMC / SD / SDIO (MMCSD0, MMCSD1) 5.13.1 MMCSD Peripheral Description The device includes an two MMCSD controllers which are compliant with MMC V4.0, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. The MMC/SD Controller have following features: • MultiMediaCard (MMC) • Secure Digital (SD) Memory Card • MMC/SD protocol support • SD high capacity support • SDIO protocol support • Programmable clock frequency • 512 bit Read/Write FIFO to lower system overhead • Slave EDMA transfer capability The device MMC/SD Controller does not support SPI mode. 5.13.2 MMCSD Peripheral Register Description(s) Table 5-41. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers MMCSD0 BYTE ADDRESS 0x01C4 0000 0x01C4 0004 0x01C4 0008 0x01C4 000C 0x01C4 0010 0x01C4 0014 0x01C4 0018 0x01C4 001C 0x01C4 0020 0x01C4 0024 0x01C4 0028 0x01C4 002C 0x01C4 0030 0x01C4 0034 0x01C4 0038 0x01C4 003C 0x01C4 0040 0x01C4 0044 0x01C4 0048 0x01C4 0050 0x01C4 0064 0x01C4 0068 0x01C4 006C 0x01C4 0070 0x01C4 0074 MMCSD1 BYTE ADDRESS 0x01E1 B000 0x01E1 B004 0x01E1 B008 0x01E1 B00C 0x01E1 B010 0x01E1 B014 0x01E1 B018 0x01E1 B01C 0x01E1 B020 0x01E1 B024 0x01E1 B028 0x01E1 B02C 0x01E1 B030 0x01E1 B034 0x01E1 B038 0x01E1 B03C 0x01E1 B040 0x01E1 B044 0x01E1 B048 0x01E1 B050 0x01E1 B064 0x01E1 B068 0x01E1 B06C 0x01E1 B070 0x01E1 B074 ACRONYM MMCCTL MMCCLK MMCST0 MMCST1 MMCIM MMCTOR MMCTOD MMCBLEN MMCNBLK MMCNBLC MMCDRR MMCDXR MMCCMD MMCARGHL MMCRSP01 MMCRSP23 MMCRSP45 MMCRSP67 MMCDRSP MMCCIDX SDIOCTL SDIOST0 SDIOIEN SDIOIST MMCFIFOCTL REGISTER DESCSRIPTION MMC Control Register MMC Memory Clock Control Register MMC Status Register 0 MMC Status Register 1 MMC Interrupt Mask Register MMC Response Time-Out Register MMC Data Read Time-Out Register MMC Block Length Register MMC Number of Blocks Register MMC Number of Blocks Counter Register MMC Data Receive Register MMC Data Transmit Register MMC Command Register MMC Argument Register MMC Response Register 0 and 1 MMC Response Register 2 and 3 MMC Response Register 4 and 5 MMC Response Register 6 and 7 MMC Data Response Register MMC Command Index Register SDIO Control Register SDIO Status Register 0 SDIO Interrupt Enable Register SDIO Interrupt Status Register MMC FIFO Control Register 142 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.13.3 MMC/SD Electrical Data/Timing Table 5-42 through Table 5-43 assume testing over recommended operating conditions. Table 5-42. Timing Requirements for MMC/SD (see Figure 5-27 and Figure 5-29) NO. PARAMETER 1 tsu(CMDV- CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high 2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.3V, 1.2V MIN MAX 4 2.5 4.5 2.5 1.1V MIN MAX 4 2.5 5 2.5 1.0V UNIT MIN MAX 6 ns 2.5 ns 6 ns 2.5 ns Table 5-43. Switching Characteristics for MMC/SD (see Figure 5-26 through Figure 5-29) NO. PARAMETER 7 f(CLK) 8 f(CLK_ID) 9 tW(CLKL) 10 tW(CLKH) 11 tr(CLK) 12 tf(CLK) 13 td(CLKL-CMD) 14 td(CLKL-DAT) Operating frequency, MMCSD_CLK Identification mode frequency, MMCSD_CLK Pulse width, MMCSD_CLK low Pulse width, MMCSD_CLK high Rise time, MMCSD_CLK Fall time, MMCSD_CLK Delay time, MMCSD_CLK low to MMCSD_CMD transition Delay time, MMCSD_CLK low to MMCSD_DATx transition 1.3V, 1.2V MIN MAX 0 52 0 400 6.5 6.5 3 3 -4 2.5 -4 3.3 1.1V MIN MAX 0 50 0 400 6.5 6.5 3 3 -4 3 -4 3.5 1.0V MIN MAX 0 25 0 400 10 10 10 10 -4 4 -4 4 UNIT MHz KHz ns ns ns ns ns ns Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 143 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 MMCSD_CLK MMCSD_CMD 10 7 9 13 13 START XMIT Valid Valid 13 Valid Figure 5-26. MMC/SD Host Command Timing END MMCSD_CLK MMCSD_CMD 9 7 10 START XMIT 1 Valid 2 Valid Valid END Figure 5-27. MMC/SD Card Response Timing MMCSD_CLK MMCSD_DATx 10 7 9 14 14 START D0 D1 14 Dx END Figure 5-28. MMC/SD Host Write Timing MMCSD_CLK MMCSD_DATx 9 7 10 4 3 Start D0 D1 4 3 Dx End Figure 5-29. MMC/SD Host Read and Card CRC Status Timing www.ti.com 13 14 144 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.14 Serial ATA Controller (SATA) The Serial ATA Controller (SATA) provides a single HBA port operating in AHCI mode and is used to interface to data storage devices at both 1.5 Gbits/second and 3.0 Gbits/second line speeds. AHCI describes a system memory structure that contains a generic area for control and status, and a table of entries describing a command list where each command list entry contains information necessary to program an SATA device, and a pointer to a descriptor table for transferring data between system memory and the device. The SATA Controller supports the following features: • Serial ATA 1.5 Gbps (Gen 1i) and 3 Gbps (Gen 2i) line speeds • Support for the AHCI controller spec 1.1 • Integrated SERDES PHY • Integrated Rx and Tx data buffers • Supports all SATA power management features • Internal DMA engine per port • Hardware-assisted native command queuing (NCQ) for up to 32 entries • 32-bit addressing • Supports port multiplier with command-based switching • Activity LED support • Mechanical presence switch • Cold presence detect The SATA Controller support is dependent on the CPU voltage operating point: • At CVDD = 1.3V, SATA Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported. • At CVDD = 1.2V, SATA Gen 2i (3.0 Gbps) and SATA Gen 1i (1.5 Gbps) are supported. • At CVDD = 1.1V, SATA Gen 1i (1.5 Gbps) only is supported. • At CVDD = 1.0V, SATA is not supported. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 145 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.14.1 SATA Register Descriptions Table 5-44 is a list of the SATA Controller registers. BYTE ADDRESS 0x01E1 8000 0x01E1 8004 0x01E1 8008 0x01E1 800C 0x01E1 8010 0x01E1 8014 0x01E1 8018 0x01E1 80A0 0x01E1 80A4 0x01E1 80A8 0x01E1 80AC 0x01E1 80B0 0x01E1 80E0 0x01E1 80E8 0x01E1 80EC 0x01E1 80F0 0x01E1 80F4 0x01E1 80F8 0x01E1 80FC 0x01E1 8100 0x01E1 8108 0x01E1 8110 0x01E1 8114 0x01E1 8118 0x01E1 8120 0x01E1 8124 0x01E1 8128 0x01E1 812C 0x01E1 8130 0x01E1 8134 0x01E1 8138 0x01E1 813C 0x01E1 8170 0x01E1 8178 0x01E1 817C Table 5-44. SATA Controller Registers ACRONYM CAP GHC IS PI VS CCC_CTL CCC_PORTS BISTAFR BISTCR BISTFCTR BISTSR BISTDECR TIMER1MS GPARAM1R GPARAM2R PPARAMR TESTR VERSIONR IDR P0CLB P0FB P0IS P0IE P0CMD P0TFD P0SIG P0SSTS P0SCTL P0SERR P0SACT P0CI P0SNTF P0DMACR P0PHYCR P0PHYSR REGISTER DESCRIPTION HBA Capabilities Register Global HBA Control Register Interrupt Status Register Ports Implemented Register AHCI Version Register Command Completion Coalescing Control Register Command Completion Coalescing Ports Register BIST Active FIS Register BIST Control Register BIST FIS Count Register BIST Status Register BIST DWORD Error Count Register BIST DWORD Error Count Register Global Parameter 1 Register Global Parameter 2 Register Port Parameter Register Test Register Version Register ID Register Port Command List Base Address Register Port FIS Base Address Register Port Interrupt Status Register Port Interrupt Enable Register Port Command Register Port Task File Data Register Port Signature Register Port Serial ATA Status Register Port Serial ATA Control Register Port Serial ATA Error Register Port Serial ATA Active Register Port Command Issue Register Port Serial ATA Notification Register Port DMA Control Register Port PHY Control Register Port PHY Status Register www.ti.com 146 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.14.2 1. SATA Interface This section provides the timing specification for the SATA interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the SATA interface requirements are met. 5.14.2.1 SATA Interface Schematic Figure 5-30 shows the SATA interface schematic. SATA Interface(Processor) 10nF SATA_TXN SATA_TXP 10nF 10nF SATA_RXN SATA_RXP 10nF SATA_REFCLKN SATA_REFCLKP 10nF 10nF SATA Connector TX– TX+ RX– RX+ LVDS Oscillator CLK– CLK+ SATA_REG 0.1uF Figure 5-30. SATA Interface High Level Schematic 5.14.2.2 Compatible SATA Components and Modes Table 5-45 shows the compatible SATA components and supported modes. Note that the only supported configuration is an internal cable from the processor host to the SATA device. PARAMETER Transfer Rates eSATA xSATA Backplane Internal Cable Table 5-45. SATA Supported Modes MIN MAX 1.5 3.0 UNIT Gbps SUPPORTED No No No Yes Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 147 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.14.2.3 PCB Stackup Specifications Table 5-46 shows the stackup and feature sizes required for SATA. Table 5-46. SATA PCB Stackup Specifications PARAMETER MIN TYP MAX PCB Routing/Plane Layers 4 6 Signal Routing Layers 2 3 Number of ground plane cuts allowed within SATA routing region 0 Number of layers between SATA routing region and reference ground plane 0 PCB Routing Feature Size 4 PCB Trace Width w 4 PCB BGA escape via pad size 18 PCB BGA escape via hole size 8 Device BGA pad size (1) (1) Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size. UNIT Layers Layers Layers Mils Mils Mils Mils 5.14.2.4 Routing Specifications The SATA data signal traces are edge-coupled and must be routed to achieve exactly 100 Ohms differential impedance. This is impacted by trace width, trace spacing, distance between planes, and dielectric material. Verify with a proper PCB manufacturing tool that the trace geometry for both data signal pairs results in exactly 100 ohms differential impedance traces. Table 5-47 shows the routing specifications for the data and REFCLK signals . Table 5-47. SATA Routing Specifications PARAMETER Device to SATA header trace length REFCLK trace length from oscillator to Device Number of stubs allowed on SATA traces TX/RX pair differential impedance Number of vias on each SATA trace SATA differential pair to any other trace spacing (1) Vias must be used in pairs with their distance minimized. (2) DS is the differential spacing of the SATA traces. MIN TYP 100 2*DS (2) MAX 7000 2000 0 3 UNIT Mils Mils Stubs Ohms Vias (1) 5.14.2.5 Coupling Capacitors AC coupling capacitors are required on the receive data pair as well as the REFCLK pair. Table 5-48 shows the requirements for these capacitors. Table 5-48. SATA Bypass and Coupling Capacitors Requirements PARAMETER MIN TYP MAX SATA AC coupling capacitor value 0.3 10 12 SATA AC coupling capacitor package size 0603 (1) LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor. (2) The physical size of the capacitor should be as small as possible. UNIT nF 10 Mils (1)(2) 5.14.2.6 SATA Interface Clock Source requirements A high-quality, low-jitter differential clock source is required for the SATA PHY. The SATA interface requires a LVDS differential clock source to be provided at signals SATA_REFCLKP and SATA_REFCLKN. The clock source should be placed physically as close to the processor as possible. Table 5-49 shows the requirements for the clock source. 148 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-49. SATA Input Clock Source Requirements PARAMETER Clock Frequency (1) MIN TYP 75 Jitter Duty Cycle 40 Rise/Fall Time 700 (1) Discrete clock frequency points are supported based on the PLL multiplier used in the SATA PHY. MAX 375 50 60 UNIT MHz ps pk-pk % ps 5.14.3 SATA Unused Signal Configuration If the SATA interface is not used, the SATA signals should be configured as shown below. SATA Signal Name SATA_RXP SATA_RXN SATA_TXP SATA_TXN SATA_REFCLKP SATA_REFCLKN SATA_MPSWITCH SATA_CP_DET SATA_CP_POD SATA_LED SATA_REG SATA_VDDR SATA_VDD SATA_VSS Table 5-50. Unused SATA Signal Configuration Configuration if SATA peripheral is not used No Connect No Connect No Connect No Connect No Connect No Connect May be used as GPIO or other peripheral function May be used as GPIO or other peripheral function May be used as GPIO or other peripheral function May be used as GPIO or other peripheral function No Connect No Connect Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply. For silicon revision 2.0 and later, this supply may be left unconnected for additional power conservation. Vss Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 149 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.15 Multichannel Audio Serial Port (McASP) The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to sixteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • DIT Mode with 384-bit Channel Status and 384-bit User Data registers • Extensive error checking and mute generation logic • All unused pins GPIO-capable • Transmit & Receive FIFO Buffers allow the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. • Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP Pins Function Peripheral Configuration Bus McASP DMA Bus (Dedicated) GIO Control DIT RAM 384 C 384 U Optional Transm it Form atter Receive Logic Clock/Fram e Generator State Machine Clock Check and Error Detection Transm it Logic Clock/Fram e Generator State Machine Serializer 0 Serializer 1 AHCLKRx ACLKRx AFSRx AMUTEINx AMUTEx AFSXx ACLKXx AHCLKXx Receive Master Clock Receive Bit Clock Receive Left/Right Clock or Fram e Sync The McASP DOES NOT have a dedicated AMUTEIN pin. Transm it Left/R ight C lock or Fram e S ync Transm it B it C lock Transm it M aster C lock AXRx[0] Transm it/R eceive S erial D ata P in AXRx[1] Transm it/R eceive S erial D ata P in Receive Form atter Serializer y McASP AXRx[y] Transm it/R eceive S erial D ata P in Figure 5-31. McASP Block Diagram 150 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.15.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 5-51. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 5-52 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-53. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. Table 5-51. McASP Registers Accessed Through Peripheral Configuration Port BYTE ADDRESS 0x01D0 0000 0x01D0 0010 0x01D0 0014 0x01D0 0018 0x01D0 001C 0x01D0 001C 0x01D0 0020 0x01D0 0044 0x01D0 0048 0x01D0 004C 0x01D0 0050 0x01D0 0060 0x01D0 0064 0x01D0 0068 0x01D0 006C 0x01D0 0070 0x01D0 0074 0x01D0 0078 0x01D0 007C 0x01D0 0080 0x01D0 0084 0x01D0 0088 0x01D0 008C 0x01D0 00A0 0x01D0 00A4 0x01D0 00A8 0x01D0 00AC 0x01D0 00B0 0x01D0 00B4 0x01D0 00B8 0x01D0 00BC 0x01D0 00C0 0x01D0 00C4 0x01D0 00C8 0x01D0 00CC 0x01D0 0100 0x01D0 0104 0x01D0 0108 ACRONYM REV PFUNC PDIR PDOUT PDIN PDSET PDCLR GBLCTL AMUTE DLBCTL DITCTL RGBLCTL RMASK RFMT AFSRCTL ACLKRCTL AHCLKRCTL RTDM RINTCTL RSTAT RSLOT RCLKCHK REVTCTL XGBLCTL XMASK XFMT AFSXCTL ACLKXCTL AHCLKXCTL XTDM XINTCTL XSTAT XSLOT XCLKCHK XEVTCTL DITCSRA0 DITCSRA1 DITCSRA2 REGISTER DESCRIPTION Revision identification register Pin function register Pin direction register Pin data output register Read returns: Pin data input register Writes affect: Pin data set register (alternate write address: PDOUT) Pin data clear register (alternate write address: PDOUT) Global control register Audio mute control register Digital loopback control register DIT mode control register Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter Receive format unit bit mask register Receive bit stream format register Receive frame sync control register Receive clock control register Receive high-frequency clock control register Receive TDM time slot 0-31 register Receiver interrupt control register Receiver status register Current receive TDM time slot register Receive clock check control register Receiver DMA event control register Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver Transmit format unit bit mask register Transmit bit stream format register Transmit frame sync control register Transmit clock control register Transmit high-frequency clock control register Transmit TDM time slot 0-31 register Transmitter interrupt control register Transmitter status register Current transmit TDM time slot register Transmit clock check control register Transmitter DMA event control register Left (even TDM time slot) channel status register (DIT mode) 0 Left (even TDM time slot) channel status register (DIT mode) 1 Left (even TDM time slot) channel status register (DIT mode) 2 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 151 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-51. McASP Registers Accessed Through Peripheral Configuration Port (continued) BYTE ADDRESS 0x01D0 010C 0x01D0 0110 0x01D0 0114 0x01D0 0118 0x01D0 011C 0x01D0 0120 0x01D0 0124 0x01D0 0128 0x01D0 012C 0x01D0 0130 0x01D0 0134 0x01D0 0138 0x01D0 013C 0x01D0 0140 0x01D0 0144 0x01D0 0148 0x01D0 014C 0x01D0 0150 0x01D0 0154 0x01D0 0158 0x01D0 015C 0x01D0 0180 0x01D0 0184 0x01D0 0188 0x01D0 018C 0x01D0 0190 0x01D0 0194 0x01D0 0198 0x01D0 019C 0x01D0 01A0 0x01D0 01A4 0x01D0 01A8 0x01D0 01AC 0x01D0 01B0 0x01D0 01B4 0x01D0 01B8 0x01D0 01BC ACRONYM DITCSRA3 DITCSRA4 DITCSRA5 DITCSRB0 DITCSRB1 DITCSRB2 DITCSRB3 DITCSRB4 DITCSRB5 DITUDRA0 DITUDRA1 DITUDRA2 DITUDRA3 DITUDRA4 DITUDRA5 DITUDRB0 DITUDRB1 DITUDRB2 DITUDRB3 DITUDRB4 DITUDRB5 SRCTL0 SRCTL1 SRCTL2 SRCTL3 SRCTL4 SRCTL5 SRCTL6 SRCTL7 SRCTL8 SRCTL9 SRCTL10 SRCTL11 SRCTL12 SRCTL13 SRCTL14 SRCTL15 REGISTER DESCRIPTION Left (even TDM time slot) channel status register (DIT mode) 3 Left (even TDM time slot) channel status register (DIT mode) 4 Left (even TDM time slot) channel status register (DIT mode) 5 Right (odd TDM time slot) channel status register (DIT mode) 0 Right (odd TDM time slot) channel status register (DIT mode) 1 Right (odd TDM time slot) channel status register (DIT mode) 2 Right (odd TDM time slot) channel status register (DIT mode) 3 Right (odd TDM time slot) channel status register (DIT mode) 4 Right (odd TDM time slot) channel status register (DIT mode) 5 Left (even TDM time slot) channel user data register (DIT mode) 0 Left (even TDM time slot) channel user data register (DIT mode) 1 Left (even TDM time slot) channel user data register (DIT mode) 2 Left (even TDM time slot) channel user data register (DIT mode) 3 Left (even TDM time slot) channel user data register (DIT mode) 4 Left (even TDM time slot) channel user data register (DIT mode) 5 Right (odd TDM time slot) channel user data register (DIT mode) 0 Right (odd TDM time slot) channel user data register (DIT mode) 1 Right (odd TDM time slot) channel user data register (DIT mode) 2 Right (odd TDM time slot) channel user data register (DIT mode) 3 Right (odd TDM time slot) channel user data register (DIT mode) 4 Right (odd TDM time slot) channel user data register (DIT mode) 5 Serializer control register 0 Serializer control register 1 Serializer control register 2 Serializer control register 3 Serializer control register 4 Serializer control register 5 Serializer control register 6 Serializer control register 7 Serializer control register 8 Serializer control register 9 Serializer control register 10 Serializer control register 11 Serializer control register 12 Serializer control register 13 Serializer control register 14 Serializer control register 15 152 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-51. McASP Registers Accessed Through Peripheral Configuration Port (continued) BYTE ADDRESS 0x01D0 0200 0x01D0 0204 0x01D0 0208 0x01D0 020C 0x01D0 0210 0x01D0 0214 0x01D0 0218 0x01D0 021C 0x01D0 0220 0x01D0 0224 0x01D0 0228 0x01D0 022C 0x01D0 0230 0x01D0 0234 0x01D0 0238 0x01D0 023C 0x01D0 0280 0x01D0 0284 0x01D0 0288 0x01D0 028C 0x01D0 0290 0x01D0 0294 0x01D0 0298 0x01D0 029C 0x01D0 02A0 0x01D0 02A4 0x01D0 02A8 0x01D0 02AC 0x01D0 02B0 0x01D0 02B4 0x01D0 02B8 0x01D0 02BC ACRONYM XBUF0 (1) XBUF1 (1) XBUF2 (1) XBUF3 (1) XBUF4 (1) XBUF5 (1) XBUF6 (1) XBUF7 (1) XBUF8 (1) XBUF9 (1) XBUF10 (1) XBUF11 (1) XBUF12 (1) XBUF13 (1) XBUF14 (1) XBUF15 (1) RBUF0 (2) RBUF1 (2) RBUF2 (2) RBUF3 (2) RBUF4 (2) RBUF5 (2) RBUF6 (2) RBUF7 (2) RBUF8 (2) RBUF9 (2) RBUF10 (2) RBUF11 (2) RBUF12 (2) RBUF13 (2) RBUF14 (2) RBUF15 (2) REGISTER DESCRIPTION Transmit buffer register for serializer 0 Transmit buffer register for serializer 1 Transmit buffer register for serializer 2 Transmit buffer register for serializer 3 Transmit buffer register for serializer 4 Transmit buffer register for serializer 5 Transmit buffer register for serializer 6 Transmit buffer register for serializer 7 Transmit buffer register for serializer 8 Transmit buffer register for serializer 9 Transmit buffer register for serializer 10 Transmit buffer register for serializer 11 Transmit buffer register for serializer 12 Transmit buffer register for serializer 13 Transmit buffer register for serializer 14 Transmit buffer register for serializer 15 Receive buffer register for serializer 0 Receive buffer register for serializer 1 Receive buffer register for serializer 2 Receive buffer register for serializer 3 Receive buffer register for serializer 4 Receive buffer register for serializer 5 Receive buffer register for serializer 6 Receive buffer register for serializer 7 Receive buffer register for serializer 8 Receive buffer register for serializer 9 Receive buffer register for serializer 10 Receive buffer register for serializer 11 Receive buffer register for serializer 12 Receive buffer register for serializer 13 Receive buffer register for serializer 14 Receive buffer register for serializer 15 (1) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. (2) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. ACCESS TYPE Read Accesses Write Accesses Table 5-52. McASP Registers Accessed Through DMA Port BYTE ADDRESS 0x01D0 2000 0x01D0 2000 ACRONYM RBUF XBUF REGISTER DESCRIPTION Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 153 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-53. McASP AFIFO Registers Accessed Through Peripheral Configuration Port BYTE ADDRESS 0x01D0 1000 0x01D0 1010 0x01D0 1014 0x01D0 1018 0x01D0 101C ACRONYM AFIFOREV WFIFOCTL WFIFOSTS RFIFOCTL RFIFOSTS REGISTER DESCRIPTION AFIFO revision identification register Write FIFO control register Write FIFO status register Read FIFO control register Read FIFO status register 5.15.2 McASP Electrical Data/Timing 5.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 5-54 and Table 5-56 assume testing over recommended operating conditions (see Figure 5-32 and Figure 5-33). Table 5-54. Timing Requirements for McASP0 (1.3V, 1.2V, 1.1V)(1)(2) NO. PARAMETER 1 tc(AHCLKRX) Cycle time, AHCLKR/X 2 tw(AHCLKRX) Pulse duration, AHCLKR/X high or low 3 tc(ACLKRX) Cycle time, ACLKR/X AHCLKR/X ext 4 tw(ACLKRX) Pulse duration, ACLKR/W high or low AHCLKR/X ext 5 tsu(AFSRX-ACLKRX) Setup time, AFSR/X input to ACLKR/X(4) AHCLKR/X int AHCLKR/X ext input AHCLKR/X ext output 6 th(ACLKRX-AFSRX) Hold time, AFSR/X input after ACLKR/X(4) AHCLKR/X int AHCLKR/X ext input AHCLKR/X ext output 7 tsu(AXR-ACLKRX) Setup time, AXR0[n] input to ACLKR/X(4)(5) AHCLKR/X int AHCLKR/X ext 8 th(ACLKRX-AXR) Hold time, AXR0[n] input after ACLKR/X(4)(5) AHCLKR/X int AHCLKR/X ext input AHCLKR/X ext output 1.3V, 1.2V MIN MAX 25 12.5 25 (3) 12.5 11.5 4 4 -1 1 1 11.5 4 -1 3 3 1.1V MIN MAX 28 14 28 (3) 14 12 5 5 -2 1 1 12 5 -2 4 4 UNIT ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns (1) ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) P = SYSCLK2 period (3) This timing is limited by the timing shown or 2P, whichever is greater. (4) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 (5) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 154 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-55. Timing Requirements for McASP0 (1.0V)(1)(2) NO. PARAMETER 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) Cycle time, AHCLKR/X Pulse duration, AHCLKR/X high or low Cycle time, ACLKR/X Pulse duration, ACLKR/W high or low 5 tsu(AFSRX-ACLKRX) Setup time, AFSR/X input to ACLKR/X(4) 6 th(ACLKRX-AFSRX) Hold time, AFSR/X input after ACLKR/X(4) 7 tsu(AXR-ACLKRX) Setup time, AXR0[n] input to ACLKR/X(4)(5) 8 th(ACLKRX-AXR) Hold time, AXR0[n] input after ACLKR/X(4)(5) (1) ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) P = SYSCLK2 period (3) This timing is limited by the timing shown or 2P, whichever is greater. (4) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 (5) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 AHCLKR/X ext AHCLKR/X ext AHCLKR/X int AHCLKR/X ext input AHCLKR/X ext output AHCLKR/X int AHCLKR/X ext input AHCLKR/X ext output AHCLKR/X int AHCLKR/X ext AHCLKR/X int AHCLKR/X ext input AHCLKR/X ext output 1.0V MIN MAX 35 17.5 35 (3) 17.5 16 5.5 5.5 -2 1 1 16 5.5 -2 5 5 UNIT ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 155 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-56. Switching Characteristics for McASP0 (1.3V, 1.2V, 1.1V)(1) NO. 9 tc(AHCLKRX) 10 tw(AHCLKRX) 11 tc(ACLKRX) 12 tw(ACLKRX) 13 td(ACLKRX-AFSRX) 14 td(ACLKX-AXRV) 15 tdis(ACLKX-AXRHZ) PARAMETER Cycle time, AHCLKR/X Pulse duration, AHCLKR/X high or low Cycle time, ACLKR/X ACLKR/X int Pulse duration, ACLKR/X high or low ACLKR/X int Delay time, ACLKR/X transmit edge to AFSX/R output valid(6) ACLKR/X int ACLKR/X ext input ACLKR/X ext output Delay time, ACLKX transmit edge to AXR output valid ACLKR/X int ACLKR/X ext input ACLKR/X ext output Disable time, ACLKR/X transmit edge to AXR high impedance following last data bit ACLKR/X int ACLKR/X ext 1.3V, 1.2V MIN MAX 25 AH – 2.5(2) 25 (3) (4) A – 2.5(5) -1 6 2 13.5 2 13.5 -1 6 2 13.5 2 13.5 0 6 2 13.5 1.1V MIN 28 AH – 2.5(2) 28(3) (4) A – 2.5(5) -1 2 2 -1 2 2 0 MAX 8 14.5 14.5 8 15 15 8 UNIT ns ns ns ns ns ns ns ns ns ns ns 2 15 ns (1) McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. (3) P = SYSCLK2 period (4) This timing is limited by the timing shown or 2P, whichever is greater. (5) A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. (6) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 Table 5-57. Switching Characteristics for McASP0 (1.0V)(1) NO. PARAMETER 9 tc(AHCLKRX) 10 tw(AHCLKRX) 11 tc(ACLKRX) 12 tw(ACLKRX) Cycle time, AHCLKR/X Pulse duration, AHCLKR/X high or low Cycle time, ACLKR/X Pulse duration, ACLKR/X high or low 13 td(ACLKRX-AFSRX) Delay time, ACLKR/X transmit edge to AFSX/R output valid (6) ACLKR/X int ACLKR/X int ACLKR/X int ACLKR/X ext input ACLKR/X ext output ACLKR/X int 14 td(ACLKX-AXRV) Delay time, ACLKX transmit edge to AXR output valid ACLKR/X ext input ACLKR/X ext output 15 tdis(ACLKX-AXRHZ) Disable time, ACLKR/X transmit edge to AXR high impedance following last data bit ACLKR/X int ACLKR/X ext (1) McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. (3) P = SYSCLK2 period (4) This timing is limited by the timing shown or 2P, whichever is greater. (5) A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns. (6) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 1.0V MIN 35 AH – 2.5(2) 35 (3) (4) A – 2.5(5) -0.5 2 2 -0.5 2 2 0 2 MAX 10 19 19 10 19 19 10 19 UNIT ns ns ns ns ns ns ns ns ns ns ns ns 156 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) AFSR/X (Bit Width, 0 Bit Delay) 4 3 4 6 5 AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in). B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in). Figure 5-32. McASP Input Timings Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 157 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 9 AHCLKR/X (Falling Edge Polarity) 10 10 AHCLKR/X (Rising Edge Polarity) 11 ACLKR/X (CLKRP = CLKXP = 1)(A) 12 12 ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 AFSR/X (Bit Width, 0 Bit Delay) www.ti.com 13 13 AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 AFSR/X (Slot Width, 0 Bit Delay) 13 13 AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP receiver is configured for rising edge (to shift data in). B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP receiver is configured for falling edge (to shift data in). Figure 5-33. McASP Output Timings 158 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.16 Multichannel Buffered Serial Port (McBSP) The McBSP provides these functions: • Full-duplex communication • Double-buffered data registers, which allow a continuous data stream • Independent framing and clocking for receive and transmit • Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected analog-to-digital (A/D) and digital-to-analog (D/A) devices • External shift clock or an internal, programmable frequency shift clock for data transfer • Transmit & Receive FIFO Buffers allow the McBSP to operate at a higher sample rate by making it more tolerant to DMA latency If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must always be set to a value of 1 or greater. 5.16.1 McBSP Peripheral Register Description(s) McBSP0 BYTE ADDRESS 0x01D1 0000 0x01D1 0004 0x01D1 0008 0x01D1 000C 0x01D1 0010 0x01D1 0014 0x01D1 0018 0x01D1 001C 0x01D1 0020 0x01D1 0024 0x01D1 0028 0x01D1 002C 0x01D1 0030 0x01D1 0034 0x01D1 0038 0x01D1 003C 0x01D1 0800 0x01D1 0810 0x01D1 0814 0x01D1 0818 0x01D1 081C 0x01F1 0000 0x01F1 0000 McBSP1 BYTE ADDRESS 0x01D1 1000 0x01D1 1004 0x01D1 1008 0x01D1 100C 0x01D1 1010 0x01D1 1014 0x01D1 1018 0x01D1 101C 0x01D1 1020 0x01D1 1024 0x01D1 1028 0x01D1 102C 0x01D1 1030 0x01D1 1034 0x01D1 1038 0x01D1 103C 0x01D1 1800 0x01D1 1810 0x01D1 1814 0x01D1 1818 0x01D1 181C 0x01F1 1000 0x01F1 1000 Table 5-58. McBSP/FIFO Registers ACRONYM REGISTER DESCRIPTION McBSP Registers DRR McBSP Data Receive Register (read-only) DXR McBSP Data Transmit Register SPCR McBSP Serial Port Control Register RCR McBSP Receive Control Register XCR McBSP Transmit Control Register SRGR McBSP Sample Rate Generator register MCR McBSP Multichannel Control Register RCERE0 McBSP Enhanced Receive Channel Enable Register 0 Partition A/B XCERE0 McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B PCR McBSP Pin Control Register RCERE1 McBSP Enhanced Receive Channel Enable Register 1 Partition C/D XCERE1 McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D RCERE2 McBSP Enhanced Receive Channel Enable Register 2 Partition E/F XCERE2 McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F RCERE3 McBSP Enhanced Receive Channel Enable Register 3 Partition G/H XCERE3 McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H McBSP FIFO Control and Status Registers BFIFOREV BFIFO Revision Identification Register WFIFOCTL Write FIFO Control Register WFIFOSTS Write FIFO Status Register RFIFOCTL Read FIFO Control Register RFIFOSTS Read FIFO Status Register McBSP FIFO Data Registers RBUF McBSP FIFO Receive Buffer XBUF McBSP FIFO Transmit Buffer Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 159 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.16.2 McBSP Electrical Data/Timing The following assume testing over recommended operating conditions. 5.16.2.1 Multichannel Buffered Serial Port (McBSP) Timing Table 5-59. Timing Requirements for McBSP0 [1.3V, 1.2V, 1.1V](1) (see Figure 5-34) NO. PARAMETER 2 tc(CKRX) Cycle time, CLKR/X CLKR/X ext 3 tw(CKRX) Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low CLKR int CLKR ext CLKR int 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low CLKR ext 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low CLKR int CLKR ext 8 th(CKRL-DRV) Hold time, DR valid after CLKR low CLKR int CLKR ext 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low CLKX int CLKX ext CLKX int 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKX ext 1.3V, 1.2V MIN 2P or 20 (2)(3) P - 1 (4) MAX 14 4 6 3 14 4 3 3 14 4 6 3 1.1V MIN 2P or 25(2)(3) P - 1(4) 15.5 5 6 3 15.5 5 3 3 15.5 5 6 3 MAX UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. 160 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-60. Timing Requirements for McBSP0 [1.0V](1) (see Figure 5-34) NO. PARAMETER 2 tc(CKRX) 3 tw(CKRX) Cycle time, CLKR/X Pulse duration, CLKR/X high or CLKR/X low 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low 8 th(CKRL-DRV) Hold time, DR valid after CLKR low 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKR/X ext CLKR/X ext CLKR int CLKR ext CLKR int CLKR ext CLKR int CLKR ext CLKR int CLKR ext CLKX int CLKX ext CLKX int CLKX ext 1.0V MIN 2P or 26.6(2)(3) P - 1 (4) 20 5 6 3 20 5 3 3 20 5 6 3 MAX UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 161 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-61. Switching Characteristics for McBSP0 [1.3V, 1.2V, 1.1V](1)(2) (see Figure 5-34) NO. PARAMETER 1 td(CKSH- CKRXH) 2 tc(CKRX) 3 tw(CKRX) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input Cycle time, CLKR/X CLKR/X int Pulse duration, CLKR/X high or CLKR/X low CLKR/X int 4 td(CKRH-FRV) Delay time, CLKR high to internal FSR CLKR int valid CLKR ext 9 td(CKXH-FXV) Delay time, CLKX high to internal FSX CLKX int valid CLKX ext 12 tdis(CKXH- DXHZ) Disable time, DX high impedance CLKX int following last data bit from CLKX high CLKX ext 13 td(CKXH-DXV) Delay time, CLKX high to DX valid CLKX int CLKX ext 14 td(FXH-DXV) Delay time, FSX high to DX valid ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX int FSX ext 1.3V, 1.2V MIN MAX 2 14.5 2P or 20 (3) (4) (5) C - 2(6) C + 2(6) -4 2 -4 2 -4 -2 -4 + D1(7) 2 + D1(7) -4 (8) 5.5 14.5 5.5 14.5 7.5 16 5.5 + D2(7) 14.5 + D2(7) 5 (8) -2 (8) 14.5 (8) 1.1V MIN MAX 2 16 2P or 25(3) (4) (5) C - 2(6) C + 2(6) -4 2 -4 2 -5.5 -22 -4 + D1(7) 2 + D1(7) -4 (8) 5.5 16 5.5 16 7.5 16 5.5 + D2(7) 16 + D2(7) 5 (8) -2 (8) 16 (8) UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) Minimum delay times also represent minimum output hold times. (3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (5) Use whichever value is greater. (6) C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). (7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P 162 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-62. Switching Characteristics for McBSP0 [1.0V](1) (2) (see Figure 5-34) NO. PARAMETER 1 td(CKSH-CKRXH) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input 2 tc(CKRX) 3 tw(CKRX) 4 td(CKRH-FRV) Cycle time, CLKR/X Pulse duration, CLKR/X high or CLKR/X low Delay time, CLKR high to internal FSR valid CLKR/X int CLKR/X int CLKR int CLKR ext 9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid CLKX int CLKX ext 12 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high CLKX int CLKX ext 13 td(CKXH-DXV) Delay time, CLKX high to DX valid CLKX int CLKX ext 14 td(FXH-DXV) Delay time, FSX high to DX valid ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX int FSX ext 1.0V MIN MAX 3 2P or 26.6 (3) (4) (5) C - 2 (6) -4 2.5 -4 2.5 -4 -2 -4 + D1(7) 2.5 + D1(7) -4 (8) -2 (8) 21.5 C + 2(6) 10 21.5 10 21.5 10 21.5 10 + D2(7) 21.5 + D2(7) 5 (8) 21.5 (8) UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) Minimum delay times also represent minimum output hold times. (3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (5) Use whichever value is greater. (6) C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). (7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 163 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-63. Timing Requirements for McBSP1 [1.3V, 1.2V, 1.1V](1) (see Figure 5-34) NO. PARAMETER 2 tc(CKRX) 3 tw(CKRX) 5 tsu(FRH-CKRL) 6 th(CKRL-FRH) 7 tsu(DRV-CKRL) 8 th(CKRL-DRV) 10 tsu(FXH-CKXL) 11 th(CKXL-FXH) Cycle time, CLKR/X CLKR/X ext Pulse duration, CLKR/X high or CLKR/X low CLKR/X ext Setup time, external FSR high before CLKR int CLKR low CLKR ext Hold time, external FSR high after CLKR low CLKR int CLKR ext CLKR int Setup time, DR valid before CLKR low CLKR ext Hold time, DR valid after CLKR low CLKR int CLKR ext Setup time, external FSX high before CLKX int CLKX low CLKX ext Hold time, external FSX high after CLKX low CLKX int CLKX ext 1.3V, 1.2V MIN 2P or 20 (2)(3) MAX P - 1 (5) 15 5 6 3 15 5 3 3 15 5 6 3 1.1V MIN 2P or 25(2) (4) P - 1 (6) 18 5 6 3 18 5 3 3 18 5 6 3 MAX UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (5) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. (6) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. Table 5-64. Timing Requirements for McBSP1 [1.0V](1) (see Figure 5-34) NO. PARAMETER 2 tc(CKRX) 3 tw(CKRX) Cycle time, CLKR/X Pulse duration, CLKR/X high or CLKR/X low 5 tsu(FRH-CKRL) Setup time, external FSR high before CLKR low 6 th(CKRL-FRH) Hold time, external FSR high after CLKR low 7 tsu(DRV-CKRL) Setup time, DR valid before CLKR low 8 th(CKRL-DRV) Hold time, DR valid after CLKR low 10 tsu(FXH-CKXL) Setup time, external FSX high before CLKX low 11 th(CKXL-FXH) Hold time, external FSX high after CLKX low CLKR/X ext CLKR/X ext CLKR int CLKR ext CLKR int CLKR ext CLKR int CLKR ext CLKR int CLKR ext CLKX int CLKX ext CLKX int CLKX ext 1.0V MIN 2P or 26.6(2)(3) P - 1 (4) 21 10 6 3 21 10 3 3 21 10 6 3 MAX UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (3) Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle. 164 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-65. Switching Characteristics for McBSP1 [1.3V, 1.2V, 1.1V](1) (2) (see Figure 5-34) NO. 1 td(CKSH-CKRXH) 2 tc(CKRX) 3 tw(CKRX) 4 td(CKRH-FRV) 9 td(CKXH-FXV) 12 tdis(CKXH-DXHZ) 13 td(CKXH-DXV) 14 td(FXH-DXV) PARAMETER Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input Cycle time, CLKR/X CLKR/X int Pulse duration, CLKR/X high or CLKR/X low CLKR/X int Delay time, CLKR high to internal FSR valid CLKR int CLKR ext Delay time, CLKX high to internal FSX valid CLKX int CLKX ext Disable time, DX high impedance following last data bit from CLKX high CLKX int CLKX ext CLKX int Delay time, CLKX high to DX valid CLKX ext Delay time, FSX high to DX valid FSX int ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX ext 1.3V, 1.2V MIN MAX 0.5 16.5 2P or 20 (3) (4) (5) C - 2(6) C + 2(6) -4 1 -4 1 -4 -2 -4 + D1(7) 1 + D1(7) -4 (8) 6.5 16.5 6.5 16.5 6.5 16.5 6.5 + D2(7) 16.5 + D2(7) 6.5 (8) -2 (8) 16.5 (8) 1.1V MIN MAX 1.5 18 2P or 25(3) (4) (5) C - 2(6) C + 2(6) -4 1 -4 1 -4 -2 -4 + D1(7) 1 + D1(7) -4 (8) 13 18 13 18 13 18 13 + D2(7) 18 + D2(7) 13 (8) -2 (8) 18 (9) UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) Minimum delay times also represent minimum output hold times. (3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (5) Use whichever value is greater. (6) C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). (7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (9) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 165 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-66. Switching Characteristics for McBSP1 [1.0V](1) (2) (see Figure 5-34) NO. PARAMETER 1 td(CKSH-CKRXH) Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input 2 tc(CKRX) 3 tw(CKRX) 4 td(CKRH-FRV) Cycle time, CLKR/X Pulse duration, CLKR/X high or CLKR/X low Delay time, CLKR high to internal FSR valid CLKR/X int CLKR/X int CLKR int CLKR ext 9 td(CKXH-FXV) Delay time, CLKX high to internal FSX valid CLKX int CLKX ext 12 tdis(CKXH-DXHZ) Disable time, DX high impedance following last data bit from CLKX high CLKX int CLKX ext 13 td(CKXH-DXV) Delay time, CLKX high to DX valid CLKX int CLKX ext 14 td(FXH-DXV) Delay time, FSX high to DX valid ONLY applies when in data delay 0 (XDATDLY = 00b) mode FSX int FSX ext 1.0V MIN MAX 1.5 2P or 26.6 (3) (4) (5) C - 2 (6) -4 2.5 -4 1 -4 -2 -4 + D1(7) 1 + D1(8) -4 (9) -2 (9) 23 C + 2(6) 13 23 13 23 13 23 13 + D2(8) 23 + D2(8) 13 (9) 23 (9) UNIT ns ns ns ns ns ns ns ns (1) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. (2) Minimum delay times also represent minimum output hold times. (3) Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements. (4) P = ASYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns. (5) Use whichever value is greater. (6) C = H or L S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period) S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period) H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even H = (CLKGDV + 1)/2 * S if CLKGDV is odd L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even L = (CLKGDV + 1)/2 * S if CLKGDV is odd CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above). (7) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (8) Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P (9) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR. if DXENA = 0, then D1 = D2 = 0 if DXENA = 1, then D1 = 6P, D2 = 12P 166 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com CLKS CLKR FSR (int) FSR (ext) DR CLKX FSX (int) FSX (ext) FSX (XDATDLY=00b) DX SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 1 2 3 3 4 4 5 6 7 8 Bit(n1) (n2) (n3) 2 3 3 9 11 10 12 Bit 0 14 13 (A) 13 (A) Bit(n1) (n2) (n3) Figure 5-34. McBSP Timing(B) Table 5-67. Timing Requirements for McBSP0 FSR When GSYNC = 1 (see Figure 5-35) NO. 1 tsu(FRH-CKSH) 2 th(CKSH-FRH) PARAMETER Setup time, FSR high before CLKS high Hold time, FSR high after CLKS high 1.3V, 1.2V MIN MAX 4 4 1.1V MIN MAX 4.5 4 1.0V MIN MAX 5 4 UNIT ns ns Table 5-68. Timing Requirements for McBSP1 FSR When GSYNC = 1 (see Figure 5-35) NO. 1 tsu(FRH-CKSH) 2 th(CKSH-FRH) PARAMETER Setup time, FSR high before CLKS high Hold time, FSR high after CLKS high 1.3V, 1.2V MIN MAX 5 4 1.1V MIN MAX 5 4 1.0V MIN MAX 10 4 UNIT ns ns CLKS FSR external 1 2 CLKR/X (no need to resync) CLKR/X (needs resync) Figure 5-35. FSR Timing When GSYNC = 1 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 167 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.17 Serial Peripheral Interface Ports (SPI0, SPI1) Figure 5-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. Interrupt and DMA Requests Peripheral Configuration Bus SPIx_SIMO SPIx_SOMI 16-Bit Shift Register 16-Bit Buffer GPIO Control (all pins) State Machine Clock Control SPIx_ENA SPIx_SCS SPIx_CLK Figure 5-36. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. 168 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com SPIx_SCS SPIx_ENA SPIx_CLK SPIx_SOMI SPIx_SIMO OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Optional − Slave Chip Select Optional Enable (Ready) SPIx_SCS SPIx_ENA SPIx_CLK SPIx_SOMI SPIx_SIMO MASTER SPI SLAVE SPI Figure 5-37. Illustration of SPI Master-to-SPI Slave Connection Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 169 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.17.1 SPI Peripheral Registers Description(s) Table 5-69 is a list of the SPI registers. SPI0 BYTE ADDRESS 0x01C4 1000 0x01C4 1004 0x01C4 1008 0x01C4 100C 0x01C4 1010 0x01C4 1014 0x01C4 1018 0x01C4 101C 0x01C4 1020 0x01C4 1024 0x01C4 1028 0x01C4 102C 0x01C4 1030 0x01C4 1034 0x01C4 1038 0x01C4 103C 0x01C4 1040 0x01C4 1044 0x01C4 1048 0x01C4 104C 0x01C4 1050 0x01C4 1054 0x01C4 1058 0x01C4 105C 0x01C4 1060 0x01C4 1064 Table 5-69. SPIx Configuration Registers SPI1 BYTE ADDRESS 0x01F0 E000 0x01F0 E004 0x01F0 E008 0x01F0 E00C 0x01F0 E010 0x01F0 E014 0x01F0 E018 0x01F0 E01C 0x01F0 E020 0x01F0 E024 0x01F0 E028 0x01F0 E02C 0x01F0 E030 0x01F0 E034 0x01F0 E038 0x01F0 E03C 0x01F0 E040 0x01F0 E044 0x01F0 E048 0x01F0 E04C 0x01F0 E050 0x01F0 E054 0x01F0 E058 0x01F0 E05C 0x01F0 E060 0x01F0 E064 ACRONYM SPIGCR0 SPIGCR1 SPIINT0 SPILVL SPIFLG SPIPC0 SPIPC1 SPIPC2 SPIPC3 SPIPC4 SPIPC5 Reserved Reserved Reserved SPIDAT0 SPIDAT1 SPIBUF SPIEMU SPIDELAY SPIDEF SPIFMT0 SPIFMT1 SPIFMT2 SPIFMT3 INTVEC0 INTVEC1 DESCRIPTION Global Control Register 0 Global Control Register 1 Interrupt Register Interrupt Level Register Flag Register Pin Control Register 0 (Pin Function) Pin Control Register 1 (Pin Direction) Pin Control Register 2 (Pin Data In) Pin Control Register 3 (Pin Data Out) Pin Control Register 4 (Pin Data Set) Pin Control Register 5 (Pin Data Clear) Reserved - Do not write to this register Reserved - Do not write to this register Reserved - Do not write to this register Shift Register 0 (without format select) Shift Register 1 (with format select) Buffer Register Emulation Register Delay Register Default Chip Select Register Format Register 0 Format Register 1 Format Register 2 Format Register 3 Interrupt Vector for SPI INT0 Interrupt Vector for SPI INT1 www.ti.com 170 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.17.2 SPI Electrical Data/Timing 5.17.2.1 Serial Peripheral Interface (SPI) Timing Table 5-70 through Table 5-85 assume testing over recommended operating conditions (see Figure 5-38 through Figure 5-41). Table 5-70. General Timing Requirements for SPI0 Master Modes(1) NO. PARAMETER 1 tc(SPC)M 2 tw(SPCH)M 3 tw(SPCL)M Cycle Time, SPI0_CLK, All Master Modes Pulse Width High, SPI0_CLK, All Master Modes Pulse Width Low, SPI0_CLK, All Master Modes Polarity = 0, Phase = 0, to SPI0_CLK rising 4 td(SIMO_SPC)M Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK(3) Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK falling Polarity = 1, Phase = 1, to SPI0_CLK falling Polarity = 0, Phase = 0, from SPI0_CLK rising 5 td(SPC_SIMO)M Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Polarity = 0, Phase = 1, from SPI0_CLK falling Polarity = 1, Phase = 0, from SPI0_CLK falling Polarity = 1, Phase = 1, from SPI0_CLK rising Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, Output hold time, SPI0_SIMO from SPI0_CLK rising 6 toh(SPC_SIMO)M valid after receive edge of SPI0_CLK Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK falling Polarity = 0, Phase = 0, to SPI0_CLK falling Polarity = 0, Phase = 1, Input Setup Time, SPI0_SOMI to SPI0_CLK rising 7 tsu(SOMI_SPC)M valid before receive edge of SPI0_CLK Polarity = 1, Phase = 0, to SPI0_CLK rising Polarity = 1, Phase = 1, to SPI0_CLK falling Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, Input Hold Time, SPI0_SOMI from SPI0_CLK rising 8 tih(SPC_SOMI)M valid after receive edge of SPI0_CLK Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK falling 1.3V, 1.2V MIN MAX 20 (2) 256P 0.5M-1 0.5M-1 5 1.1V MIN MAX 30 (2) 256P 0.5M-1 0.5M-1 5 1.0V MIN MAX 40 (2) 256P 0.5M-1 0.5M-1 6 UNIT ns ns ns -0.5M+5 5 -0.5M+5 5 -0.5M+6 ns 6 -0.5M+5 -0.5M+5 -0.5M+6 5 5 6 5 5 6 ns 5 5 6 5 5 6 0.5M-3 0.5M-3 0.5M-3 0.5M-3 0.5M-3 0.5M-3 ns 0.5M-3 0.5M-3 0.5M-3 0.5M-3 0.5M-3 0.5M-3 1.5 1.5 1.5 1.5 1.5 1.5 ns 1.5 1.5 1.5 1.5 1.5 1.5 4 4 5 4 4 5 ns 4 4 5 4 4 5 (1) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (2) This timing is limited by the timing shown or 3P, whichever is greater. (3) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 171 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-71. General Timing Requirements for SPI0 Slave Modes(1) NO. PARAMETER 9 tc(SPC)S 10 tw(SPCH)S 11 tw(SPCL)S Cycle Time, SPI0_CLK, All Slave Modes Pulse Width High, SPI0_CLK, All Slave Modes Pulse Width Low, SPI0_CLK, All Slave Modes Polarity = 0, Phase = 0, to SPI0_CLK rising Setup time, transmit data 12 tsu(SOMI_SPC)S written to SPI before initial clock edge from master.(3) (4) Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK falling Polarity = 1, Phase = 1, to SPI0_CLK falling Polarity = 0, Phase = 0, from SPI0_CLK rising 13 td(SPC_SOMI)S Polarity = 0, Phase = 1, Delay, subsequent bits valid from SPI0_CLK falling on SPI0_SOMI after transmit edge of SPI0_CLK Polarity = 1, Phase = 0, from SPI0_CLK falling Polarity = 1, Phase = 1, from SPI0_CLK rising Polarity = 0, Phase = 0, from SPI0_CLK falling Output hold time, 14 toh(SPC_SOMI)S SPI0_SOMI valid after receive edge of SPI0_CLK Polarity = 0, Phase = 1, from SPI0_CLK rising Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK falling Polarity = 0, Phase = 0, to SPI0_CLK falling Input Setup Time, 15 tsu(SIMO_SPC)S SPI0_SIMO valid before receive edge of SPI0_CLK Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK rising Polarity = 1, Phase = 1, to SPI0_CLK falling Polarity = 0, Phase = 0, from SPI0_CLK falling Input Hold Time, 16 tih(SPC_SIMO)S SPI0_SIMO valid after receive edge of SPI0_CLK Polarity = 0, Phase = 1, from SPI0_CLK rising Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK falling 1.3V, 1.2V MIN 40 (2) MAX 18 18 2P 1.1V MIN 50 (2) MAX 22 22 2P 1.0V MIN 60 (2) MAX UNIT ns 27 ns 27 ns 2P 2P 2P 2P ns 2P 2P 2P 2P 2P 2P 17 20 27 17 20 27 ns 17 20 27 17 20 27 0.5S-6 0.5S-16 0.5S-20 0.5S-6 0.5S-16 0.5S-20 ns 0.5S-6 0.5S-16 0.5S-20 0.5S-6 0.5S-16 0.5S-20 1.5 1.5 1.5 1.5 1.5 1.5 ns 1.5 1.5 1.5 1.5 1.5 1.5 4 4 5 4 4 5 ns 4 4 5 4 4 5 (1) P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period) (2) This timing is limited by the timing shown or 3P, whichever is greater. (3) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. (4) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the CPU. 172 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-72. Additional SPI0 Master Timings, 4-Pin Enable Option (1)(2)(3) NO. PARAMETER 1.3V, 1.2V MIN MAX Polarity = 0, Phase = 0, to SPI0_CLK rising 3P+5 17 td(ENA_SPC)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master.(4) Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK falling 0.5M+3P+5 3P+5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5M+3P+5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M+P+5 18 td(SPC_ENA)M Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer.(5) Polarity = 0, Phase = 1, from SPI0_CLK falling Polarity = 1, Phase = 0, from SPI0_CLK rising P+5 0.5M+P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 (1) These parameters are in addition to the general timings for SPI master modes (Table 5-70). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (4) In the case where the master SPI is ready with new data before SPI0_ENA assertion. (5) In the case where the master SPI is ready with new data before SPI0_EN A deassertion. 1.1V MIN MAX 3P+5 0.5M+3P+5 3P+5 0.5M+3P+5 0.5M+P+5 P+5 0.5M+P+5 P+5 1.0V MIN MAX 3P+6 0.5M+3P+6 3P+6 0.5M+3P+6 0.5M+P+6 P+6 0.5M+P+6 P+6 UNIT ns ns NO. 19 td(SCS_SPC)M Table 5-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option (1)(2)(3) PARAMETER Delay from SPI0_SCS active to first SPI0_CLK(4) (5) Polarity = 0, Phase = 0, to SPI0_CLK rising Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK falling Polarity = 1, Phase = 1, to SPI0_CLK falling 1.3V, 1.2V MIN MAX 2P-1 0.5M+2P-1 2P-1 0.5M+2P-1 1.1V MIN 2P-2 MAX 0.5M+2P-2 2P-2 0.5M+2P-2 1.0V MIN 2P-3 MAX UNIT 0.5M+2P-3 ns 2P-3 0.5M+2P-3 (1) These parameters are in addition to the general timings for SPI master modes (Table 5-70). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (4) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Peripheral Information and Electrical Specifications 173 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-73. Additional SPI0 Master Timings, 4-Pin Chip Select Option (1)(2)(3) (continued) NO. 20 td(SPC_SCS)M PARAMETER Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, from SPI0_CLK falling Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising 1.3V, 1.2V MIN MAX 0.5M+P-1 P-1 0.5M+P-1 P-1 1.1V MIN 0.5M+P-2 MAX P-2 0.5M+P-2 P-2 (6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. 1.0V MIN 0.5M+P-3 P-3 0.5M+P-3 P-3 MAX UNIT ns Table 5-74. Additional SPI0 Master Timings, 5-Pin Option (1)(2)(3) NO. 18 td(SPC_ENA)M 20 td(SPC_SCS)M 21 td(SCSL_ENAL)M PARAMETER Polarity = 0, Phase = 0, from SPI0_CLK falling Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer.(4) Polarity = 0, Phase = 1, from SPI0_CLK falling Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (5) from SPI0_CLK falling (6) Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, 1.3V, 1.2V MIN MAX 0.5M+P+5 P+5 0.5M+P+5 P+5 0.5M+P-2 P-2 0.5M+P-2 P-2 C2TDELAY+P 1.1V MIN MAX 0.5M+P+5 P+5 0.5M+P+5 P+5 0.5M+P-2 P-2 0.5M+P-2 P-2 C2TDELAY+P 1.0V MIN MAX 0.5M+P+6 P+6 0.5M+P+6 P+6 0.5M+P-3 P-3 0.5M+P-3 P-3 C2TDELAY+P UNIT ns ns ns (1) These parameters are in addition to the general timings for SPI master modes (Table 5-71). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (4) In the case where the master SPI is ready with new data before SPI0_ENA deassertion. (5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. 174 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-74. Additional SPI0 Master Timings, 5-Pin Option (1)(2)(3) (continued) NO. 22 td(SCS_SPC)M 23 td(ENA_SPC)M PARAMETER Polarity = 0, Phase = 0, to SPI0_CLK rising Delay from SPI0_SCS active to first SPI0_CLK(7) (8) (9) Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK falling Polarity = 1, Phase = 1, to SPI0_CLK falling Polarity = 0, Phase = 0, to SPI0_CLK rising Delay from assertion of SPI0_ENA low to first SPI0_CLK edge.(10) Polarity = 0, Phase = 1, to SPI0_CLK rising Polarity = 1, Phase = 0, to SPI0_CLK falling Polarity = 1, Phase = 1, to SPI0_CLK falling 1.3V, 1.2V MIN MAX 2P-2 0.5M+2P-2 2P-2 0.5M+2P-2 3P+5 0.5M+3P+5 3P+5 0.5M+3P+5 MIN 2P-2 1.1V MAX 0.5M+2P-2 2P-2 0.5M+2P-2 3P+5 0.5M+3P+5 3P+5 0.5M+3P+5 (7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. (8) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. MIN 2P-3 1.0V MAX 0.5M+2P-3 2P-3 0.5M+2P-3 3P+6 0.5M+3P+6 3P+6 0.5M+3P+6 UNIT ns ns Table 5-75. Additional SPI0 Slave Timings, 4-Pin Enable Option (1)(2)(3) NO. 24 td(SPC_ENAH)S PARAMETER Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, from SPI0_CLK falling Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising 1.3V, 1.2V MIN MAX 1.5P-3 2.5P+17.5 – 0.5M+1.5P-3 – 0.5M+2.5P+17.5 1.5P-3 2.5P+17.5 – 0.5M+1.5P-3 – 0.5+2.5P+17.5 MIN 1.5P-3 1.1V MAX 2.5P+20 – 0.5M+1.5P-3 – 0.5M+2.5P+20 1.5P-3 2.5P+20 – 0.5M+1.5P-3 – 0.5+2.5P+20 (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-71). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. MIN 1.5P-3 1.0V MAX 2.5P+27 – 0.5M+1.5P-3 – 0.5M+2.5P+27 1.5P-3 2.5P+27 – 0.5M+1.5P-3 – 0.5+2.5P+27 UNIT ns Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Peripheral Information and Electrical Specifications 175 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-76. Additional SPI0 Slave Timings, 4-Pin Chip Select Option (1)(2)(3) NO. PARAMETER 1.3V, 1.2V MIN MAX 25 td(SCSL_SPC)S Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. P + 1.5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5M+P+4 26 td(SPC_SCSH)S Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. Polarity = 0, Phase = 1, from SPI0_CLK falling Polarity = 1, Phase = 0, from SPI0_CLK rising P+4 0.5M+P+4 Polarity = 1, Phase = 1, from SPI0_CLK rising P+4 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P+17.5 P+17.5 (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-71). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. 1.1V MIN MAX P + 1.5 0.5M+P+4 P+4 0.5M+P+4 P+4 P+20 P+20 1.0V MIN MAX P + 1.5 0.5M+P+5 P+5 0.5M+P+5 P+5 P+27 P+27 UNIT ns ns ns ns Table 5-77. Additional SPI0 Slave Timings, 5-Pin Option (1)(2)(3) NO. PARAMETER 25 td(SCSL_SPC)S 26 td(SPC_SCSH)S 27 tena(SCSL_SOMI)S 28 tdis(SCSH_SOMI)S 29 tena(SCSL_ENA)S Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, Required delay from final from SPI0_CLK falling SPI0_CLK edge before SPI0_SCS is deasserted. Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK rising Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 1.3V, 1.2V MIN MAX P + 1.5 0.5M+P+4 P+4 0.5M+P+4 P+4 P+17.5 P+17.5 17.5 1.1V MIN MAX P + 1.5 0.5M+P+4 P+4 0.5M+P+4 P+4 P+20 P+20 20 1.0V MIN MAX P + 1.5 0.5M+P+5 P+5 0.5M+P+5 P+5 P+27 P+27 27 UNIT ns ns ns ns ns (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-71). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. 176 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-77. Additional SPI0 Slave Timings, 5-Pin Option (1)(2)(3) (continued) NO. PARAMETER 30 tdis(SPC_ENA)S Delay from final clock receive edge on SPI0_CLK to slave 3-stating or driving high SPI0_ENA. (4) Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 1, from SPI0_CLK rising Polarity = 1, Phase = 0, from SPI0_CLK rising Polarity = 1, Phase = 1, from SPI0_CLK falling 1.3V, 1.2V MIN MAX 2.5P+17.5 2.5P+17.5 2.5P+17.5 2.5P+17.5 1.1V MIN MAX 2.5P+20 2.5P+20 2.5P+20 2.5P+20 1.0V MIN MAX 2.5P+27 2.5P+27 2.5P+27 2.5P+27 UNIT ns (4) SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Peripheral Information and Electrical Specifications 177 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-78. General Timing Requirements for SPI1 Master Modes(1) NO. PARAMETER 1 tc(SPC)M 2 tw(SPCH)M 3 tw(SPCL)M Cycle Time, SPI1_CLK, All Master Modes Pulse Width High, SPI1_CLK, All Master Modes Pulse Width Low, SPI1_CLK, All Master Modes Polarity = 0, Phase = 0, to SPI1_CLK rising 4 td(SIMO_SPC)M Delay, initial data bit valid on SPI1_SIMO to initial edge on SPI1_CLK (3) Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling Polarity = 1, Phase = 1, to SPI1_CLK falling Polarity = 0, Phase = 0, from SPI1_CLK rising 5 td(SPC_SIMO)M Delay, subsequent bits valid on SPI1_SIMO after transmit edge of SPI1_CLK Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK falling Polarity = 1, Phase = 1, from SPI1_CLK rising Polarity = 0, Phase = 0, from SPI1_CLK falling Polarity = 0, Phase = 1, Output hold time, SPI1_SIMO from SPI1_CLK rising 6 toh(SPC_SIMO)M valid after receive edge of SPI1_CLK Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK falling Polarity = 0, Phase = 0, to SPI1_CLK falling Polarity = 0, Phase = 1, Input Setup Time, SPI1_SOMI to SPI1_CLK rising 7 tsu(SOMI_SPC)M valid before receive edge of SPI1_CLK Polarity = 1, Phase = 0, to SPI1_CLK rising Polarity = 1, Phase = 1, to SPI1_CLK falling Polarity = 0, Phase = 0, from SPI1_CLK falling 8 tih(SPC_SOMI)M Input Hold Time, SPI1_SOMI valid after receive edge of SPI1_CLK Polarity = 0, Phase = 1, from SPI1_CLK rising Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK falling 1.3V, 1.2V MIN MAX 20 (2) 256P 0.5M-1 0.5M-1 5 -0.5M+5 5 -0.5M+5 5 5 5 5 0.5M-3 0.5M-3 0.5M-3 0.5M-3 1.5 1.5 1.5 1.5 4 4 4 4 1.1V MIN MAX 30 (2) 256P 0.5M-1 0.5M-1 5 -0.5M+5 5 -0.5M+5 5 5 5 5 0.5M-3 0.5M-3 0.5M-3 0.5M-3 1.5 1.5 1.5 1.5 5 5 5 5 1.0V MIN MAX 40 (2) 256P 0.5M-1 0.5M-1 6 UNIT ns ns ns -0.5M+6 ns 6 -0.5M+6 6 6 ns 6 6 0.5M-3 0.5M-3 ns 0.5M-3 0.5M-3 1.5 1.5 ns 1.5 1.5 6 6 ns 6 6 (1) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (2) This timing is limited by the timing shown or 3P, whichever is greater. (3) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI. 178 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-79. General Timing Requirements for SPI1 Slave Modes(1) NO. PARAMETER 9 tc(SPC)S 10 tw(SPCH)S 11 tw(SPCL)S Cycle Time, SPI1_CLK, All Slave Modes Pulse Width High, SPI1_CLK, All Slave Modes Pulse Width Low, SPI1_CLK, All Slave Modes Polarity = 0, Phase = 0, to SPI1_CLK rising Setup time, transmit data 12 tsu(SOMI_SPC)S written to SPI before initial clock edge from master. (3) (4) Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling Polarity = 1, Phase = 1, to SPI1_CLK falling Polarity = 0, Phase = 0, from SPI1_CLK rising 13 td(SPC_SOMI)S Delay, subsequent bits valid on SPI1_SOMI after transmit edge of SPI1_CLK Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK falling Polarity = 1, Phase = 1, from SPI1_CLK rising Polarity = 0, Phase = 0, from SPI1_CLK falling Polarity = 0, Phase = 1, Output hold time, SPI1_SOMI from SPI1_CLK rising 14 toh(SPC_SOMI)S valid after receive edge of SPI1_CLK Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK falling Polarity = 0, Phase = 0, to SPI1_CLK falling Polarity = 0, Phase = 1, Input Setup Time, SPI1_SIMO to SPI1_CLK rising 15 tsu(SIMO_SPC)S valid before receive edge of SPI1_CLK Polarity = 1, Phase = 0, to SPI1_CLK rising Polarity = 1, Phase = 1, to SPI1_CLK falling Polarity = 0, Phase = 0, from SPI1_CLK falling Polarity = 0, Phase = 1, Input Hold Time, SPI1_SIMO from SPI1_CLK rising 16 tih(SPC_SIMO)S valid after receive edge of SPI1_CLK Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK falling 1.3V, 1.2V MIN 40 (2) MAX 18 18 2P 1.1V MIN 50 (2) MAX 22 22 2P 1.0V MIN 60 (2) MAX UNIT ns 27 ns 27 ns 2P 2P 2P 2P ns 2P 2P 2P 2P 2P 2P 15 17 19 15 17 19 ns 15 17 19 15 17 19 0.5S-4 0.5S-10 0.5S-12 0.5S-4 0.5S-10 0.5S-12 ns 0.5S-4 0.5S-10 0.5S-12 0.5S-4 0.5S-10 0.5S-12 1.5 1.5 1.5 1.5 1.5 1.5 ns 1.5 1.5 1.5 1.5 1.5 1.5 4 5 6 4 5 6 ns 4 5 6 4 5 6 (1) P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period) (2) This timing is limited by the timing shown or 3P, whichever is greater. (3) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO. (4) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the CPU. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 179 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-80. Additional(1) SPI1 Master Timings, 4-Pin Enable Option(2)(3) NO. 17 td(EN A_SPC)M 18 td(SPC_ENA)M PARAMETER Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (4) Polarity = 0, Phase = 0, to SPI1_CLK rising Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling Polarity = 1, Phase = 1, to SPI1_CLK falling Polarity = 0, Phase = 0, from SPI1_CLK falling Max delay for slave to deassert SPI1_ENA Polarity = 0, Phase = 1, after final SPI1_CLK from SPI1_CLK falling edge to ensure Polarity = 1, Phase = 0, master does not begin the next transfer.(5) from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising 1.3V, 1.2V MIN MAX 3P+5 1.1V MIN MAX 3P+5 1.0V MIN MAX 3P+6 UNIT 0.5M+3P+5 3P+5 0.5M+3P+5 3P+5 0.5M+3P+6 ns 3P+6 0.5M+3P+5 0.5M+3P+5 0.5M+3P+6 0.5M+P+5 0.5M+P+5 0.5M+P+6 P+5 0.5M+P+5 P+5 0.5M+P+5 P+6 ns 0.5M+P+6 P+5 P+5 P+6 (1) These parameters are in addition to the general timings for SPI master modes (Table 5-78). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (4) In the case where the master SPI is ready with new data before SPI1_ENA assertion. (5) In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Table 5-81. Additional(1) SPI1 Master Timings, 4-Pin Chip Select Option(2) (3) NO. 19 td(SCS_SPC)M 20 td(SPC_SCS)M PARAMETER Polarity = 0, Phase = 0, to SPI1_CLK rising Delay from SPI1_SCS active to first SPI1_CLK(4) (5) Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling Polarity = 1, Phase = 1, to SPI1_CLK falling Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (6) (7) Polarity = 0, Phase = 0, from SPI1_CLK falling Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising 1.3V, 1.2V MIN MAX 2P-1 0.5M+2P-1 2P-1 0.5M+2P-1 0.5M+P-1 P-1 0.5M+P-1 P-1 1.1V MIN MAX 2P-5 1.0V MIN MAX 2P-6 0.5M+2P-5 0.5M+2P-6 2P-5 2P-6 0.5M+2P-5 0.5M+2P-6 0.5M+P-5 0.5M+P-6 P-5 P-6 0.5M+P-5 0.5M+P-6 P-5 P-6 UNIT ns ns (1) These parameters are in addition to the general timings for SPI master modes (Table 5-78). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (4) In the case where the master SPI is ready with new data before SPI1_SCS assertion. (5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. (7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. 180 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com NO. 18 td(SPC_ENA)M 20 td(SPC_SCS)M 21 td(SCSL_ENAL)M 22 td(SCS_SPC)M SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-82. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) PARAMETER Polarity = 0, Phase = 0, from SPI1_CLK falling Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer.(4) Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising Polarity = 0, Phase = 0, from SPI1_CLK falling Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (5)(6) Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to delay the master from beginning the next transfer, Polarity = 0, Phase = 0, to SPI1_CLK rising Delay from SPI1_SCS active to first SPI1_CLK (7) (8) (9) Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling Polarity = 1, Phase = 1, to SPI1_CLK falling 1.3V, 1.2V MIN MAX 0.5M+P+5 1.1V MIN MAX 0.5M+P+5 1.0V MIN MAX 0.5M+P+6 UNIT P+5 0.5M+P+5 P+5 0.5M+P+5 P+6 ns 0.5M+P+6 P+5 P+5 P+6 0.5M+P-1 0.5M+P-5 0.5M+P-6 P-1 P-5 P-6 ns 0.5M+P-1 0.5M+P-5 0.5M+P-6 P-1 P-5 P-6 C2TDELAY+P C2TDELAY+P C2TDELAY+P ns 2P-1 2P-5 2P-6 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6 ns 2P-1 2P-5 2P-6 0.5M+2P-1 0.5M+2P-5 0.5M+2P-6 (1) These parameters are in addition to the general timings for SPI master modes (Table 5-79). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. (4) In the case where the master SPI is ready with new data before SPI1_ENA deassertion. (5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA. (8) In the case where the master SPI is ready with new data before SPI1_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Peripheral Information and Electrical Specifications 181 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-82. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) (continued) NO. 23 td(ENA_SPC)M PARAMETER Delay from assertion of SPI1_ENA low to first SPI1_CLK edge.(10) Polarity = 0, Phase = 0, to SPI1_CLK rising Polarity = 0, Phase = 1, to SPI1_CLK rising Polarity = 1, Phase = 0, to SPI1_CLK falling Polarity = 1, Phase = 1, to SPI1_CLK falling 1.3V, 1.2V MIN MAX 3P+5 0.5M+3P+5 3P+5 0.5M+3P+5 1.1V MIN MAX 3P+5 0.5M+3P+5 3P+5 0.5M+3P+5 (10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed. 1.0V MIN MAX 3P+6 UNIT 0.5M+3P+6 ns 3P+6 0.5M+3P+6 Table 5-83. Additional(1) SPI1 Slave Timings, 4-Pin Enable Option(2)(3) NO. 24 td(SPC_ENAH)S PARAMETER Polarity = 0, Phase = 0, from SPI1_CLK falling Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising 1.3V, 1.2V MIN MAX 1.5P-3 2.5P+15 1.1V MIN MAX 1.5P-10 2.5P+17 –0.5M+1.5P-3 –0.5M+2.5P+15 –0.5M+1.5P-10 –0.5M+2.5P+17 1.5P-3 2.5P+15 1.5P-10 2.5P+17 –0.5M+1.5P-3 –0.5M+2.5P+15 –0.5M+1.5P-10 –0.5M+2.5P+17 (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-79). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. 1.0V MIN MAX 1.5P-12 2.5P+19 –0.5M+1.5P-12 –0.5M+2.5P+19 1.5P-12 2.5P+19 –0.5M+1.5P-12 –0.5M+2.5P+19 UNIT ns 182 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-84. Additional(1) SPI1 Slave Timings, 4-Pin Chip Select Option(2)(3) NO. PARAMETER 1.3V, 1.2V MIN MAX 25 td(SCSL_SPC)S Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. P+1.5 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5M+P+4 26 td(SPC_SCSH)S Polarity = 0, Phase = 1, Required delay from final SPI1_CLK edge from SPI1_CLK falling before SPI1_SCS is deasserted. Polarity = 1, Phase = 0, from SPI1_CLK rising P+4 0.5M+P+4 Polarity = 1, Phase = 1, from SPI1_CLK rising P+4 27 tena(SCSL_SOMI)S 28 tdis(SCSH_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P+15 P+15 (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-79). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. 1.1V MIN P+1.5 MAX 0.5M+P+5 P+5 0.5M+P+5 P+5 P+17 P+17 1.0V MIN MAX P+1.5 0.5M+P+6 P+6 0.5M+P+6 P+6 P+19 P+19 UNIT ns ns ns ns Table 5-85. Additional(1) SPI1 Slave Timings, 5-Pin Option(2)(3) NO. PARAMETER 25 td(SCSL_SPC)S Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Polarity = 0, Phase = 0, from SPI1_CLK falling 26 td(SPC_SCSH)S Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. Polarity = 0, Phase = 1, from SPI1_CLK falling Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK rising 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI 29 tena(SCSL_ENA)S Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid 1.3V, 1.2V MIN MAX P+1.5 0.5M+P+4 P+4 0.5M+P+4 P+4 P+15 P+15 15 1.1V MIN MAX P+1.5 0.5M+P+5 P+5 0.5M+P+5 P+5 P+17 P+17 17 1.0V MIN MAX P+1.5 0.5M+P+6 P+6 0.5M+P+6 P+6 P+19 P+19 19 UNIT ns ns ns ns ns (1) These parameters are in addition to the general timings for SPI slave modes (Table 5-79). (2) P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period) (3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Peripheral Information and Electrical Specifications 183 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-85. Additional(1) SPI1 Slave Timings, 5-Pin Option(2)(3) (continued) NO. 30 tdis(SPC_ENA)S PARAMETER Delay from final clock receive edge on SPI1_CLK to slave 3-stating or driving high SPI1_ENA.(4) Polarity = 0, Phase = 0, from SPI1_CLK falling Polarity = 0, Phase = 1, from SPI1_CLK rising Polarity = 1, Phase = 0, from SPI1_CLK rising Polarity = 1, Phase = 1, from SPI1_CLK falling 1.3V, 1.2V MIN MAX 2.5P+15 2.5P+15 2.5P+15 2.5P+15 1.1V MIN MAX 2.5P+17 2.5P+17 2.5P+17 2.5P+17 1.0V MIN MAX 2.5P+19 2.5P+19 2.5P+19 2.5P+19 UNIT ns (4) SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. 184 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated www.ti.com SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_CLK SPIx_SIMO SPIx_SOMI 1 2 3 4 MO(0) 78 MI(0) OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 MASTER MODE POLARITY = 0 PHASE = 0 5 MO(1) MI(1) 6 MO(n−1) MI(n−1) MO(n) MI(n) 4 MO(0) 78 MI(0) 5 6 MO(1) MI(1) MASTER MODE POLARITY = 0 PHASE = 1 MO(n−1) MI(n−1) MO(n) MI(n) 4 5 MO(0) 7 8 MI(0) MO(1) MI(1) MASTER MODE POLARITY = 1 PHASE = 0 6 MO(n−1) MI(n−1) MO(n) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 4 MO(0) 78 MI(0) 5 6 MO(1) MI(1) MO(n−1) MI(n−1) Figure 5-38. SPI Timings—Master Mode MO(n) MI(n) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 185 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 SPIx_CLK SPIx_SIMO SPIx_SOMI 9 12 10 11 15 16 SI(0) SO(0) SI(1) 13 SO(1) SLAVE MODE POLARITY = 0 PHASE = 0 www.ti.com SI(n−1) 14 SO(n−1) SI(n) SO(n) SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_CLK SPIx_SIMO SPIx_SOMI 12 15 16 SI(0) SO(0) SI(1) 13 14 SO(1) SLAVE MODE POLARITY = 0 PHASE = 1 SI(n−1) SO(n−1) SI(n) SO(n) 12 15 16 SI(0) SO(0) SI(1) 13 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 SI(n−1) 14 SO(n−1) SI(n) SO(n) SLAVE MODE 12 POLARITY = 1 PHASE = 1 15 16 SI(0) SO(0) SI(1) 13 14 SO(1) SI(n−1) SO(n−1) Figure 5-39. SPI Timings—Slave Mode SI(n) SO(n) 186 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_ENA SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_SCS OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 MASTER MODE 4 PIN WITH ENABLE 17 18 MO(0) MI(0) MO(1) MI(1) MO(n−1) MI(n−1) MO(n) MI(n) MASTER MODE 4 PIN WITH CHIP SELECT 19 20 MO(0) MI(0) MO(1) MI(1) MO(n−1) MI(n−1) MO(n) MI(n) SPIx_CLK SPIx_SIMO SPIx_SOMI SPIx_ENA SPIx_SCS 22 MASTER MODE 5 PIN 20 MO(1) 23 18 DESEL(A) MO(0) 21 MI(0) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) DESEL(A) A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-40. SPI Timings—Master Mode (4-Pin and 5-Pin) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 187 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 SPIx_CLK SPIx_SOMI SPIx_SIMO SPIx_ENA SPIx_CLK SPIx_SOMI SPIx_SIMO SPIx_SCS SLAVE MODE 4 PIN WITH ENABLE 24 SO(0) SO(1) SO(n−1) SO(n) SI(0) SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 25 26 27 SO(0) SO(n−1) SO(1) 28 SO(n) SI(0) SI(1) SI(n−1) SI(n) SPIx_CLK SLAVE MODE 5 PIN 25 26 30 SPIx_SOMI SPIx_SIMO 27 SO(1) SO(0) 28 SO(n−1) SO(n) SPIx_ENA SPIx_SCS DESEL(A) 29 SI(0) SI(1) SI(n−1) SI(n) DESEL(A) A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-41. SPI Timings—Slave Mode (4-Pin and 5-Pin) www.ti.com 188 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.18 Inter-Integrated Circuit Serial Ports (I2C) 5.18.1 I2C Device-Specific Information Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Figure 5-42 is block diagram of the device I2C Module. I2Cx_SCL I2Cx_SDA Noise Filter Noise Filter Clock Prescaler I2CPSCx Bit Clock Generator I2CCLKHx I2CCLKLx Transmit I2CXSRx I2CDXRx Receive I2CDRRx I2CRSRx Control I2CPFUNC I2CPDIR I2CPDIN Prescaler Register Clock Divide High Register Clock Divide Low Register Transmit Shift Register Transmit Buffer Receive Buffer Receive Shift Register Control I2CCOARx I2CSARx I2CCMDRx I2CEMDRx I2CCNTx I2CPID1 I2CPID2 Interrupt/DMA I2CIERx I2CSTRx I2CSRCx Pin Function Register Pin Direction Register Pin Data In Register I2CPDOUT I2CPDSET I2CPDCLR Own Address Register Slave Address Register Mode Register Extended Mode Register Data Count Register Peripheral ID Register 1 Peripheral ID Register 2 Interrupt Enable Register Interrupt Status Register Interrupt Source Register Pin Data Out Register Pin Data Set Register Pin Data Clear Register Peripheral Configuration Bus Interrupt DMA Requests Figure 5-42. I2C Module Block Diagram Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 189 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.18.2 I2C Peripheral Registers Description(s) Table 5-86 is the list of the I2C registers. I2C0 BYTE ADDRESS 0x01C2 2000 0x01C2 2004 0x01C2 2008 0x01C2 200C 0x01C2 2010 0x01C2 2014 0x01C2 2018 0x01C2 201C 0x01C2 2020 0x01C2 2024 0x01C2 2028 0x01C2 202C 0x01C2 2030 0x01C2 2034 0x01C2 2038 0x01C2 2048 0x01C2 204C 0x01C2 2050 0x01C2 2054 0x01C2 2058 0x01C2 205C Table 5-86. Inter-Integrated Circuit (I2C) Registers I2C1 BYTE ADDRESS 0x01E2 8000 0x01E2 8004 0x01E2 8008 0x01E2 800C 0x01E2 8010 0x01E2 8014 0x01E2 8018 0x01E2 801C 0x01E2 8020 0x01E2 8024 0x01E2 8028 0x01E2 802C 0x01E2 8030 0x01E2 8034 0x01E2 8038 0x01E2 8048 0x01E2 804C 0x01E2 8050 0x01E2 8054 0x01E2 8058 0x01E2 805C ACRONYM ICOAR ICIMR ICSTR ICCLKL ICCLKH ICCNT ICDRR ICSAR ICDXR ICMDR ICIVR ICEMDR ICPSC REVID1 REVID2 ICPFUNC ICPDIR ICPDIN ICPDOUT ICPDSET ICPDCLR REGISTER DESCRIPTION I2C Own Address Register I2C Interrupt Mask Register I2C Interrupt Status Register I2C Clock Low-Time Divider Register I2C Clock High-Time Divider Register I2C Data Count Register I2C Data Receive Register I2C Slave Address Register I2C Data Transmit Register I2C Mode Register I2C Interrupt Vector Register I2C Extended Mode Register I2C Prescaler Register I2C Revision Identification Register 1 I2C Revision Identification Register 2 I2C Pin Function Register I2C Pin Direction Register I2C Pin Data In Register I2C Pin Data Out Register I2C Pin Data Set Register I2C Pin Data Clear Register www.ti.com 190 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.18.3 I2C Electrical Data/Timing 5.18.3.1 Inter-Integrated Circuit (I2C) Timing Table 5-87 and Table 5-88 assume testing over recommended operating conditions (see Figure 5-43 and Figure 5-44). Table 5-87. Timing Requirements for I2C Input NO. PARAMETER 1 tc(SCL) Cycle time, I2Cx_SCL 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 tw(SCLL) Pulse duration, I2Cx_SCL low 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 8 tw(SDAH) Pulse duration, I2Cx_SDA high 9 tr(SDA) Rise time, I2Cx_SDA 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) Fall time, I2Cx_SDA 12 tf(SCL) Fall time, I2Cx_SCL 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line 1.3V, 1.2V, 1.1V, 1.0V Standard Mode Fast Mode MIN MAX MIN MAX 10 2.5 4.7 0.6 4 0.6 4.7 1.3 4 0.6 250 100 0 0 0.9 4.7 1.3 1000 20 + 0.1Cb 300 1000 20 + 0.1Cb 300 300 20 + 0.1Cb 300 300 20 + 0.1Cb 300 4 0.6 N/A 0 50 400 400 UNIT μs μs μs μs μs ns μs μs ns ns ns ns μs ns pF Table 5-88. Switching Characteristics for I2C (1) NO. PARAMETER 16 tc(SCL) Cycle time, I2Cx_SCL 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 19 tw(SCLL) Pulse duration, I2Cx_SCL low 20 tw(SCLH) Pulse duration, I2Cx_SCL high 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high (1) I2C must be configured correctly to meet the timings in Table 5-88. 1.3V, 1.2V, 1.1V, 1.0V Standard Mode Fast Mode MIN MAX MIN MAX 10 2.5 4.7 0.6 4 0.6 4.7 1.3 4 0.6 250 100 0 0 0.9 4.7 1.3 4 0.6 UNIT μs μs μs μs μs ns μs μs μs Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 191 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 I2Cx_SDA I2Cx_SCL Stop 11 8 4 10 6 5 Start 1 12 3 7 2 3 Repeated Start Figure 5-43. I2C Receive Timings I2Cx_SDA I2Cx_SCL Stop 26 23 19 25 21 20 Start 16 27 18 22 17 18 Repeated Start Figure 5-44. I2C Transmit Timings www.ti.com 9 14 13 Stop 24 28 Stop 192 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.19 Universal Asynchronous Receiver/Transmitter (UART) Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 12 MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation • Modem control functions (CTS, RTS) The UART registers are listed in Section 5.19.1 5.19.1 UART Peripheral Registers Description(s) Table 5-89 is the list of UART registers. UART0 BYTE ADDRESS 0x01C4 2000 0x01C4 2000 0x01C4 2004 0x01C4 2008 0x01C4 2008 0x01C4 200C 0x01C4 2010 0x01C4 2014 0x01C4 2018 0x01C4 201C 0x01C4 2020 0x01C4 2024 0x01C4 2028 0x01C4 2030 0x01C4 2034 UART1 BYTE ADDRESS 0x01D0 C000 0x01D0 C000 0x01D0 C004 0x01D0 C008 0x01D0 C008 0x01D0 C00C 0x01D0 C010 0x01D0 C014 0x01D0 C018 0x01D0 C01C 0x01D0 C020 0x01D0 C024 0x01D0 C028 0x01D0 C030 0x01D0 C034 Table 5-89. UART Registers UART2 BYTE ADDRESS 0x01D0 D000 0x01D0 D000 0x01D0 D004 0x01D0 D008 0x01D0 D008 0x01D0 D00C 0x01D0 D010 0x01D0 D014 0x01D0 D018 0x01D0 D01C 0x01D0 D020 0x01D0 D024 0x01D0 D028 0x01D0 D030 0x01D0 D034 ACRONYM REGISTER DESCRIPTION RBR THR IER IIR FCR LCR MCR LSR MSR SCR DLL DLH REVID1 PWREMU_MGMT MDR Receiver Buffer Register (read only) Transmitter Holding Register (write only) Interrupt Enable Register Interrupt Identification Register (read only) FIFO Control Register (write only) Line Control Register Modem Control Register Line Status Register Modem Status Register Scratchpad Register Divisor LSB Latch Divisor MSB Latch Revision Identification Register 1 Power and Emulation Management Register Mode Definition Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 193 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.19.2 UART Electrical Data/Timing www.ti.com Table 5-90. Timing Requirements for UART Receive(1) (see Figure 5-45) NO. PARAMETER 4 tw(URXDB) Pulse duration, receive data bit (RXDn) 5 tw(URXSB) Pulse duration, receive start bit (1) U = UART baud time = 1/programmed baud rate. 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 0.96U 1.05U 0.96U 1.05U UNIT ns ns Table 5-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit(1) (see Figure 5-45) NO. PARAMETER 1.3V, 1.2V, 1.1V, 1.0V MIN MAX UNIT 1 f(baud) Maximum programmable baud rate D/E (2) (3) MBaud (4) 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 ns 3 tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns (1) U = UART baud time = 1/programmed baud rate. (2) D = UART input clock in MHz. For UART0, the UART input clock is SYSCLK2. For UART1 or UART2, the UART input clock is ASYNC3 (either PLL0_SYCLK2 or PLL1_SYSCLK2). (3) E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR). (4) Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF/DDR loading, system frequency, etc. UART_TXDn Start Bit 3 2 Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 5-45. UART Transmit/Receive Timing 194 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.20 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG] The USB2.0 peripheral supports the following features: • USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s) • USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 4K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid data throughput reduction. Table 5-92 is the list of USB OTG registers. BYTE ADDRESS 0x01E0 0000 0x01E0 0004 0x01E0 0008 0x01E0 000C 0x01E0 0010 0x01E0 0014 0x01E0 0018 0x01E0 001C 0x01E0 0020 0x01E0 0024 0x01E0 0028 0x01E0 002C 0x01E0 0030 0x01E0 0034 0x01E0 0038 0x01E0 003C 0x01E0 0040 0x01E0 0050 0x01E0 0054 0x01E0 0058 0x01E0 005C 0x01E0 0400 0x01E0 0401 0x01E0 0402 0x01E0 0404 0x01E0 0406 0x01E0 0408 0x01E0 040A 0x01E0 040B Table 5-92. Universal Serial Bus OTG (USB0) Registers ACRONYM REVID CTRLR STATR EMUR MODE AUTOREQ SRPFIXTIME TEARDOWN INTSRCR INTSETR INTCLRR INTMSKR INTMSKSETR INTMSKCLRR INTMASKEDR EOIR - GENRNDISSZ1 GENRNDISSZ2 GENRNDISSZ3 GENRNDISSZ4 FADDR POWER INTRTX INTRRX INTRTXE INTRRXE INTRUSB INTRUSBE REGISTER DESCRIPTION Revision Register Control Register Status Register Emulation Register Mode Register Autorequest Register SRP Fix Time Register Teardown Register USB Interrupt Source Register USB Interrupt Source Set Register USB Interrupt Source Clear Register USB Interrupt Mask Register USB Interrupt Mask Set Register USB Interrupt Mask Clear Register USB Interrupt Source Masked Register USB End of Interrupt Register Reserved Generic RNDIS Size EP1 Generic RNDIS Size EP2 Generic RNDIS Size EP3 Generic RNDIS Size EP4 Function Address Register Power Management Register Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 Interrupt Register for Receive Endpoints 1 to 4 Interrupt enable register for INTRTX Interrupt Enable Register for INTRRX Interrupt Register for Common USB Interrupts Interrupt Enable Register for INTRUSB Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 195 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS 0x01E0 040C 0x01E0 040E 0x01E0 040F 0x01E0 0410 0x01E0 0412 0x01E0 0414 0x01E0 0416 0x01E0 0418 0x01E0 041A 0x01E0 041B 0x01E0 041C 0x01E0 041D 0x01E0 041F 0x01E0 0420 0x01E0 0424 0x01E0 0428 0x01E0 042C 0x01E0 0430 0x01E0 0460 0x01E0 0462 0x01E0 0463 0x01E0 0464 ACRONYM REGISTER DESCRIPTION FRAME Frame Number Register INDEX Index Register for Selecting the Endpoint Status and Control Registers TESTMODE Register to Enable the USB 2.0 Test Modes Indexed Registers These registers operate on the endpoint selected by the INDEX register TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only) PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0) HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0) PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4) HOST_TXCSR Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4) RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only) PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4) HOST_RXCSR Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4) COUNT0 Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0) RXCOUNT Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4) HOST_TYPE0 Defines the speed of Endpoint 0 HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only) HOST_NAKLIMIT0 Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0) HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only) HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only) CONFIGDATA Returns details of core configuration. (Index register set to select Endpoint 0) FIFO FIFO0 Transmit and Receive FIFO Register for Endpoint 0 FIFO1 Transmit and Receive FIFO Register for Endpoint 1 FIFO2 Transmit and Receive FIFO Register for Endpoint 2 FIFO3 Transmit and Receive FIFO Register for Endpoint 3 FIFO4 Transmit and Receive FIFO Register for Endpoint 4 OTG Device Control DEVCTL Device Control Register Dynamic FIFO Control TXFIFOSZ Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) RXFIFOSZ Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) 196 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS 0x01E0 0466 0x01E0 046C 0x01E0 0480 0x01E0 0482 0x01E0 0483 0x01E0 0484 0x01E0 0486 0x01E0 0487 0x01E0 0488 0x01E0 048A 0x01E0 048B 0x01E0 048C 0x01E0 048E 0x01E0 048F 0x01E0 0490 0x01E0 0492 0x01E0 0493 0x01E0 0494 0x01E0 0496 0x01E0 0497 0x01E0 0498 ACRONYM REGISTER DESCRIPTION RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) HWVERS Hardware Version Register Target Endpoint 0 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 197 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS 0x01E0 049A 0x01E0 049B 0x01E0 049C 0x01E0 049E 0x01E0 049F 0x01E0 04A0 0x01E0 04A2 0x01E0 04A3 0x01E0 04A4 0x01E0 04A6 0x01E0 04A7 0x01E0 0502 0x01E0 0508 0x01E0 050A 0x01E0 050B 0x01E0 050F 0x01E0 0510 0x01E0 0512 0x01E0 0514 0x01E0 0516 0x01E0 0518 0x01E0 051A 0x01E0 051B 0x01E0 051C 0x01E0 051D ACRONYM REGISTER DESCRIPTION TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 4 Control Registers, Valid Only in Host Mode TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Control and Status Register for Endpoint 0 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode COUNT0 Number of Received Bytes in Endpoint 0 FIFO HOST_TYPE0 Defines the Speed of Endpoint 0 HOST_NAKLIMIT0 Sets the NAK Response Timeout on Endpoint 0 CONFIGDATA Returns details of core configuration. Control and Status Register for Endpoint 1 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) RXCOUNT Number of Bytes in Host Receive endpoint FIFO HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 2 198 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS 0x01E0 0520 0x01E0 0522 0x01E0 0524 0x01E0 0526 0x01E0 0528 0x01E0 052A 0x01E0 052B 0x01E0 052C 0x01E0 052D 0x01E0 0530 0x01E0 0532 0x01E0 0534 0x01E0 0536 0x01E0 0538 0x01E0 053A 0x01E0 053B 0x01E0 053C 0x01E0 053D 0x01E0 0540 0x01E0 0542 0x01E0 0544 0x01E0 0546 0x01E0 0548 0x01E0 054A 0x01E0 054B 0x01E0 054C 0x01E0 054D 0x01E0 1000 0x01E0 1004 0x01E0 1008 ACRONYM REGISTER DESCRIPTION TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) RXCOUNT Number of Bytes in Host Receive endpoint FIFO HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 3 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) RXCOUNT Number of Bytes in Host Receive endpoint FIFO HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 4 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) RXCOUNT Number of Bytes in Host Receive endpoint FIFO HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. DMA Registers DMAREVID DMA Revision Register TDFDQ DMA Teardown Free Descriptor Queue Control Register DMAEMU DMA Emulation Control Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 199 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS 0x01E0 1800 0x01E0 1808 0x01E0 180C 0x01E0 1810 0x01E0 1820 0x01E0 1828 0x01E0 182C 0x01E0 1830 0x01E0 1840 0x01E0 1848 0x01E0 184C 0x01E0 1850 0x01E0 1860 0x01E0 1868 0x01E0 186C 0x01E0 1870 0x01E0 2000 0x01E0 2800 0x01E0 2804 ... 0x01E0 28FC 0x01E0 4000 0x01E0 4008 0x01E0 4020 0x01E0 4024 0x01E0 4028 0x01E0 402C 0x01E0 4080 0x01E0 4084 0x01E0 4088 0x01E0 4090 0x01E0 4094 0x01E0 5000 0x01E0 5004 0x01E0 5010 0x01E0 5014 ... 0x01E0 50F0 0x01E0 50F4 0x01E0 600C 0x01E0 601C ... 0x01E0 63FC 0x01E0 6800 0x01E0 6804 0x01E0 6808 ACRONYM TXGCR[0] RXGCR[0] RXHPCRA[0] RXHPCRB[0] TXGCR[1] RXGCR[1] RXHPCRA[1] RXHPCRB[1] TXGCR[2] RXGCR[2] RXHPCRA[2] RXHPCRB[2] TXGCR[3] RXGCR[3] RXHPCRA[3] RXHPCRB[3] DMA_SCHED_CTRL WORD[0] WORD[1] ... WORD[63] QMGRREVID DIVERSION FDBSC0 FDBSC1 FDBSC2 FDBSC3 LRAM0BASE LRAM0SIZE LRAM1BASE PEND0 PEND1 QMEMRBASE[0] QMEMRCTRL[0] QMEMRBASE[1] QMEMRCTRL[1] ... QMEMRBASE[15] QMEMRCTRL[15] CTRLD[0] CTRLD[1] ... CTRLD[63] QSTATA[0] QSTATB[0] QSTATC[0] REGISTER DESCRIPTION Transmit Channel 0 Global Configuration Register Receive Channel 0 Global Configuration Register Receive Channel 0 Host Packet Configuration Register A Receive Channel 0 Host Packet Configuration Register B Transmit Channel 1 Global Configuration Register Receive Channel 1 Global Configuration Register Receive Channel 1 Host Packet Configuration Register A Receive Channel 1 Host Packet Configuration Register B Transmit Channel 2 Global Configuration Register Receive Channel 2 Global Configuration Register Receive Channel 2 Host Packet Configuration Register A Receive Channel 2 Host Packet Configuration Register B Transmit Channel 3 Global Configuration Register Receive Channel 3 Global Configuration Register Receive Channel 3 Host Packet Configuration Register A Receive Channel 3 Host Packet Configuration Register B DMA Scheduler Control Register DMA Scheduler Table Word 0 DMA Scheduler Table Word 1 ... DMA Scheduler Table Word 63 Queue Manager Registers Queue Manager Revision Register Queue Diversion Register Free Descriptor/Buffer Starvation Count Register 0 Free Descriptor/Buffer Starvation Count Register 1 Free Descriptor/Buffer Starvation Count Register 2 Free Descriptor/Buffer Starvation Count Register 3 Linking RAM Region 0 Base Address Register Linking RAM Region 0 Size Register Linking RAM Region 1 Base Address Register Queue Pending Register 0 Queue Pending Register 1 Memory Region 0 Base Address Register Memory Region 0 Control Register Memory Region 1 Base Address Register Memory Region 1 Control Register ... Memory Region 15 Base Address Register Memory Region 15 Control Register Queue Manager Queue 0 Control Register D Queue Manager Queue 1 Control Register D ... Queue Manager Queue 63 Status Register D Queue Manager Queue 0 Status Register A Queue Manager Queue 0 Status Register B Queue Manager Queue 0 Status Register C www.ti.com 200 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-92. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS 0x01E0 6810 0x01E0 6814 0x01E0 6818 ... 0x01E0 6BF0 0x01E0 6BF4 0x01E0 6BF8 ACRONYM QSTATA[1] QSTATB[1] QSTATC[1] ... QSTATA[63] QSTATB[63] QSTATC[63] REGISTER DESCRIPTION Queue Manager Queue 1 Status Register A Queue Manager Queue 1 Status Register B Queue Manager Queue 1 Status Register C ... Queue Manager Queue 63 Status Register A Queue Manager Queue 63 Status Register B Queue Manager Queue 63 Status Register C 5.20.1 USB0 [USB2.0] Electrical Data/Timing The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz, 20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50 ppm (maximum). Table 5-93. Switching Characteristics Over Recommended Operating Conditions for USB0 [USB2.0] (see Figure 5-46) 1.3V, 1.2V, 1.1V, 1.0V NO. PARAMETER LOW SPEED 1.5 Mbps FULL SPEED 12 Mbps HIGH SPEED 480 Mbps UNIT 1 tr(D) 2 tf(D) 3 trfM 4 VCRS 5 tjr(source)NT tjr(FUNC)NT 6 tjr(source)PT tjr(FUNC)PT 7 tw(EOPT) 8 tw(EOPR) 9 t(DRATE) 10 ZDRV 11 ZINP Rise time, USB_DP and USB_DM signals(1) Fall time, USB_DP and USB_DM signals(1) Rise/Fall time, matching(2) Output signal cross-over voltage(1) Source (Host) Driver jitter, next transition Function Driver jitter, next transition Source (Host) Driver jitter, paired transition(4) Function Driver jitter, paired transition Pulse duration, EOP transmitter Pulse duration, EOP receiver Data Rate Driver Output Resistance Receiver Input Impedance MIN 75 75 80 1.3 1250 670 – 100k MAX 300 300 120 2 2 25 1 10 1500 1.5 – MIN 4 4 90 1.3 160 82 40.5 100k MAX 20 20 111 2 2 2 1 1 175 12 49.5 MIN 0.5 0.5 – – – – 40.5 - MAX ns ns –% –V (3)ns (3) ns (3) ns (3) ns – ns ns 480 Mb/s 49.5 Ω -Ω (1) Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF (2) tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.] (3) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical. (4) tjr = tpx(1) - tpx(0) USB_DM VCRS USB_DP 10% VOL tper − tjr 90% VOH tr tf Figure 5-46. USB2.0 Integrated Transceiver Interface Timing Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 201 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.21 Universal Serial Bus Host Controller (USB1) [USB1.1 OHCI] All the USB interfaces for this device are compliant with Universal Serial Bus Specifications, Revision 1.1. Table 5-94 is the list of USB Host Controller registers. Table 5-94. USB Host Controller Registers USB1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 5000 HCREVISION OHCI Revision Number Register 0x01E2 5004 HCCONTROL HC Operating Mode Register 0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register 0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register 0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register 0x01E2 5014 0x01E2 5018 0x01E2 501C 0x01E2 5020 0x01E2 5024 0x01E2 5028 0x01E2 502C 0x01E2 5030 HCINTERRUPTDISABLE HCHCCA HCPERIODCURRENTED HCCONTROLHEADED HCCONTROLCURRENTED HCBULKHEADED HCBULKCURRENTED HCDONEHEAD HC Interrupt Disable Register HC HCAA Address Register(1) HC Current Periodic Register(1) HC Head Control Register(1) HC Current Control Register(1) HC Head Bulk Register(1) HC Current Bulk Register(1) HC Head Done Register(1) 0x01E2 5034 HCFMINTERVAL HC Frame Interval Register 0x01E2 5038 HCFMREMAINING HC Frame Remaining Register 0x01E2 503C HCFMNUMBER HC Frame Number Register 0x01E2 5040 HCPERIODICSTART HC Periodic Start Register 0x01E2 5044 HCLSTHRESHOLD HC Low-Speed Threshold Register 0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register 0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register 0x01E2 5050 0x01E2 5054 0x01E2 5058 HCRHSTATUS HCRHPORTSTATUS1 HCRHPORTSTATUS2 HC Root Hub Status Register HC Port 1 Status and Control Register(2) HC Port 2 Status and Control Register(3) (1) Restrictions apply to the physical addresses used in these registers. (2) Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP). (3) Although the controller implements two ports, the second port cannot be used. Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB1 [USB1.1] NO. PARAMETER U1 tr U2 tf U3 tRFM U4 VCRS U5 tj U6 fop Rise time, USB.DP and USB.DM signals(1) Fall time, USB.DP and USB.DM signals(1) Rise/Fall time matching(2) Output signal cross-over voltage(1) Differential propagation jitter(3) Operating frequency(4) (1) Low Speed: CL = 200 pF. High Speed: CL = 50pF (2) tRFM =( tr/tf ) x 100 (3) t jr = t px(1) - tpx(0) (4) fop = 1/tper 1.3V, 1.2V, 1.1V, 1.0V LOW SPEED FULL SPEED MIN 75 (1) 75 (1) 80 (2) 1.3 (1) -25 (3) MAX 300 (1) 300 (1) 120 (2) 2 (1) 25 (3) MAX 4 (1) 4 (1) 90 (2) 1.3 (1) -2 (3) MAX 20 (1) 20 (1) 110 (2) 2 (1) 2 (3) 1.5 12 UNIT ns ns % V ns MHz 202 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.22 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. 5.22.1 EMAC Peripheral Register Description(s) Table 5-96. Ethernet Media Access Controller (EMAC) Registers BYTE ADDRESS 0x01E2 3000 0x01E2 3004 0x01E2 3008 0x01E2 3010 0x01E2 3014 0x01E2 3018 0x01E2 3080 0x01E2 3084 0x01E2 3088 0x01E2 308C 0x01E2 3090 0x01E2 3094 0x01E2 30A0 0x01E2 30A4 0x01E2 30A8 0x01E2 30AC 0x01E2 30B0 0x01E2 30B4 0x01E2 30B8 0x01E2 30BC 0x01E2 3100 0x01E2 3104 0x01E2 3108 0x01E2 310C 0x01E2 3110 0x01E2 3114 0x01E2 3120 0x01E2 3124 0x01E2 3128 0x01E2 312C 0x01E2 3130 0x01E2 3134 0x01E2 3138 0x01E2 313C ACRONYM REGISTER DESCRIPTION TXREV Transmit Revision Register TXCONTROL Transmit Control Register TXTEARDOWN Transmit Teardown Register RXREV Receive Revision Register RXCONTROL Receive Control Register RXTEARDOWN Receive Teardown Register TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register TXINTSTATMASKED Transmit Interrupt Status (Masked) Register TXINTMASKSET Transmit Interrupt Mask Set Register TXINTMASKCLEAR Transmit Interrupt Clear Register MACINVECTOR MAC Input Vector Register MACEOIVECTOR MAC End Of Interrupt Vector Register RXINTSTATRAW Receive Interrupt Status (Unmasked) Register RXINTSTATMASKED Receive Interrupt Status (Masked) Register RXINTMASKSET Receive Interrupt Mask Set Register RXINTMASKCLEAR Receive Interrupt Mask Clear Register MACINTSTATRAW MAC Interrupt Status (Unmasked) Register MACINTSTATMASKED MAC Interrupt Status (Masked) Register MACINTMASKSET MAC Interrupt Mask Set Register MACINTMASKCLEAR MAC Interrupt Mask Clear Register RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register RXUNICASTSET Receive Unicast Enable Set Register RXUNICASTCLEAR Receive Unicast Clear Register RXMAXLEN Receive Maximum Length Register RXBUFFEROFFSET Receive Buffer Offset Register RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 203 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-96. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS 0x01E2 3140 0x01E2 3144 0x01E2 3148 0x01E2 314C 0x01E2 3150 0x01E2 3154 0x01E2 3158 0x01E2 315C 0x01E2 3160 0x01E2 3164 0x01E2 3168 0x01E2 316C 0x01E2 3170 0x01E2 3174 0x01E2 31D0 0x01E2 31D4 0x01E2 31D8 0x01E2 31DC 0x01E2 31E0 0x01E2 31E4 0x01E2 31E8 0x01E2 31EC 0x01E2 3200 - 0x01E2 32FC 0x01E2 3500 0x01E2 3504 0x01E2 3508 0x01E2 3600 0x01E2 3604 0x01E2 3608 0x01E2 360C 0x01E2 3610 0x01E2 3614 0x01E2 3618 0x01E2 361C 0x01E2 3620 0x01E2 3624 0x01E2 3628 0x01E2 362C 0x01E2 3630 0x01E2 3634 0x01E2 3638 0x01E2 363C 0x01E2 3640 0x01E2 3644 0x01E2 3648 0x01E2 364C 0x01E2 3650 ACRONYM RX0FREEBUFFER RX1FREEBUFFER RX2FREEBUFFER RX3FREEBUFFER RX4FREEBUFFER RX5FREEBUFFER RX6FREEBUFFER RX7FREEBUFFER MACCONTROL MACSTATUS EMCONTROL FIFOCONTROL MACCONFIG SOFTRESET MACSRCADDRLO MACSRCADDRHI MACHASH1 MACHASH2 BOFFTEST TPACETEST RXPAUSE TXPAUSE (see Table 5-97) MACADDRLO MACADDRHI MACINDEX TX0HDP TX1HDP TX2HDP TX3HDP TX4HDP TX5HDP TX6HDP TX7HDP RX0HDP RX1HDP RX2HDP RX3HDP RX4HDP RX5HDP RX6HDP RX7HDP TX0CP TX1CP TX2CP TX3CP TX4CP REGISTER DESCRIPTION Receive Channel 0 Free Buffer Count Register Receive Channel 1 Free Buffer Count Register Receive Channel 2 Free Buffer Count Register Receive Channel 3 Free Buffer Count Register Receive Channel 4 Free Buffer Count Register Receive Channel 5 Free Buffer Count Register Receive Channel 6 Free Buffer Count Register Receive Channel 7 Free Buffer Count Register MAC Control Register MAC Status Register Emulation Control Register FIFO Control Register MAC Configuration Register Soft Reset Register MAC Source Address Low Bytes Register MAC Source Address High Bytes Register MAC Hash Address Register 1 MAC Hash Address Register 2 Back Off Test Register Transmit Pacing Algorithm Test Register Receive Pause Timer Register Transmit Pause Timer Register EMAC Statistics Registers MAC Address Low Bytes Register, Used in Receive Address Matching MAC Address High Bytes Register, Used in Receive Address Matching MAC Index Register Transmit Channel 0 DMA Head Descriptor Pointer Register Transmit Channel 1 DMA Head Descriptor Pointer Register Transmit Channel 2 DMA Head Descriptor Pointer Register Transmit Channel 3 DMA Head Descriptor Pointer Register Transmit Channel 4 DMA Head Descriptor Pointer Register Transmit Channel 5 DMA Head Descriptor Pointer Register Transmit Channel 6 DMA Head Descriptor Pointer Register Transmit Channel 7 DMA Head Descriptor Pointer Register Receive Channel 0 DMA Head Descriptor Pointer Register Receive Channel 1 DMA Head Descriptor Pointer Register Receive Channel 2 DMA Head Descriptor Pointer Register Receive Channel 3 DMA Head Descriptor Pointer Register Receive Channel 4 DMA Head Descriptor Pointer Register Receive Channel 5 DMA Head Descriptor Pointer Register Receive Channel 6 DMA Head Descriptor Pointer Register Receive Channel 7 DMA Head Descriptor Pointer Register Transmit Channel 0 Completion Pointer Register Transmit Channel 1 Completion Pointer Register Transmit Channel 2 Completion Pointer Register Transmit Channel 3 Completion Pointer Register Transmit Channel 4 Completion Pointer Register 204 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-96. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS 0x01E2 3654 0x01E2 3658 0x01E2 365C 0x01E2 3660 0x01E2 3664 0x01E2 3668 0x01E2 366C 0x01E2 3670 0x01E2 3674 0x01E2 3678 0x01E2 367C ACRONYM TX5CP TX6CP TX7CP RX0CP RX1CP RX2CP RX3CP RX4CP RX5CP RX6CP RX7CP REGISTER DESCRIPTION Transmit Channel 5 Completion Pointer Register Transmit Channel 6 Completion Pointer Register Transmit Channel 7 Completion Pointer Register Receive Channel 0 Completion Pointer Register Receive Channel 1 Completion Pointer Register Receive Channel 2 Completion Pointer Register Receive Channel 3 Completion Pointer Register Receive Channel 4 Completion Pointer Register Receive Channel 5 Completion Pointer Register Receive Channel 6 Completion Pointer Register Receive Channel 7 Completion Pointer Register BYTE ADDRESS 0x01E2 3200 0x01E2 3204 0x01E2 3208 0x01E2 320C 0x01E2 3210 0x01E2 3214 0x01E2 3218 0x01E2 321C 0x01E2 3220 0x01E2 3224 0x01E2 3228 0x01E2 322C 0x01E2 3230 0x01E2 3234 0x01E2 3238 0x01E2 323C 0x01E2 3240 0x01E2 3244 0x01E2 3248 0x01E2 324C 0x01E2 3250 0x01E2 3254 0x01E2 3258 0x01E2 325C 0x01E2 3260 0x01E2 3264 0x01E2 3268 Table 5-97. EMAC Statistics Registers ACRONYM RXGOODFRAMES RXBCASTFRAMES RXMCASTFRAMES RXPAUSEFRAMES RXCRCERRORS RXALIGNCODEERRORS RXOVERSIZED RXJABBER RXUNDERSIZED RXFRAGMENTS RXFILTERED RXQOSFILTERED RXOCTETS TXGOODFRAMES TXBCASTFRAMES TXMCASTFRAMES TXPAUSEFRAMES TXDEFERRED TXCOLLISION TXSINGLECOLL TXMULTICOLL TXEXCESSIVECOLL TXLATECOLL TXUNDERRUN TXCARRIERSENSE TXOCTETS FRAME64 REGISTER DESCRIPTION Good Receive Frames Register Broadcast Receive Frames Register (Total number of good broadcast frames received) Multicast Receive Frames Register (Total number of good multicast frames received) Pause Receive Frames Register Receive CRC Errors Register (Total number of frames received with CRC errors) Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) Receive Oversized Frames Register (Total number of oversized frames received) Receive Jabber Frames Register (Total number of jabber frames received) Receive Undersized Frames Register (Total number of undersized frames received) Receive Frame Fragments Register Filtered Receive Frames Register Received QOS Filtered Frames Register Receive Octet Frames Register (Total number of received bytes in good frames) Good Transmit Frames Register (Total number of good frames transmitted) Broadcast Transmit Frames Register Multicast Transmit Frames Register Pause Transmit Frames Register Deferred Transmit Frames Register Transmit Collision Frames Register Transmit Single Collision Frames Register Transmit Multiple Collision Frames Register Transmit Excessive Collision Frames Register Transmit Late Collision Frames Register Transmit Underrun Error Register Transmit Carrier Sense Errors Register Transmit Octet Frames Register Transmit and Receive 64 Octet Frames Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 205 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com BYTE ADDRESS 0x01E2 326C 0x01E2 3270 0x01E2 3274 0x01E2 3278 0x01E2 327C 0x01E2 3280 0x01E2 3284 0x01E2 3288 0x01E2 328C Table 5-97. EMAC Statistics Registers (continued) ACRONYM FRAME65T127 FRAME128T255 FRAME256T511 FRAME512T1023 FRAME1024TUP NETOCTETS RXSOFOVERRUNS RXMOFOVERRUNS RXDMAOVERRUNS REGISTER DESCRIPTION Transmit and Receive 65 to 127 Octet Frames Register Transmit and Receive 128 to 255 Octet Frames Register Transmit and Receive 256 to 511 Octet Frames Register Transmit and Receive 512 to 1023 Octet Frames Register Transmit and Receive 1024 to 1518 Octet Frames Register Network Octet Frames Register Receive FIFO or DMA Start of Frame Overruns Register Receive FIFO or DMA Middle of Frame Overruns Register Receive DMA Start of Frame and Middle of Frame Overruns Register BYTE ADDRESS 0x01E2 2000 0x01E2 2004 0x01E2 200C 0x01E2 2010 0x01E2 2014 0x01E2 2018 0x01E2 201C 0x01E2 2020 0x01E2 2024 0x01E2 2028 0x01E2 202C 0x01E2 2030 0x01E2 2034 0x01E2 2038 0x01E2 203C 0x01E2 2040 0x01E2 2044 0x01E2 2048 0x01E2 204C 0x01E2 2050 0x01E2 2054 0x01E2 2058 0x01E2 205C 0x01E2 2060 0x01E2 2064 0x01E2 2068 0x01E2 206C 0x01E2 2070 0x01E2 2074 0x01E2 2078 0x01E2 207C 0x01E2 2080 0x01E2 2084 Table 5-98. EMAC Control Module Registers ACRONYM REGISTER DESCRIPTION REV EMAC Control Module Revision Register SOFTRESET EMAC Control Module Software Reset Register INTCONTROL EMAC Control Module Interrupt Control Register C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register 206 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com BYTE ADDRESS 0x01E2 0000 - 0x01E2 1FFF SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-99. EMAC Control Module RAM DESCRIPTION EMAC Local Buffer Descriptor Memory 5.22.1.1 EMAC Electrical Data/Timing NO. 1 tc(MII_RXCLK) 2 tw(MII_RXCLKH) 3 tw(MII_RXCLKL) Table 5-100. Timing Requirements for MII_RXCLK (see Figure 5-47) Cycle time, MII_RXCLK Pulse duration, MII_RXCLK high Pulse duration, MII_RXCLK low 1.3V, 1.2V, 1.1V 10 Mbps 100 Mbps MIN MAX MIN MAX 400 40 140 14 140 14 1.0V 10 Mbps MIN MAX 400 140 140 UNIT ns ns ns 1 2 3 MII_RXCLK Figure 5-47. MII_RXCLK Timing (EMAC - Receive) NO. 1 tc(MII_TXCLK) 2 tw(MII_TXCLKH) 3 tw(MII_TXCLKL) Table 5-101. Timing Requirements for MII_TXCLK (see Figure 5-48) PARAMETER Cycle time, MII_TXCLK Pulse duration, MII_TXCLK high Pulse duration, MII_TXCLK low 1.3V, 1.2V, 1.1V 10 Mbps 100 Mbps MIN MAX MIN MAX 400 40 140 14 140 14 1.0V 10 Mbps MIN MAX 400 140 140 UNIT ns ns ns 1 2 3 MII_TXCLK Figure 5-48. MII_TXCLK Timing (EMAC - Transmit) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 207 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-102. Timing Requirements for EMAC MII Receive 10/100 Mbit/s(1) (see Figure 5-49) NO. PARAMETER 1 tsu(MRXD-MII_RXCLKH) Setup time, receive selected signals valid before MII_RXCLK high 2 th(MII_RXCLKH-MRXD) Hold time, receive selected signals valid after MII_RXCLK high (1) Receive selected signals include: MII_RXD[3]-MII_RXD[0], MII_RXDV, and MII_RXER. 1.3V, 1.2V, 1.1V, 1.0V UNIT MIN MAX 8 ns 8 ns 1 2 MII_RXCLK (Input) MII_RXD[3]-MII_RXD[0], MII_RXDV, MII_RXER (Inputs) Figure 5-49. EMAC Receive Interface Timing Table 5-103. Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit 10/100 Mbit/s(1) (see Figure 5-50) NO. PARAMETER 1 td(MII_TXCLKH- MTXD) Delay time, MII_TXCLK high to transmit selected signals valid (1) Transmit selected signals include: MTXD3-MTXD0, and MII_TXEN. 1.3V, 1.2V, 1.1V MIN MAX 1.0V UNIT MIN MAX 2 25 2 32 ns 1 MII_TCLK (Input) MII_TXD[3]-MII_TXD[0], MII_TXEN (Outputs) Figure 5-50. EMAC Transmit Interface Timing 208 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-104. Timing Requirements for EMAC RMII NO. PARAMETER 1 tc(REFCLK) 2 tw(REFCLKH) 3 tw(REFCLKL) 6 tsu(RXD-REFCLK) 7 th(REFCLK-RXD) 8 tsu(CRSDV-REFCLK) 9 th(REFCLK-CRSDV) 10 tsu(RXER-REFCLK) 11 th(REFCLKR-RXER) Cycle Time, RMII_MHZ_50_CLK Pulse Width, RMII_MHZ_50_CLK High Pulse Width, RMII_MHZ_50_CLK Low Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High (1) RMII is not supported at operating points below 1.1V nominal 1.3V, 1.2V, 1.1V(1) UNIT MIN TYP MAX 20 ns 7 13 ns 7 13 ns 4 ns 2 ns 4 ns 2 ns 4 ns 2 ns Note: Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less. Table 5-105. Switching Characteristics Over Recommended Operating Conditions for EMAC RMII NO. PARAMETER 4 td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid 5 td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid (1) RMII is not supported at operating points below 1.1V nominal. 1.3V, 1.2V, 1.1V(1) UNIT MIN TYP MAX 2.5 13 ns 2.5 13 ns 1 RMII_MHz_50_CLK 23 5 RMII_TXEN RMII_TXD[1:0] RMII_RXD[1:0] RMII_CRS_DV RMII_RXER 4 8 5 6 7 9 10 11 Figure 5-51. RMII Timing Diagram Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 209 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.23 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. 5.23.1 MDIO Register Description(s) BYTE ADDRESS 0x01E2 4000 0x01E2 4004 0x01E2 4008 0x01E2 400C 0x01E2 4010 0x01E2 4014 0x01E2 4018 0x01E2 4020 0x01E2 4024 0x01E2 4028 0x01E2 402C 0x01E2 4030 - 0x01E2 407C 0x01E2 4080 0x01E2 4084 0x01E2 4088 0x01E2 408C 0x01E2 4090 - 0x01E2 47FF Table 5-106. MDIO Register Memory Map ACRONYM REV CONTROL ALIVE LINK LINKINTRAW LINKINTMASKED – USERINTRAW USERINTMASKED USERINTMASKSET USERINTMASKCLEAR – USERACCESS0 USERPHYSEL0 USERACCESS1 USERPHYSEL1 – REGISTER NAME Revision Identification Register MDIO Control Register MDIO PHY Alive Status Register MDIO PHY Link Status Register MDIO Link Status Change Interrupt (Unmasked) Register MDIO Link Status Change Interrupt (Masked) Register Reserved MDIO User Command Complete Interrupt (Unmasked) Register MDIO User Command Complete Interrupt (Masked) Register MDIO User Command Complete Interrupt Mask Set Register MDIO User Command Complete Interrupt Mask Clear Register Reserved MDIO User Access Register 0 MDIO User PHY Select Register 0 MDIO User Access Register 1 MDIO User PHY Select Register 1 Reserved 210 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.23.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 5-107. Timing Requirements for MDIO Input (see Figure 5-52 and Figure 5-53) NO. 1 tc(MDCLK) 2 tw(MDCLK) 3 tt(MDCLK) 4 tsu(MDIO-MDCLKH) 5 th(MDCLKH-MDIO) PARAMETER Cycle time, MDCLK Pulse duration, MDCLK high/low Transition time, MDCLK Setup time, MDIO data input valid before MDCLK high Hold time, MDIO data input valid after MDCLK high 1.3V, 1.2V, 1.1V MIN MAX 400 180 5 16 0 1.0V MIN MAX 400 180 5 21 0 UNIT ns ns ns ns ns MDCLK 1 3 3 4 5 MDIO (input) Figure 5-52. MDIO Input Timing Table 5-108. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 5-53) NO. 7 td(MDCLKL-MDIO) PARAMETER Delay time, MDCLK low to MDIO data output valid 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 0 100 UNIT ns 1 MDCLK 7 MDIO (output) Figure 5-53. MDIO Output Timing Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 211 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.24 LCD Controller (LCDC) The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface Display Driver (LIDD) controller. Each controller operates independently from the other and only one of them is active at any given time. • The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer. Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn, outputs to the external LCD device. • The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability of control signals (CS, WE, OE, ALE) and output data. The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is determined by the image size in combination with the pixel clock rate. For details, see SPRAB93. Table 5-109 lists the LCD Controller registers. BYTE ADDRESS 0x01E1 3000 0x01E1 3004 0x01E1 3008 0x01E1 300C 0x01E1 3010 0x01E1 3014 0x01E1 3018 0x01E1 301C 0x01E1 3020 0x01E1 3024 0x01E1 3028 0x01E1 302C 0x01E1 3030 0x01E1 3034 0x01E1 3038 0x01E1 3040 0x01E1 3044 0x01E1 3048 0x01E1 304C 0x01E1 3050 Table 5-109. LCD Controller Registers ACRONYM REVID LCD_CTRL LCD_STAT LIDD_CTRL LIDD_CS0_CONF LIDD_CS0_ADDR LIDD_CS0_DATA LIDD_CS1_CONF LIDD_CS1_ADDR LIDD_CS1_DATA RASTER_CTRL RASTER_TIMING_0 RASTER_TIMING_1 RASTER_TIMING_2 RASTER_SUBPANEL LCDDMA_CTRL LCDDMA_FB0_BASE LCDDMA_FB0_CEILING LCDDMA_FB1_BASE LCDDMA_FB1_CEILING REGISTER DESCRIPTION LCD Revision Identification Register LCD Control Register LCD Status Register LCD LIDD Control Register LCD LIDD CS0 Configuration Register LCD LIDD CS0 Address Read/Write Register LCD LIDD CS0 Data Read/Write Register LCD LIDD CS1 Configuration Register LCD LIDD CS1 Address Read/Write Register LCD LIDD CS1 Data Read/Write Register LCD Raster Control Register LCD Raster Timing 0 Register LCD Raster Timing 1 Register LCD Raster Timing 2 Register LCD Raster Subpanel Display Register LCD DMA Control Register LCD DMA Frame Buffer 0 Base Address Register LCD DMA Frame Buffer 0 Ceiling Address Register LCD DMA Frame Buffer 1 Base Address Register LCD DMA Frame Buffer 1 Ceiling Address Register 212 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.24.1 LCD Interface Display Driver (LIDD Mode) NO. 16 tsu(LCD_D) 17 th(LCD_D) Table 5-110. Timing Requirements for LCD LIDD Mode PARAMETER Setup time, LCD_D[15:0] valid before LCD_CLK (SYSCLK2) high Hold time, LCD_D[15:0] valid after LCD_CLK (SYSCLK2) high 1.3V, 1.2V, 1.1V MIN MAX 7 0 1.0V MIN MAX 8 0 UNIT ns ns Table 5-111. Switching Characteristics Over Recommended Operating Conditions for LCD LIDD Mode NO. PARAMETER 4 td(LCD_D_V) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] valid (write) 5 td(LCD_D_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] invalid (write) 6 td(LCD_E_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_AC_ENB_CS low 7 td(LCD_E_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_AC_ENB_CS high 8 td(LCD_A_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_VSYNC low 9 td(LCD_A_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_VSYNC high 10 td(LCD_W_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_HSYNC low 11 td(LCD_W_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_HSYNC high 12 td(LCD_STRB_A) Delay time, LCD_CLK (SYSCLK2) high to LCD_PCLK active 13 td(LCD_STRB_I) Delay time, LCD_CLK (SYSCLK2) high to LCD_PCLK inactive 14 td(LCD_D_Z) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] in 3-state 15 td(Z_LCD_D) Delay time, LCD_CLK (SYSCLK2) high to LCD_D[15:0] (valid from 3-state) 1.3V, 1.2V, 1.1V MIN MAX 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 1.0V MIN MAX 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 UNIT ns ns ns ns ns ns ns ns ns ns ns ns 1 2 3 LCD_CLK (SYSCLK2) W_SU (0 to 31) 4 W_STROBE (1 to 63) LCD_D[15:0] Write Data CS_DELAY (0 to 3) W_HOLD (1 to 15) 5 R_SU (0 to 31) R_STROBE (1 to 63) R_HOLD (1 to 15) 14 17 16 Read Status CS_DELAY (0 to 3) 15 Data[7:0] LCD_PCLK LCD_VSYNC LCD_HSYNC LCD_AC_ENB_CS (LCD_MCLK) 8 10 11 12 13 12 13 Figure 5-54. Character Display HD44780 Write Not Used 9 RS R/W E0 (E1) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 213 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 R_SU (0–31) 1 R_STROBE R_HOLD CS_DELAY (1–63) (1–5) (0−3) 2 3 LCD_CLK (SYSCLK2) 14 LCD_D[7:0] 16 17 15 LCD_PCLK Read Data LCD_VSYNC LCD_HSYNC W_HOLD (1–15) W_SU W_STROBE (0–31) (1–63) www.ti.com CS_DELAY (0 − 3) Not Used 4 Write Instruction 5 Data[7:0] Not Used 8 9 RS 10 11 R/W LCD_AC_ENB_CS (LCD_MCLK) 12 13 12 13 E0 (E1) Figure 5-55. Character Display HD44780 Read 214 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com 1 2 LCD_CLK (SYSCLK2) LCD_D[15:0] LCD_AC_ENB_CS (LCD_MCLK) (async mode) LCD_VSYNC LCD_HSYNC LCD_PCLK W_SU (0−31) 3 W_STROBE (1−63) W_HOLD (1−15) CS_DELAY (0−3) OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 W_HOLD (1−15) W_SU W_STROBE (0−31) (1−63) CS_DELAY (0−3) Clock 4 5 Write Address 6 7 8 9 4 Write Data 6 5 Data[15:0] 7 CS0 (CS1) A0 10 11 10 11 R/W 12 13 12 13 E Figure 5-56. Micro-Interface Graphic Display 6800 Write Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 215 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 1 2 LCD_CLK (SYSCLK2) LCD_D[15:0] LCD_AC_ENB_CS (LCD_MCLK) (async mode) LCD_VSYNC W_SU (0−31) 3 W_STROBE (1−63) 4 Write Address 6 8 W_HOLD (1−15) CS_DELAY (0−3) 5 14 7 9 R_SU (0−31) www.ti.com R_STROBE (1−63 R_HOLD (1−15) CS_DELAY (0−3) Clock 16 6 17 Read Data 15 Data[15:0] 7 CS0 (CS1) A0 10 11 LCD_HSYNC R/W LCD_PCLK 12 13 12 13 E Figure 5-57. Micro-Interface Graphic Display 6800 Read 216 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com R_SU (0−31) R_SU (0−31) SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 1 2 LCD_CLK (SYSCLK2) 14 LCD_D[15:0] R_STROBE R_HOLD CS_DELAY (1−63) 3 (1−15) (0−3) 16 17 15 6 LCD_AC_ENB_CS (LCD_MCLK) (async mode) Read Data 7 LCD_VSYNC R_STROBE R_HOLD CS_DELAY (1−63) (1−15) (0−3) Clock 14 16 6 8 17 Read Status 15 Data[15:0] 7 CS0 (CS1) 9 A0 LCD_HSYNC R/W LCD_PCLK 12 13 12 13 E Figure 5-58. Micro-Interface Graphic Display 6800 Status Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 217 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 W_HOLD (1−15) W_SU W_STROBE CS_DELAY 1 (0−31) (1−63) 2 3 (0−3) LCD_CLK (SYSCLK2) 4 5 LCD_D[15:0] Write Address 6 7 LCD_AC_ENB_CS (LCD_MCLK) (async mode) 8 9 LCD_VSYNC LCD_HSYNC 10 11 W_SU W_STROBE (0−31) (1−63) www.ti.com W_HOLD (1−15) CS_DELAY (0 − 3) Clock 4 Write Data 6 5 DATA[15:0] 7 CS0 (CS1) A0 10 11 WR LCD_PCLK RD Figure 5-59. Micro-Interface Graphic Display 8080 Write 218 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com 1 2 LCD_CLK (SYSCLK2) LCD_D[15:0] LCD_AC_ENB_CS (LCD_MCLK) (async mode) LCD_VSYNC LCD_HSYNC LCD_PCLK OMAP-L138 W_SU W_HOLD (1−15) W_STROBE CS_DELAY (0−31) 3 (1−63) (0−3) SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 R_SU (0−31) R_STROBE R_HOLD CS_DELAY (1−63) (1−15) (0−3) Clock 4 5 Write Address 6 7 8 9 14 16 17 Read 6 Data 10 11 12 13 Figure 5-60. Micro-Interface Graphic Display 8080 Read 15 Data[15:0] 7 CS0 (CS1) A0 WR RD Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 219 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 R_SU (0−31) R_SU (0−31) www.ti.com 1 2 LCD_CLK (SYSCLK2) LCD_D[15:0] LCD_AC_ENB_CS (LCD_MCLK) LCD_VSYNC R_STROBE R_HOLD CS_DELAY (1−63) 3 (1−15) (0−3) 14 16 6 17 15 Read Data 7 R_STROBE R_HOLD (1−63) (1−15) CS_DELAY (0−3) Clock 14 16 6 8 17 15 Data[15:0] Read Status 7 CS0 (CS1) 9 A0 LCD_HSYNC WR LCD_PCLK 12 13 12 13 RD Figure 5-61. Micro-Interface Graphic Display 8080 Status 220 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.24.2 LCD Raster Mode Table 5-112. Switching Characteristics Over Recommended Operating Conditions for LCD Raster Mode See Figure 5-62 through Figure 5-66 NO. PARAMETER 1.3V, 1.2V, 1.1V MIN MAX 1.0V MIN MAX UNIT 1 tc(PIXEL_CLK) Cycle time, pixel clock 26.66 33.33 ns 2 tw(PIXEL_CLK_H) Pulse duration, pixel clock high 10 10 ns 3 tw(PIXEL_CLK_L) Pulse duration, pixel clock low 10 10 ns 4 td(LCD_D_V) Delay time, LCD_PCLK high to LCD_D[15:0] valid (write) 0 7 0 9 ns 5 td(LCD_D_IV) Delay time, LCD_PCLK high to LCD_D[15:0] invalid (write) 0 7 0 9 ns 6 td(LCD_AC_ENB_CS_A) Delay time, LCD_PCLK low to LCD_AC_ENB_CS high 0 7 0 9 ns 7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK low to LCD_AC_ENB_CS low 0 7 0 9 ns 8 td(LCD_VSYNC_A) Delay time, LCD_PCLK low to LCD_VSYNC high 0 7 0 9 ns 9 td(LCD_VSYNC_I) Delay time, LCD_PCLK low to LCD_VSYNC low 0 7 0 9 ns 10 td(LCD_HSYNC_A) Delay time, LCD_PCLK high to LCD_HSYNC high 0 7 0 9 ns 11 td(LCD_HSYNC_I) Delay time, LCD_PCLK high to LCD_HSYNC low 0 7 0 9 ns Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register: • Vertical front porch (VFP) • Vertical sync pulse width (VSW) • Vertical back porch (VBP) • Lines per panel (LPP) Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register: • Horizontal front porch (HFP) • Horizontal sync pulse width (HSW) • Horizontal back porch (HBP) • Pixels per panel (PPL) LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register: • AC bias frequency (ACB) The display format produced in raster mode is shown in Figure 5-62. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 221 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 1, 1 2, 1 3, 1 1, 2 2, 2 1, 3 Data Pixels (From 1 to P) www.ti.com P−2, 1 P−1, P, 1 1 P−1, P, 2 2 P, 3 Data Lines (From 1 to L) LCD 1, L−2 1, 2, L−1 L−1 1, L 2, L 3, L Figure 5-62. LCD Raster-Mode Display Format P, L−2 P−1, P, L−1 L−1 P−2, P−1, P, L L L 222 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com Active TFT LCD_HSYNC LCD_VSYNC LCD_D[15:0] LCD_AC_ENB_CS VSW (1 to 64) Frame Time ~ 70 Hz OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 VBP (0 to 255) Line Time LPP (1 to 1024) VFP (0 to 255) VSW (1 to 64) Hsync 1, 1 1, 2 P, 1 P, 2 1, L-1 1, L P, L-1 P, L Vsync Data LCD_HSYNC LCD_PCLK LCD_D[15:0] LCD_AC_ENB_CS 1, 1 2, 1 P, 1 10 11 Hsync CLK 1, 2 2, 2 Data P, 2 PLL 16 × (1 to 1024) Line 1 HFP (1 to 256) HSW (1 to 64) HBP (1 to 256) Figure 5-63. LCD Raster-Mode Active PLL 16 × (1 to 1024) Line 2 Enable Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 223 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Figure 5-64. LCD Raster-Mode Passive 224 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com LCD_AC_ENB_CS LCD_VSYNC LCD_HSYNC OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 6 8 10 11 LCD_PCLK (passive mode) 1 2 3 LCD_D[7:0] (passive mode) 4 1, L 2, L 5 P, L 1, 1 2, 1 P, 1 LCD_PCLK (active mode) 1 2 3 LCD_D[15:0] (active mode) 4 1, L 2, L 5 P, L VBP = 0 VFP = 0 VSW = 1 PPL 16 × (1 to 1024) Line L HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) PPL 16 ×(1 to 1024) Line 1 (Passive Only) Figure 5-65. LCD Raster-Mode Control Signal Activation Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 225 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 LCD_AC_ENB_CS LCD_VSYNC LCD_HSYNC 7 9 10 11 www.ti.com LCD_PCLK (passive mode) 1 4 3 LCD_D[7:0] (passive mode) 1, 1 2, 1 P, 1 4 1, 2 2, 2 5 P, 2 LCD_PCLK (active mode) 1 2 3 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 PPL 16 × (1 to 1024) Line 1 for passive HFP (1 to 256 HSW (1 to 64) 4 1, 1 2, 1 5 P, 1 HBP (1 to 256) PPL 16 ×(1 to 1024) Line 1 for active Line 2 for passive Figure 5-66. LCD Raster-Mode Control Signal Deactivation 226 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.25 Host-Port Interface (UHPI) 5.25.1 HPI Device-Specific Information The device includes a user-configurable 16-bit Host-port interface (HPI16). The host port interface (UHPI) provides a parallel port interface through which an external host processor can directly access the processor's resources (configuration and program/data memories). The external host device is asynchronous to the CPU clock and functions as a master to the HPI interface. The UHPI enables a host device and the processor to exchange information via internal or external memory. Dedicated address (HPIA) and data (HPID) registers within the UHPI provide the data path between the external host interface and the processor resources. A UHPI control register (HPIC) is available to the host and the CPU for various configuration and interrupt functions. 5.25.2 HPI Peripheral Register Description(s) Table 5-113. HPI Control Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION COMMENTS 0x01E1 0000 PID Peripheral Identification Register 0x01E1 0004 PWREMU_MGMT HPI power and emulation management register The CPU has read/write access to the PWREMU_MGMT register. 0x01E1 0008 - Reserved 0x01E1 000C GPIO_EN General Purpose IO Enable Register 0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1 0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1 0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2 0x01E1 001C GPIO_DAT2 General Purpose IO Data Register 2 0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3 0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3 01E1 0028 - Reserved 01E1 002C - Reserved 01E1 0030 HPIC HPI control register The Host and the CPU both have read/write access to the HPIC register. 01E1 0034 01E1 0038 HPIA (HPIAW) (1) HPIA (HPIAR) (1) HPI address register (Write) HPI address register (Read) The Host has read/write access to the HPIA registers. The CPU has only read access to the HPIA registers. 01E1 000C - 01E1 07FF - Reserved (1) There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 227 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.25.3 HPI Electrical Data/Timing www.ti.com Table 5-114. Timing Requirements for Host-Port Interface [1.2V, 1.1V](1) (2) NO. 1 tsu(SELV-HSTBL) 2 th(HSTBL-SELV) 3 tw(HSTBL) 4 tw(HSTBH) 9 tsu(SELV-HASL) 10 th(HASL-SELV) 11 tsu(HDV-HSTBH) 12 th(HSTBH-HDV) 13 th(HRDYL-HSTBH) Setup time, select signals(3) valid before UHPI_HSTROBE low Hold time, select signals(3) valid after UHPI_HSTROBE low 1.3V, 1.2V, 1.1V, 1.0V UNIT MIN MAX 5 ns 2 ns Pulse duration, UHPI_HSTROBE active low 15 ns Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses 2M ns Setup time, selects signals valid before UHPI_HAS low 5 ns Hold time, select signals valid after UHPI_HAS low 2 ns Setup time, host data valid before UHPI_HSTROBE high 5 ns Hold time, host data valid after UHPI_HSTROBE high 2 ns Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes 2 ns will not complete properly. 16 tsu(HASL-HSTBL) 17 th(HSTBL-HASH) Setup time, UHPI_HAS low before UHPI_HSTROBE low Hold time, UHPI_HAS low after UHPI_HSTROBE low 5 ns 2 ns (1) UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. (2) M=SYSCLK2 period in ns. (3) Select signals include: HCNTL[1:0], HR/W and HHWIL. 228 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-115. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface [1.3V, 1.2V, 1.1V](1) (2) (3) 1.3V, 1.2V 1.1V NO. PARAMETER UNIT MIN MAX MIN MAX For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: 5 td(HSTBL-HRDYV) Delay time, HSTROBE low to Case 1: HPID read (with HRDY valid auto-increment) and data not in Read 15 FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 17 ns 5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 15 17 ns 6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 1.5 1.5 ns 7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 0 0 ns 8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 1.5 1.5 ns 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 15 17 ns For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: 15 td(HSTBL-HDV) Delay time, HSTROBE low to HD valid Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already 15 in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 17 ns For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is 18 td(HSTBH-HRDYV) Delay time, HSTROBE high to full (can happen to either half-word) HRDY valid Case 2: HPIA write (can happen to 15 either half-word) Case 3: HPID write without auto-increment (only happens to second half-word) 17 ns (1) M=SYSCLK2 period in ns. (2) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. (3) By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 229 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-116. Switching Characteristics Over Recommended Operating Conditions for Host-Port Interface [1.0V](1) (2) (3) 1.0V NO. PARAMETER UNIT MIN MAX For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty 5 td(HSTBL-HRDYV) Delay time, HSTROBE low to HRDY valid For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 22 ns 5a td(HASL-HRDYV) Delay time, HAS low to HRDY valid 22 ns 6 ten(HSTBL-HDLZ) Enable time, HD driven from HSTROBE low 1.5 ns 7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 0 ns 8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 1.5 ns 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from HSTROBE high 22 ns 15 td(HSTBL-HDV) Delay time, HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 22 ns 18 td(HSTBH-HRDYV) Delay time, HSTROBE high to HRDY valid For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either half-word) Case 3: HPID write without auto-increment (only happens to second half-word) 22 ns (1) M=SYSCLK2 period in ns. (2) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. (3) By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). 230 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com UHPI_HCS OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 UHPI_HAS(D) 1 UHPI_HCNTL[1:0] 1 UHPI_HR/W 1 UHPI_HHWIL UHPI_HSTROBE(A)(C) 2 2 2 3 2 1 2 1 2 1 4 3 UHPI_HD[15:0] (output) 5 UHPI_HRDY(B) 15 6 8 13 7 15 14 6 1st Half-Word 14 8 2nd Half-Word A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing)and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 5-67. UHPI Read Timing (HAS Not Used, Tied High) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 231 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com UHPI_HAS(A) 17 9 10 UHPI_HCNTL[1:0] 17 9 10 9 UHPI_HR/W 9 UHPI_HHWIL UHPI_HSTROBE(B) UHPI_HCS 10 10 3 16 10 9 10 9 4 16 6 UHPI_HD[15:0] 14 14 8 15 8 (output) UHPI_HRDY 1st half-word 5a 2nd half-word 7 A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 5-68. UHPI Read Timing (HAS Used) 232 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com UHPI_HCS OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 UHPI_HAS(D) 1 UHPI_HCNTL[1:0] 1 UHPI_HR/W 1 UHPI_HHWIL UHPI_HSTROBE(A)(C) 2 2 2 3 1 2 1 2 1 2 4 3 UHPI_HD[15:0] (input) UHPI_HRDY(B) 11 12 11 12 1st Half-Word 2nd Half-Word 5 13 18 13 5 18 A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 5-69. UHPI Write Timing (HAS Not Used, Tied High) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 233 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 17 UHPI_HAS† 10 9 UHPI_HCNTL[1:0] 17 10 9 10 9 UHPI_HR/W 10 9 10 9 UHPI_HHWIL 10 9 3 4 UHPI_HSTROBE‡ 16 16 UHPI_HCS UHPI_HD[15:0] 11 12 11 12 (input) UHPI_HRDY 1st half-word 5a 13 2nd half-word A. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. B. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 5-70. UHPI Write Timing (HAS Used) 234 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.26 Universal Parallel Port (uPP) The Universal Parallel Port (uPP) peripheral is a multichannel, high-speed parallel interface with dedicated data lines and minimal control signals. It is designed to interface cleanly with high-speed analog-to-digital converters (ADCs) or digital-to-analog converters (DACs) with up to 16-bit data width (per channel). It may also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve high-speed digital data transfer. It can operate in receive mode, transmit mode, or duplex mode, in which its individual channels operate in opposite directions. The uPP peripheral includes an internal DMA controller to maximize throughput and minimize CPU overhead during high-speed data transmission. All uPP transactions use the internal DMA to provide data to or retrieve data from the I/O channels. The DMA controller includes two DMA channels, which typically service separate I/O channels. The uPP peripheral also supports data interleave mode, in which all DMA resources service a single I/O channel. In this mode, only one I/O channel may be used. The features of the uPP include: • Programmable data width per channel (from 8 to 16 bits inclusive) • Programmable data justification – Right-justify with zero extend – Right-justify with sign extend – Left-justify with zero fill • Supports multiplexing of interleaved data during SDR transmit • Optional frame START signal with programmable polarity • Optional data ENABLE signal with programmable polarity • Optional synchronization WAIT signal with programmable polarity • Single Data Rate (SDR) or Double data Rate (DDR, interleaved) interface – Supports multiplexing of interleaved data during SDR transmit – Supports demultiplexing and multiplexing of interleaved data during DDR transfers Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 235 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.26.1 uPP Register Descriptions BYTE ADDRESS 0x01E1 6000 0x01E1 6004 0x01E1 6008 0x01E1 6010 0x01E1 6014 0x01E1 6018 0x01E1 601C 0x01E1 6020 0x01E1 6024 0x01E1 6028 0x01E1 602C 0x01E1 6030 0x01E1 6040 0x01E1 6044 0x01E1 6048 0x01E1 6050 0x01E1 6054 0x01E1 6058 0x01E1 6060 0x01E1 6064 0x01E1 6068 0x01E1 6070 0x01E1 6074 0x01E1 6078 Table 5-117. Universal Parallel Port (uPP) Registers ACRONYM UPPID UPPCR UPDLB UPCTL UPICR UPIVR UPTCR UPISR UPIER UPIES UPIEC UPEOI UPID0 UPID1 UPID2 UPIS0 UPIS1 UPIS2 UPQD0 UPQD1 UPQD2 UPQS0 UPQS1 UPQS2 REGISTER DESCRIPTION uPP Peripheral Identification Register uPP Peripheral Control Register uPP Digital Loopback Register uPP Channel Control Register uPP Interface Configuration Register uPP Interface Idle Value Register uPP Threshold Configuration Register uPP Interrupt Raw Status Register uPP Interrupt Enabled Status Register uPP Interrupt Enable Set Register uPP Interrupt Enable Clear Register uPP End-of-Interrupt Register uPP DMA Channel I Descriptor 0 Register uPP DMA Channel I Descriptor 1 Register uPP DMA Channel I Descriptor 2 Register uPP DMA Channel I Status 0 Register uPP DMA Channel I Status 1 Register uPP DMA Channel I Status 2 Register uPP DMA Channel Q Descriptor 0 Register uPP DMA Channel Q Descriptor 1 Register uPP DMA Channel Q Descriptor 2 Register uPP DMA Channel Q Status 0 Register uPP DMA Channel Q Status 1 Register uPP DMA Channel Q Status 2 Register www.ti.com 236 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com 5.26.2 uPP Electrical Data/Timing SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-118. Timing Requirements for uPP (see Figure 5-71, Figure 5-72, Figure 5-73, Figure 5-74) 1.3V, 1.2V 1.1V 1.0V NO. PARAMETER UNIT MIN MAX MIN MAX MIN MAX 1 tc(INCLK) Cycle time, CHn_CLK SDR mode 13.33 20 26.66 ns DDR mode 26.66 40 53.33 2 tw(INCLKH) Pulse width, CHn_CLK high SDR mode 5 8 10 ns DDR mode 10 16 20 3 tw(INCLKL) Pulse width, CHn_CLK low SDR mode 5 8 10 ns DDR mode 10 16 20 4 tsu(STV-INCLKH) Setup time, CHn_START valid before CHn_CLK high 4 5.5 6.5 ns 5 th(INCLKH-STV) Hold time, CHn_START valid after CHn_CLK high 0.8 0.8 0.8 ns 6 tsu(ENV-INCLKH) Setup time, CHn_ENABLE valid before CHn_CLK high 4 5.5 6.5 ns 7 th(INCLKH-ENV) Hold time, CHn_ENABLE valid after CHn_CLK high 0.8 0.8 0.8 ns 8 tsu(DV-INCLKH) Setup time, CHn_DATA/XDATA valid before CHn_CLK high 4 5.5 6.5 ns 9 th(INCLKH-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK high 0.8 0.8 0.8 ns 10 tsu(DV-INCLKL) Setup time, CHn_DATA/XDATA valid before CHn_CLK low 4 5.5 6.5 ns 11 th(INCLKL-DV) Hold time, CHn_DATA/XDATA valid after CHn_CLK low 0.8 0.8 0.8 ns 19 tsu(WTV-INCLKL) Setup time, CHn_WAIT valid before CHn_CLK high 10 12 14 ns 20 th(INCLKL-WTV) 21 tc(2xTXCLK) Hold time, CHn_WAIT valid after CHn_CLK high Cycle time, 2xTXCLK input clock(1) 0.8 0.8 0.8 ns 6.66 10 13.33 ns (1) 2xTXCLK is an alternate transmit clock source that must be at least 2 times the required uPP transmit clock rate (as it is is divided down by 2 inside the uPP). 2xTXCLK has no specified skew relationship to the CHn_CLOCK and therefore is not shown in the timing diagram. Table 5-119. Switching Characteristics Over Recommended Operating Conditions for uPP NO. PARAMETER 12 tc(OUTCLK) Cycle time, CHn_CLK SDR mode DDR mode 13 tw(OUTCLKH) Pulse width, CHn_CLK high SDR mode DDR mode 14 tw(OUTCLKL) Pulse width, CHn_CLK low SDR mode DDR mode 15 td(OUTCLKH-STV) Delay time, CHn_START valid after CHn_CLK high 16 td(OUTCLKH-ENV) Delay time, CHn_ENABLE valid after CHn_CLK high 17 td(OUTCLKH-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK high 18 td(OUTCLKL-DV) Delay time, CHn_DATA/XDATA valid after CHn_CLK low 1.3V, 1.2V MIN MAX 13.33 26.66 5 10 5 10 2 11 2 11 2 11 2 11 1.1V MIN MAX 20 40 8 16 8 16 2 15 2 15 2 15 2 15 1.0V MIN MAX 26.66 53.33 10 20 10 20 2 21 2 21 2 21 2 21 UNIT ns ns ns ns ns ns ns Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 237 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 CHx_CLK CHx_START 1 4 5 CHx_ENABLE www.ti.com 2 3 6 7 CHx_WAIT CHx_DATA[n:0] CHx_XDATA[n:0] Data1 Data2 Data3 8 9 Data4 Data5 Data6 Data7 Data8 Data9 Figure 5-71. uPP Single Data Rate (SDR) Receive Timing CHx_CLK CHx_START CHx_ENABLE CHx_WAIT CHx_DATA[n:0] CHx_XDATA[n:0] 1 4 5 2 3 6 7 I1 Q1 I2 Q2 I3 Q3 8 9 I4 Q4 10 11 I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9 Figure 5-72. uPP Double Data Rate (DDR) Receive Timing 238 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com CHx_CLK CHx_START CHx_ENABLE CHx_WAIT CHx_DATA[n:0] CHx_XDATA[n:0] OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 12 13 14 15 16 19 20 17 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Figure 5-73. uPP Single Data Rate (SDR) Transmit Timing CHx_CLK CHx_START CHx_ENABLE CHx_WAIT CHx_DATA[n:0] CHx_XDATA[n:0] 12 13 14 15 16 19 20 17 I1 Q1 I2 Q2 I3 Q3 I4 Q4 18 I5 Q5 I6 Q6 I7 Q7 I8 Q8 I9 Q9 Figure 5-74. uPP Double Data Rate (DDR) Transmit Timing Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 239 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.27 Video Port Interface (VPIF) The Video Port Interface (VPIF) allows the capture and display of digital video streams. Features include: • Up to 2 Video Capture Channels (Channel 0 and Channel 1) – Two 8-bit Standard-Definition (SD) Video with embedded timing codes (BT.656) – Single 16-bit High-Definition (HD) Video with embedded timing codes (BT.1120) – Single Raw Video (8-/10-/12-bit) • Up to 2 Video Display Channels (Channel 2 and Channel 3) – Two 8-bit SD Video Display with embedded timing codes (BT.656) – Single 16-bit HD Video Display with embedded timing codes (BT.1120) The VPIF capture channel input data format is selectable based on the settings of the specific Channel Control Register (Channels 0–3). The VPIF Raw Video data-bus width is selectable based on the settings of the Channel 0 Control Register. 240 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.27.1 VPIF Register Descriptions Table 5-120 shows the VPIF registers. BYTE ADDRESS 0x01E1 7000 0x01E1 7004 0x01E1 7008 0x01E1 700C 0x01E1 7010 0x01E1 7014 - 0x01E1 701F 0x01E1 7020 0x01E1 7024 0x01E1 7028 0x01E1 702C 0x01E1 7030 0x01E1 7034 0x01E1 7038 0x01E1 703C - 0x01E1 703F 0x01E1 7040 0x01E1 7044 0x01E1 7048 0x01E1 704C 0x01E1 7050 0x01E1 7054 0x01E1 7058 0x01E1 705C 0x01E1 7060 0x01E1 7064 0x01E1 7068 0x01E1 706C 0x01E1 7070 0x01E1 7074 0x01E1 7078 0x01E1 707C 0x01E1 7080 0x01E1 7084 0x01E1 7088 0x01E1 708C 0x01E1 7090 0x01E1 7094 0x01E1 7098 0x01E1 709C 0x01E1 70A0 0x01E1 70A4 0x01E1 70A8 0x01E1 70AC Table 5-120. Video Port Interface (VPIF) Registers ACRONYM REGISTER DESCRIPTION PID Peripheral identification register CH0_CTRL Channel 0 control register CH1_CTRL Channel 1 control register CH2_CTRL Channel 2 control register CH3_CTRL Channel 3 control register - Reserved INTEN Interrupt enable INTENSET Interrupt enable set INTENCLR Interrupt enable clear INTSTAT Interrupt status INTSTATCLR Interrupt status clear EMU_CTRL Emulation control DMA_SIZE DMA size control - Reserved CAPTURE CHANNEL 0 REGISTERS CH0_TY_STRTADR Channel 0 Top Field luma buffer start address CH0_BY_STRTADR Channel 0 Bottom Field luma buffer start address CH0_TC_STRTADR Channel 0 Top Field chroma buffer start address CH0_BC_STRTADR Channel 0 Bottom Field chroma buffer start address CH0_THA_STRTADR Channel 0 Top Field horizontal ancillary data buffer start address CH0_BHA_STRTADR Channel 0 Bottom Field horizontal ancillary data buffer start address CH0_TVA_STRTADR Channel 0 Top Field vertical ancillary data buffer start address CH0_BVA_STRTADR Channel 0 Bottom Field vertical ancillary data buffer start address CH0_SUBPIC_CFG Channel 0 sub-picture configuration CH0_IMG_ADD_OFST Channel 0 image data address offset CH0_HA_ADD_OFST Channel 0 horizontal ancillary data address offset CH0_HSIZE_CFG Channel 0 horizontal data size configuration CH0_VSIZE_CFG0 Channel 0 vertical data size configuration (0) CH0_VSIZE_CFG1 Channel 0 vertical data size configuration (1) CH0_VSIZE_CFG2 Channel 0 vertical data size configuration (2) CH0_VSIZE Channel 0 vertical image size CAPTURE CHANNEL 1 REGISTERS CH1_TY_STRTADR Channel 1 Top Field luma buffer start address CH1_BY_STRTADR Channel 1 Bottom Field luma buffer start address CH1_TC_STRTADR Channel 1 Top Field chroma buffer start address CH1_BC_STRTADR Channel 1 Bottom Field chroma buffer start address CH1_THA_STRTADR Channel 1 Top Field horizontal ancillary data buffer start address CH1_BHA_STRTADR Channel 1 Bottom Field horizontal ancillary data buffer start address CH1_TVA_STRTADR Channel 1 Top Field vertical ancillary data buffer start address CH1_BVA_STRTADR Channel 1 Bottom Field vertical ancillary data buffer start address CH1_SUBPIC_CFG Channel 1 sub-picture configuration CH1_IMG_ADD_OFST Channel 1 image data address offset CH1_HA_ADD_OFST Channel 1 horizontal ancillary data address offset CH1_HSIZE_CFG Channel 1 horizontal data size configuration Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 241 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-120. Video Port Interface (VPIF) Registers (continued) BYTE ADDRESS 0x01E1 70B0 0x01E1 70B4 0x01E1 70B8 0x01E1 70BC 0x01E1 70C0 0x01E1 70C4 0x01E1 70C8 0x01E1 70CC 0x01E1 70D0 0x01E1 70D4 0x01E1 70D8 0x01E1 70DC 0x01E1 70E0 0x01E1 70E4 0x01E1 70E8 0x01E1 70EC 0x01E1 70F0 0x01E1 70F4 0x01E1 70F8 0x01E1 70FC 0x01E1 7100 0x01E1 7104 0x01E1 7108 0x01E1 710C 0x01E1 7110 0x01E1 7114 0x01E1 7118 0x01E1 711C 0x01E1 7120 - 0x01E1 713F 0x01E1 7140 0x01E1 7144 0x01E1 7148 0x01E1 714C 0x01E1 7150 0x01E1 7154 0x01E1 7158 0x01E1 715C 0x01E1 7160 0x01E1 7164 0x01E1 7168 0x01E1 716C 0x01E1 7170 0x01E1 7174 0x01E1 7178 0x01E1 717C ACRONYM REGISTER DESCRIPTION CH1_VSIZE_CFG0 Channel 1 vertical data size configuration (0) CH1_VSIZE_CFG1 Channel 1 vertical data size configuration (1) CH1_VSIZE_CFG2 Channel 1 vertical data size configuration (2) CH1_VSIZE Channel 1 vertical image size DISPLAY CHANNEL 2 REGISTERS CH2_TY_STRTADR Channel 2 Top Field luma buffer start address CH2_BY_STRTADR Channel 2 Bottom Field luma buffer start address CH2_TC_STRTADR Channel 2 Top Field chroma buffer start address CH2_BC_STRTADR Channel 2 Bottom Field chroma buffer start address CH2_THA_STRTADR Channel 2 Top Field horizontal ancillary data buffer start address CH2_BHA_STRTADR Channel 2 Bottom Field horizontal ancillary data buffer start address CH2_TVA_STRTADR Channel 2 Top Field vertical ancillary data buffer start address CH2_BVA_STRTADR Channel 2 Bottom Field vertical ancillary data buffer start address CH2_SUBPIC_CFG Channel 2 sub-picture configuration CH2_IMG_ADD_OFST Channel 2 image data address offset CH2_HA_ADD_OFST Channel 2 horizontal ancillary data address offset CH2_HSIZE_CFG Channel 2 horizontal data size configuration CH2_VSIZE_CFG0 Channel 2 vertical data size configuration (0) CH2_VSIZE_CFG1 Channel 2 vertical data size configuration (1) CH2_VSIZE_CFG2 Channel 2 vertical data size configuration (2) CH2_VSIZE Channel 2 vertical image size CH2_THA_STRTPOS Channel 2 Top Field horizontal ancillary data insertion start position CH2_THA_SIZE Channel 2 Top Field horizontal ancillary data size CH2_BHA_STRTPOS Channel 2 Bottom Field horizontal ancillary data insertion start position CH2_BHA_SIZE Channel 2 Bottom Field horizontal ancillary data size CH2_TVA_STRTPOS Channel 2 Top Field vertical ancillary data insertion start position CH2_TVA_SIZE Channel 2 Top Field vertical ancillary data size CH2_BVA_STRTPOS Channel 2 Bottom Field vertical ancillary data insertion start position CH2_BVA_SIZE Channel 2 Bottom Field vertical ancillary data size - Reserved DISPLAY CHANNEL 3 REGISTERS CH3_TY_STRTADR Channel 3 Field 0 luma buffer start address CH3_BY_STRTADR Channel 3 Field 1 luma buffer start address CH3_TC_STRTADR Channel 3 Field 0 chroma buffer start address CH3_BC_STRTADR Channel 3 Field 1 chroma buffer start address CH3_THA_STRTADR Channel 3 Field 0 horizontal ancillary data buffer start address CH3_BHA_STRTADR Channel 3 Field 1 horizontal ancillary data buffer start address CH3_TVA_STRTADR Channel 3 Field 0 vertical ancillary data buffer start address CH3_BVA_STRTADR Channel 3 Field 1 vertical ancillary data buffer start address CH3_SUBPIC_CFG Channel 3 sub-picture configuration CH3_IMG_ADD_OFST Channel 3 image data address offset CH3_HA_ADD_OFST Channel 3 horizontal ancillary data address offset CH3_HSIZE_CFG Channel 3 horizontal data size configuration CH3_VSIZE_CFG0 Channel 3 vertical data size configuration (0) CH3_VSIZE_CFG1 Channel 3 vertical data size configuration (1) CH3_VSIZE_CFG2 Channel 3 vertical data size configuration (2) CH3_VSIZE Channel 3 vertical image size 242 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-120. Video Port Interface (VPIF) Registers (continued) BYTE ADDRESS 0x01E1 7180 0x01E1 7184 0x01E1 7188 0x01E1 718C 0x01E1 7190 0x01E1 7194 0x01E1 7198 0x01E1 719C 0x01E1 71A0 - 0x01E1 71FF ACRONYM CH3_THA_STRTPOS CH3_THA_SIZE CH3_BHA_STRTPOS CH3_BHA_SIZE CH3_TVA_STRTPOS CH3_TVA_SIZE CH3_BVA_STRTPOS CH3_BVA_SIZE - REGISTER DESCRIPTION Channel 3 Top Field horizontal ancillary data insertion start position Channel 3 Top Field horizontal ancillary data size Channel 3 Bottom Field horizontal ancillary data insertion start position Channel 3 Bottom Field horizontal ancillary data size Channel 3 Top Field vertical ancillary data insertion start position Channel 3 Top Field vertical ancillary data size Channel 3 Bottom Field vertical ancillary data insertion start position Channel 3 Bottom Field vertical ancillary data size Reserved Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 243 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.27.2 VPIF Electrical Data/Timing Table 5-121. Timing Requirements for VPIF VP_CLKINx Inputs(1) (see Figure 5-75) NO. PARAMETER 1 tc(VKI) Cycle time, VP_CLKIN0 Cycle time, VP_CLKIN1/2/3 2 tw(VKIH) 3 tw(VKIL) 4 tt(VKI) Pulse duration, VP_CLKINx high Pulse duration, VP_CLKINx low Transition time, VP_CLKINx (1) C = VP_CLKINx period in ns. 1.3V, 1.2V MIN MAX 13.3 13.3 0.4C 0.4C 5 1.1V MIN MAX 20 20 0.4C 0.4C 5 1.0V MIN MAX 37 37 0.4C 0.4C 5 UNIT ns ns ns ns ns 1 2 4 3 VP_CLKINx 4 Figure 5-75. Video Port Capture VP_CLKINx Timing 244 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-122. Timing Requirements for VPIF Channels 0/1 Video Capture Data and Control Inputs (see Figure 5-76) NO. PARAMETER 1 tsu(VDINV- VKIH) Setup time, VP_DINx valid before VP_OSCIN0/1 high 2 th(VKIH-VDINV) Hold time, VP_DINx valid after VP_CLKIN0/1 high 1.3V 1.2V 1.1V 1.0V UNIT MIN MAX MIN MAX MIN MAX MIN MAX 4 4 6 7 ns 0.5 0 0 0 ns VP_CLKIN0/1 1 2 VP_DINx/FIELD/ HSYNC/VSYNC Figure 5-76. VPIF Channels 0/1 Video Capture Data and Control Input Timing Table 5-123. Switching Characteristics Over Recommended Operating Conditions for Video Data Shown With Respect to VP_CLKOUT2/3(1) (see Figure 5-77) NO. 1 tc(VKO) 2 tw(VKOH) 3 tw(VKOL) 4 tt(VKO) 11 td(VKOH-VPDOUTV) 12 td(VCLKOH-VPDOUTIV) PARAMETER Cycle time, VP_CLKOUT2/3 Pulse duration, VP_CLKOUT2/3 high Pulse duration, VP_CLKOUT2/3 low Transition time, VP_CLKOUT2/3 Delay time, VP_CLKOUT2/3 high to VP_DOUTx valid Delay time, VP_CLKOUT2/3 high to VP_DOUTx invalid 1.3V, 1.2V MIN MAX 13.3 0.4C 0.4C 5 1.1V MIN MAX 20 0.4C 0.4C 5 1.0V MIN MAX 37 0.4C 0.4C 5 UNIT ns ns ns ns 8.5 12 17 ns 1.5 1.5 1.5 ns (1) C = VP_CLKO2/3 period in ns. VP_CLKOUTx (Positive Edge Clocking) 4 VP_CLKOUTx (Negative Edge Clocking) 2 1 3 4 11 12 VP_DOUTx Figure 5-77. VPIF Channels 2/3 Video Display Data Output Timing With Respect to VP_CLKOUT2/3 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 245 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.28 Enhanced Capture (eCAP) Peripheral The device contains up to three enhanced capture (eCAP) modules. Figure 5-78 shows a functional block diagram of a module. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the ASYNC3 clock domain rate. 246 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 SYNC MODE SELECT SYNCIn SYNCOut CTRPHS (phase register−32 bit) TSCTR OVF (counter−32 bit) RST CTR_OVF Delta−mode 32 32 CTR [0−31] PRD [0−31] APWM mode CTR [0−31] PRD [0−31] CMP [0−31] PWM compare logic CTR=PRD CTR=CMP 32 CAP1 (APRD active) LD LD1 APRD shadow 32 32 CMP [0−31] 32 CAP2 (ACMP active) LD LD2 32 ACMP shadow Event qualifier 32 CAP3 (APRD shadow) LD LD3 Polarity select Polarity select Polarity select Event Pre-scale eCAPx 32 to Interrupt Controller CAP4 (ACMP shadow) LD LD4 4 Capture events CEVT[1:4] Polarity select 4 Interrupt Trigger and Flag control CTR_OVF CTR=PRD CTR=CMP Continuous / Oneshot Capture Control Figure 5-78. eCAP Functional Block Diagram Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 247 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-124 is the list of the ECAP registers. Table 5-124. ECAPx Configuration Registers ECAP0 BYTE ADDRESS 0x01F0 6000 0x01F0 6004 0x01F0 6008 0x01F0 600C 0x01F0 6010 0x01F0 6014 0x01F0 6028 0x01F0 602A 0x01F0 602C 0x01F0 602E 0x01F0 6030 0x01F0 6032 0x01F0 605C ECAP1 BYTE ADDRESS 0x01F0 7000 0x01F0 7004 0x01F0 7008 0x01F0 700C 0x01F0 7010 0x01F0 7014 0x01F0 7028 0x01F0 702A 0x01F0 702C 0x01F0 702E 0x01F0 7030 0x01F0 7032 0x01F0 705C ECAP2 BYTE ADDRESS 0x01F0 8000 0x01F0 8004 0x01F0 8008 0x01F0 800C 0x01F0 8010 0x01F0 8014 0x01F0 8028 0x01F0 802A 0x01F0 802C 0x01F0 802E 0x01F0 8030 0x01F0 8032 0x01F0 805C ACRONYM TSCTR CTRPHS CAP1 CAP2 CAP3 CAP4 ECCTL1 ECCTL2 ECEINT ECFLG ECCLR ECFRC REVID DESCRIPTION Time-Stamp Counter Counter Phase Offset Value Register Capture 1 Register Capture 2 Register Capture 3 Register Capture 4 Register Capture Control Register 1 Capture Control Register 2 Capture Interrupt Enable Register Capture Interrupt Flag Register Capture Interrupt Clear Register Capture Interrupt Force Register Revision ID Table 5-125 shows the eCAP timing requirement and Table 5-126 shows the eCAP switching characteristics. tw(CAP) Table 5-125. Timing Requirements for Enhanced Capture (eCAP) PARAMETER Capture input pulse width TEST CONDITIONS Asynchronous 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 2tc(SCO) Synchronous 2tc(SCO) UNIT cycle s cycle s Table 5-126. Switching Characteristics Over Recommended Operating Conditions for eCAP PARAMETER tw(APWM) Pulse duration, APWMx output high/low 1.3V, 1.2V MIN MAX 20 1.1V MIN MAX 20 1.0V MIN MAX 20 UNIT ns 248 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.29 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) The device contains two enhanced PWM Modules (eHRPWM). Figure 5-79 shows a block diagram of multiple eHRPWM modules. Figure 5-79 shows the signal interconnections with the eHRPWM. EPWMSYNCI EPWM0INT EPWM0SYNCI EPWM0A Interrupt Controllers ePWM0 module EPWM0SYNCO EPWM0B TZ EPWM1INT EPWM1SYNCI ePWM1 module EPWM1A EPWM1B GPIO MUX To eCAP0 module (sync in) EPWM1SYNCO TZ EPWMSYNCO Peripheral Bus Figure 5-79. Multiple PWM Modules in a OMAP-L138 System Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 249 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Time−base (TB) TBPRD shadow (16) TBPRD active (16) CTR=PRD TBCTL[CNTLDE] Counter up/down (16 bit) TBCNT active (16) CTR=ZERO CTR_Dir 16 TBPHSHR (8) 8 TBPHS active (24) Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 8 CMPA active (24) CMPA shadow (24) Action qualifier (AQ) EPWMA CTR=ZERO CTR=CMPB Disabled Sync in/out select Mux TBCTL[SYNCOSEL] TBCTL[SWFSYNC] (software forced sync) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir Event trigger and interrupt (ET) HiRes PWM (HRPWM) EPWMSYNCO EPWMSYNCI EPWMxINT EPWMxA CTR=CMPB 16 CMPB active (16) CMPB shadow (16) EPWMB Dead band (DB) PWM chopper (PC) CTR = ZERO Trip zone (TZ) EPWMxB EPWMxTZINT TZ Figure 5-80. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections 250 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-127. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM0 eHRPWM1 BYTE ADDRESS BYTE ADDRESS ACRONYM SHADOW REGISTER DESCRIPTION Time-Base Submodule Registers 0x01F0 0000 0x01F0 2000 TBCTL No Time-Base Control Register 0x01F0 0002 0x01F0 0004 0x01F0 2002 0x01F0 2004 TBSTS TBPHSHR No Time-Base Status Register No Extension for HRPWM Phase Register(1) 0x01F0 0006 0x01F0 2006 TBPHS No Time-Base Phase Register 0x01F0 0008 0x01F0 2008 TBCNT No Time-Base Counter Register 0x01F0 000A 0x01F0 200A TBPRD Yes Time-Base Period Register Counter-Compare Submodule Registers 0x01F0 000E 0x01F0 0010 0x01F0 200E 0x01F0 2010 CMPCTL CMPAHR No Counter-Compare Control Register No Extension for HRPWM Counter-Compare A Register(1) 0x01F0 0012 0x01F0 2012 CMPA Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 CMPB Yes Counter-Compare B Register Action-Qualifier Submodule Registers 0x01F0 0016 0x01F0 2016 AQCTLA No Action-Qualifier Control Register for Output A (eHRPWMxA) 0x01F0 0018 0x01F0 2018 AQCTLB No Action-Qualifier Control Register for Output B (eHRPWMxB) 0x01F0 001A 0x01F0 201A AQSFRC No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C AQCSFRC Yes Action-Qualifier Continuous S/W Force Register Set Dead-Band Generator Submodule Registers 0x01F0 001E 0x01F0 201E DBCTL No Dead-Band Generator Control Register 0x01F0 0020 0x01F0 2020 DBRED No Dead-Band Generator Rising Edge Delay Count Register 0x01F0 0022 0x01F0 2022 DBFED No Dead-Band Generator Falling Edge Delay Count Register PWM-Chopper Submodule Registers 0x01F0 003C 0x01F0 203C PCCTL No PWM-Chopper Control Register Trip-Zone Submodule Registers 0x01F0 0024 0x01F0 2024 TZSEL No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 TZCTL No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A TZEINT No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C TZFLG No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E TZCLR No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 TZFRC No Trip-Zone Force Register Event-Trigger Submodule Registers 0x01F0 0032 0x01F0 2032 ETSEL No Event-Trigger Selection Register 0x01F0 0034 0x01F0 2034 ETPS No Event-Trigger Pre-Scale Register 0x01F0 0036 0x01F0 2036 ETFLG No Event-Trigger Flag Register 0x01F0 0038 0x01F0 2038 ETCLR No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A ETFRC No Event-Trigger Force Register 0x01F0 1040 High-Resolution PWM (HRPWM) Submodule Registers 0x01F0 3040 HRCNFG No HRPWM Configuration Register (1) (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 251 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.29.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 5-128 shows the PWM timing requirements and Table 5-129, switching characteristics. tw(SYNCIN) Table 5-128. Timing Requirements for eHRPWM PARAMETER Sync input pulse width TEST CONDITIONS Asynchronous Synchronous 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 2tc(SCO) 2tc(SCO) UNIT cycles cycles Table 5-129. Switching Characteristics Over Recommended Operating Conditions for eHRPWM PARAMETER tw(PWM) tw(SYNCOUT) td(PWM)TZA td(TZ-PWM)HZ Pulse duration, PWMx output high/low Sync output pulse width Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Delay time, trip input active to PWM Hi-Z TEST CONDITIONS no pin load; no additional programmable delay no additional programmable delay 1.3V, 1.2V MIN MAX 20 8tc(SCO) 25 1.1V MIN MAX 20 8tc(SCO) 25 1.0V MIN MAX 26.6 8tc(SCO) 25 UNIT ns cycles ns ns 20 20 20 252 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com 5.29.2 Trip-Zone Input Timing TZ tw(TZ) SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 td(TZ-PWM)HZ PWM(A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 5-81. PWM Hi-Z Characteristics Table 5-130. Trip-Zone input Timing Requirements tw(TZ) PARAMETER Pulse duration, TZx input low TEST CONDITIONS Asynchronous Synchronous 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 1tc(SCO) 2tc(SCO) UNIT cycles cycles Table 5-131 shows the high-resolution PWM switching characteristics. Table 5-131. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) PARAMETER Micro Edge Positioning (MEP) step size(1) 1.3V, 1.2V 1.1V 1.0V UNIT MIN TYP MAX MIN TYP MAX MIN TYP MAX 200 200 200 ps (1) MEP step size will increase with low voltage and high temperature and decrease with high voltage and cold temperature. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 253 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.30 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • 8 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 5-132 lists the timer registers. TIMER64P 0 BYTE ADDRESS 0x01C2 0000 0x01C2 0004 0x01C2 0008 0x01C2 000C 0x01C2 0010 0x01C2 0014 0x01C2 0018 0x01C2 001C 0x01C2 0020 0x01C2 0024 0x01C2 0028 0x01C2 0034 0x01C2 0038 0x01C2 003C 0x01C2 0040 0x01C2 0044 0x01C2 0060 0x01C2 0064 0x01C2 0068 0x01C2 006C 0x01C2 0070 0x01C2 0074 0x01C2 0078 0x01C2 007C TIMER64P 1 BYTE ADDRESS 0x01C2 1000 0x01C2 1004 0x01C2 1008 0x01C2 100C 0x01C2 1010 0x01C2 1014 0x01C2 1018 0x01C2 101C 0x01C2 1020 0x01C2 1024 0x01C2 1028 0x01C2 1034 0x01C2 1038 0x01C2 103C 0x01C2 1040 0x01C2 1044 0x01C2 1060 0x01C2 1064 0x01C2 1068 0x01C2 106C 0x01C2 1070 0x01C2 1074 0x01C2 1078 0x01C2 107C Table 5-132. Timer Registers TIMER64P 2 BYTE ADDRESS 0x01F0 C000 0x01F0 C004 0x01F0 C008 0x01F0 C00C 0x01F0 C010 0x01F0 C014 0x01F0 C018 0x01F0 C01C 0x01F0 C020 0x01F0 C024 0x01F0 C028 0x01F0 C034 0x01F0 C038 0x01F0 C03C 0x01F0 C040 0x01F0 C044 0x01F0 C060 0x01F0 C064 0x01F0 C068 0x01F0 C06C 0x01F0 C070 0x01F0 C074 0x01F0 C078 0x01F0 C07C TIMER64P 3 BYTE ADDRESS 0x01F0 D000 0x01F0 D004 0x01F0 D008 0x01F0 D00C 0x01F0 D010 0x01F0 D014 0x01F0 D018 0x01F0 D01C 0x01F0 D020 0x01F0 D024 0x01F0 D028 0x01F0 D034 0x01F0 D038 0x01F0 D03C 0x01F0 D040 0x01F0 D044 0x01F0 D060 0x01F0 D064 0x01F0 D068 0x01F0 D06C 0x01F0 D070 0x01F0 D074 0x01F0 D078 0x01F0 D07C ACRONYM REGISTER DESCRIPTION REV Revision Register EMUMGT Emulation Management Register GPINTGPEN GPIO Interrupt and GPIO Enable Register GPDATGPDIR GPIO Data and GPIO Direction Register TIM12 Timer Counter Register 12 TIM34 Timer Counter Register 34 PRD12 Timer Period Register 12 PRD34 Timer Period Register 34 TCR Timer Control Register TGCR Timer Global Control Register WDTCR Watchdog Timer Control Register REL12 Timer Reload Register 12 REL34 Timer Reload Register 34 CAP12 Timer Capture Register 12 CAP34 Timer Capture Register 34 INTCTLSTAT Timer Interrupt Control and Status Register CMP0 Compare Register 0 CMP1 Compare Register 1 CMP2 Compare Register 2 CMP3 Compare Register 3 CMP4 Compare Register 4 CMP5 Compare Register 5 CMP6 Compare Register 6 CMP7 Compare Register 7 254 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.30.1 Timer Electrical Data/Timing Table 5-133. Timing Requirements for Timer Input(1) (2) (see Figure 5-82) NO. PARAMETER 1 tc(TM64Px_IN12) Cycle time, TM64Px_IN12 2 tw(TINPH) Pulse duration, TM64Px_IN12 high 3 tw(TINPL) Pulse duration, TM64Px_IN12 low 4 tt(TM64Px_IN12) Transition time, TM64Px_IN12 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 4P 0.45C 0.55C 0.45C 0.55C 0.25P or 10 (3) UNIT ns ns ns ns (1) P = OSCIN cycle time in ns. (2) C = TM64P0_IN12 cycle time in ns. (3) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 1 2 3 4 4 TM64P0_IN12 Figure 5-82. Timer Timing Table 5-134. Switching Characteristics Over Recommended Operating Conditions for Timer Output (1) NO. PARAMETER 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low (1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. 1.3V, 1.2V, 1.1V, 1.0V MIN MAX 4P 4P UNIT ns ns TM64P0_OUT12 5 6 Figure 5-83. Timer Timing Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 255 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.31 Real Time Clock (RTC) The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) provides the following features: • 100-year calendar (xx00 to xx99) • Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation • Binary-coded-decimal (BCD) representation of time, calendar, and alarm • 12-hour clock mode (with AM and PM) or 24-hour clock mode • Alarm interrupt • Periodic interrupt • Single interrupt to the CPU • Supports external 32.768-kHz crystal or external clock source of the same frequency • Separate isolated power supply Figure 5-84 shows a block diagram of the RTC. RTC_XI XTAL RTC_XO Counter 32 kHz Oscillator Compensation Week Days Oscillator Seconds Minutes Hours Days Months Years Alarm Timer Figure 5-84. Real-Time Clock Block Diagram Alarm Interrupts Periodic Interrupts 256 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.31.1 Clock Source The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information. Even if the RTC is not used, it must remain powered when the rest of the device is powered. The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected. If the RTC is not used, the RTC_XI pin should be held either low or high, RTC_XO should be left unconnected, RTC_CVDD should be connected to the device CVDD and RTC_VSS should remain grounded. RTC Power Source C2 CVDD RTC_CVDD RTC_XI XTAL 32.768 kHz C1 RTC_XO 32K OSC Real Time Clock (RTC) Module RTC_VSS Isolated RTC Power Domain Figure 5-85. Clock Source Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 257 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.31.2 Real-Time Clock Register Descriptions BYTE ADDRESS 0x01C2 3000 0x01C2 3004 0x01C2 3008 0x01C2 300C 0x01C2 3010 0x01C2 3014 0x01C2 3018 0x01C2 3020 0x01C2 3024 0x01C2 3028 0x01C2 302C 0x01C2 3030 0x01C2 3034 0x01C2 3040 0x01C2 3044 0x01C2 3048 0x01C2 304C 0x01C2 3050 0x01C2 3054 0x01C2 3060 0x01C2 3064 0x01C2 3068 0x01C2 306C 0x01C2 3070 Table 5-135. Real-Time Clock (RTC) Registers ACRONYM SECOND MINUTE HOUR DAY MONTH YEAR DOTW ALARMSECOND ALARMMINUTE ALARMHOUR ALARMDAY ALARMMONTH ALARMYEAR CTRL STATUS INTERRUPT COMPLSB COMPMSB OSC SCRATCH0 SCRATCH1 SCRATCH2 KICK0 KICK1 REGISTER DESCRIPTION Seconds Register Minutes Register Hours Register Day of the Month Register Month Register Year Register Day of the Week Register Alarm Seconds Register Alarm Minutes Register Alarm Hours Register Alarm Days Register Alarm Months Register Alarm Years Register Control Register Status Register Interrupt Enable Register Compensation (LSB) Register Compensation (MSB) Register Oscillator Register Scratch 0 (General-Purpose) Register Scratch 1 (General-Purpose) Register Scratch 2 (General-Purpose) Register Kick 0 (Write Protect) Register Kick 1 (Write Protect) Register www.ti.com 258 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.32 General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). The device GPIO peripheral supports the following: • Up to 144 Pins configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, 49, and 50 respectively – GPIO Banks 0, 1, 2, 3, 4, 5, 6, 7, and 8 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62, 72, and 75 respectively – GPIO Banks 0, 1, 2, 3, 4, and 5 are assigned to EDMA events 6, 7, 22, 23, 28, 29, and 29 respectively on Channel Controller 0 and GPIO Banks 6, 7, and 8 are assigned to EDMA events 16, 17, and 18 respectively on Channel Controller 1. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 5-136. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 259 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.32.1 GPIO Register Description(s) BYTE ADDRESS 0x01E2 6000 0x01E2 6004 0x01E2 6008 0x01E2 6010 0x01E2 6014 0x01E2 6018 0x01E2 601C 0x01E2 6020 0x01E2 6024 0x01E2 6028 0x01E2 602C 0x01E2 6030 0x01E2 6034 0x01E2 6038 0x01E2 603C 0x01E2 6040 0x01E2 6044 0x01E2 6048 0x01E2 604C 0x01E2 6050 0x01E2 6054 0x01E2 6058 0x01E2 605C 0x01E2 6060 0x01E2 6064 0x01E2 6068 0x01E2 606C 0x01E2 6070 0x01E2 6074 0x01E2 6078 0x01E2 607C 0x01E2 6080 0x01E2 6084 Table 5-136. GPIO Registers ACRONYM REV RESERVED BINTEN DIR01 OUT_DATA01 SET_DATA01 CLR_DATA01 IN_DATA01 SET_RIS_TRIG01 CLR_RIS_TRIG01 SET_FAL_TRIG01 CLR_FAL_TRIG01 INTSTAT01 DIR23 OUT_DATA23 SET_DATA23 CLR_DATA23 IN_DATA23 SET_RIS_TRIG23 CLR_RIS_TRIG23 SET_FAL_TRIG23 CLR_FAL_TRIG23 INTSTAT23 DIR45 OUT_DATA45 SET_DATA45 CLR_DATA45 IN_DATA45 SET_RIS_TRIG45 CLR_RIS_TRIG45 SET_FAL_TRIG45 CLR_FAL_TRIG45 INTSTAT45 REGISTER DESCRIPTION Peripheral Revision Register Reserved GPIO Interrupt Per-Bank Enable Register GPIO Banks 0 and 1 GPIO Banks 0 and 1 Direction Register GPIO Banks 0 and 1 Output Data Register GPIO Banks 0 and 1 Set Data Register GPIO Banks 0 and 1 Clear Data Register GPIO Banks 0 and 1 Input Data Register GPIO Banks 0 and 1 Set Rising Edge Interrupt Register GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register GPIO Banks 0 and 1 Set Falling Edge Interrupt Register GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register GPIO Banks 0 and 1 Interrupt Status Register GPIO Banks 2 and 3 GPIO Banks 2 and 3 Direction Register GPIO Banks 2 and 3 Output Data Register GPIO Banks 2 and 3 Set Data Register GPIO Banks 2 and 3 Clear Data Register GPIO Banks 2 and 3 Input Data Register GPIO Banks 2 and 3 Set Rising Edge Interrupt Register GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register GPIO Banks 2 and 3 Set Falling Edge Interrupt Register GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register GPIO Banks 2 and 3 Interrupt Status Register GPIO Banks 4 and 5 GPIO Banks 4 and 5 Direction Register GPIO Banks 4 and 5 Output Data Register GPIO Banks 4 and 5 Set Data Register GPIO Banks 4 and 5 Clear Data Register GPIO Banks 4 and 5 Input Data Register GPIO Banks 4 and 5 Set Rising Edge Interrupt Register GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register GPIO Banks 4 and 5 Set Falling Edge Interrupt Register GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register GPIO Banks 4 and 5 Interrupt Status Register www.ti.com 260 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 www.ti.com BYTE ADDRESS 0x01E2 6088 0x01E2 608C 0x01E2 6090 0x01E2 6094 0x01E2 6098 0x01E2 609C 0x01E2 60A0 0x01E2 60A4 0x01E2 60A8 0x01E2 60AC 0x01E2 60B0 0x01E2 60B4 0x01E2 60B8 0x01E2 60BC 0x01E2 60C0 0x01E2 60C4 0x01E2 60C8 0x01E2 60CC 0x01E2 60D0 0x01E2 60D4 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-136. GPIO Registers (continued) ACRONYM DIR67 OUT_DATA67 SET_DATA67 CLR_DATA67 IN_DATA67 SET_RIS_TRIG67 CLR_RIS_TRIG67 SET_FAL_TRIG67 CLR_FAL_TRIG67 INTSTAT67 DIR8 OUT_DATA8 SET_DATA8 CLR_DATA8 IN_DATA8 SET_RIS_TRIG8 CLR_RIS_TRIG8 SET_FAL_TRIG8 CLR_FAL_TRIG8 INTSTAT8 REGISTER DESCRIPTION GPIO Banks 6 and 7 GPIO Banks 6 and 7 Direction Register GPIO Banks 6 and 7 Output Data Register GPIO Banks 6 and 7 Set Data Register GPIO Banks 6 and 7 Clear Data Register GPIO Banks 6 and 7 Input Data Register GPIO Banks 6 and 7 Set Rising Edge Interrupt Register GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register GPIO Banks 6 and 7 Set Falling Edge Interrupt Register GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register GPIO Banks 6 and 7 Interrupt Status Register GPIO Bank 8 GPIO Bank 8 Direction Register GPIO Bank 8 Output Data Register GPIO Bank 8 Set Data Register GPIO Bank 8 Clear Data Register GPIO Bank 8 Input Data Register GPIO Bank 8 Set Rising Edge Interrupt Register GPIO Bank 8 Clear Rising Edge Interrupt Register GPIO Bank 8 Set Falling Edge Interrupt Register GPIO Bank 8 Clear Falling Edge Interrupt Register GPIO Bank 8 Interrupt Status Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 261 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.32.2 GPIO Peripheral Input/Output Electrical Data/Timing www.ti.com Table 5-137. Timing Requirements for GPIO Inputs(1) (see Figure 5-86) NO. PARAMETER 1.3V, 1.2V, 1.1V, 1.0V MIN MAX UNIT 1 tw(GPIH) 2 tw(GPIL) Pulse duration, GPn[m] as input high Pulse duration, GPn[m] as input low 2C (1) (2) ns 2C (1) (2) ns (1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus. (2) C=SYSCLK4 period in ns. Table 5-138. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 5-86) NO. PARAMETER 1.3V, 1.2V, 1.1V, 1.0V MIN MAX UNIT 3 tw(GPOH) Pulse duration, GPn[m] as output high 4 tw(GPOL) Pulse duration, GPn[m] as output low 2C (1) (2) ns 2C (1) (2) ns (1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. (2) C=SYSCLK4 period in ns. GPn[m] as input GPn[m] as output 2 1 4 3 Figure 5-86. GPIO Port Timing 5.32.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 5-139. Timing Requirements for External Interrupts(1) (see Figure 5-87) NO. PARAMETER 1.3V, 1.2V, 1.1V, 1.0V MIN MAX UNIT 1 tw(ILOW) Width of the external interrupt pulse low 2 tw(IHIGH) Width of the external interrupt pulse high 2C (1) (2) ns 2C (1) (2) ns (1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus. (2) C=SYSCLK4 period in ns. GPn[m] as input 2 1 Figure 5-87. GPIO External Interrupt Timing 262 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.33 Programmable Real-Time Unit Subsystem (PRUSS) The Programmable Real-Time Unit Subsystem (PRUSS) consists of • Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories • An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting events back to the device level host CPU. • A Switched Central Resource (SCR) for connecting the various internal and external masters to the resources inside the PRUSS. The two PRUs can operate completely independently or in coordination with each other. The PRUs can also work in coordination with the device level host CPU. This is determined by the nature of the program which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available between the two PRUs and the device level host CPU. The PRUs are optimized for performing embedded tasks that require manipulation of packed memory mapped data structures, handling of system events that have tight realtime constraints and interfacing with systems external to the device. The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single 64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR) of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is documented in Table 5-140 and in Table 5-141. Note that these two memory maps are implemented inside the PRUSS and are local to the components of the PRUSS. Table 5-140. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map BYTE ADDRESS 0x0000 0000 - 0x0000 0FFF PRU0 PRU0 Instruction RAM PRU1 PRU1 Instruction RAM Table 5-141. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map BYTE ADDRESS 0x0000 0000 - 0x0000 01FF PRU0 Data RAM 0(1) PRU1 Data RAM 1(1) 0x0000 0200 - 0x0000 1FFF 0x0000 2000 - 0x0000 21FF Reserved Data RAM 1(1) Reserved Data RAM 0(1) 0x0000 2200 - 0x0000 3FFF Reserved Reserved 0x0000 4000 - 0x0000 6FFF INTC Registers INTC Registers 0x0000 7000 - 0x0000 73FF PRU0 Control Registers PRU0 Control Registers 0x0000 7400 - 0x0000 77FF Reserved Reserved 0x0000 7800 - 0x0000 7BFF PRU1 Control Registers PRU1 Control Registers 0x0000 7C00 - 0xFFFF FFFF Reserved Reserved (1) Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0 is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000. The global view of the PRUSS internal memories and control ports is documented in Table 5-142. The offset addresses of each region are implemented inside the PRUSS but the global device memory mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and PRU1 can use either the local or global addresses to access their internal memories, but using the local addresses will provide access time several cycles faster than using the global addresses. This is because when accessing via the global address the access needs to be routed through the switch fabric outside PRUSS and back in through the PRUSS slave port. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 263 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-142. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map BYTE ADDRESS 0x01C3 0000 - 0x01C3 01FF 0x01C3 0200 - 0x01C3 1FFF 0x01C3 2000 - 0x01C3 21FF 0x01C3 2200 - 0x01C3 3FFF 0x01C3 4000 - 0x01C3 6FFF 0x01C3 7000 - 0x01C3 73FF 0x01C3 7400 - 0x01C3 77FF 0x01C3 7800 - 0x01C3 7BFF 0x01C3 7C00 - 0x01C3 7FFF 0x01C3 8000 - 0x01C3 8FFF 0x01C3 9000 - 0x01C3 BFFF 0x01C3 C000 - 0x01C3 CFFF 0x01C3 D000 - 0x01C3 FFFF REGION Data RAM 0 Reserved Data RAM 1 Reserved INTC Registers PRU0 Control Registers PRU0 Debug Registers PRU1 Control Registers PRU1 Debug Registers PRU0 Instruction RAM Reserved PRU1 Instruction RAM Reserved Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and configuration registers) using the global memory space addresses 5.33.1 PRUSS Register Descriptions Table 5-143. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers PRU0 BYTE ADDRESS 0x01C3 7000 0x01C3 7004 0x01C3 7008 0x01C3 700C 0x01C3 7010 0x01C3 7020 0x01C3 7028 0x01C3 702C 0x01C37400 0x01C3747C 0x01C37480 0x01C374FC PRU1 BYTE ADDRESS 0x01C3 7800 0x01C3 7804 0x01C3 7808 0x01C3 780C 0x01C3 7810 0x01C3 7820 0x01C3 7828 0x01C3 782C 0x01C3 7C00 0x01C3 7C7C 0x01C3 7C80 0x01C3 7CFC ACRONYM CONTROL STATUS WAKEUP CYCLCNT STALLCNT CONTABBLKIDX0 CONTABPROPTR0 CONTABPROPTR1 REGISTER DESCRIPTION PRU Control Register PRU Status Register PRU Wakeup Enable Register PRU Cycle Count PRU Stall Count PRU Constant Table Block Index Register 0 PRU Constant Table Programmable Pointer Register 0 PRU Constant Table Programmable Pointer Register 1 INTGPR0 – INTGPR31 PRU Internal General Purpose Register 0 (for Debug) INTCTER0 – INTCTER31 PRU Internal General Purpose Register 0 (for Debug) Table 5-144. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers BYTE ADDRESS 0x01C3 4000 0x01C3 4004 0x01C3 4010 0x01C3 401C 0x01C3 4020 0x01C3 4024 0x01C3 4028 0x01C3 402C 0x01C3 4034 0x01C3 4038 0x01C3 4080 0x01C3 4200 ACRONYM REVID CONTROL GLBLEN GLBLNSTLVL STATIDXSET STATIDXCLR ENIDXSET ENIDXCLR HSTINTENIDXSET HSTINTENIDXCLR GLBLPRIIDX STATSETINT0 REGISTER DESCRIPTION Revision ID Register Control Register Global Enable Register Global Nesting Level Register System Interrupt Status Indexed Set Register System Interrupt Status Indexed Clear Register System Interrupt Enable Indexed Set Register System Interrupt Enable Indexed Clear Register Host Interrupt Enable Indexed Set Register Host Interrupt Enable Indexed Clear Register Global Prioritized Index Register System Interrupt Status Raw/Set Register 0 264 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-144. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers (continued) BYTE ADDRESS 0x01C3 4204 0x01C3 4280 0x01C3 4284 0x01C3 4300 0x01C3 4304 0x01C3 4380 0x01C3 4384 0x01C3 4400 - 0x01C3 4440 0x01C3 4800 - 0x01C3 4808 0x01C3 4900 - 0x01C3 4928 0x01C3 4D00 0x01C3 4D04 0x01C3 4D80 0x01C3 4D84 0x01C3 5100 - 0x01C3 5128 0x01C3 5500 ACRONYM STATSETINT1 STATCLRINT0 STATCLRINT1 ENABLESET0 ENABLESET1 ENABLECLR0 ENABLECLR1 CHANMAP0 - CHANMAP15 HOSTMAP0 - HOSTMAP2 HOSTINTPRIIDX0 HOSTINTPRIIDX9 POLARITY0 POLARITY1 TYPE0 TYPE1 HOSTINTNSTLVL0HOSTINTNSTLVL9 HOSTINTEN REGISTER DESCRIPTION System Interrupt Status Raw/Set Register 1 System Interrupt Status Enabled/Clear Register 0 System Interrupt Status Enabled/Clear Register 1 System Interrupt Enable Set Register 0 System Interrupt Enable Set Register 1 System Interrupt Enable Clear Register 0 System Interrupt Enable Clear Register 1 Channel Map Registers 0-15 Host Map Register 0-2 Host Interrupt Prioritized Index Registers 0-9 System Interrupt Polarity Register 0 System Interrupt Polarity Register 1 System Interrupt Type Register 0 System Interrupt Type Register 1 Host Interrupt Nesting Level Registers 0-9 Host Interrupt Enable Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 265 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 5.34 Emulation Logic This section describes the steps to use a third party debugger on the ARM926EJ-S within the device. The debug capabilities and features for DSP and ARM are as shown below. DSP: • Basic Debug – Execution Control – System Visibility • Real-Time Debug – Interrupts serviced while halted – Low/non-intrusive system visibility while running • Advanced Debug – Global Start – Global Stop – Specify targeted memory level(s) during memory accesses – HSRTDX (High Speed Real Time Data eXchange) • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Analysis Actions – Stop program execution – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access Category Basic Debug Table 5-145. DSP Debug Features Hardware Feature Software breakpoint Hardware breakpoint Availability Unlimited Up to 10 HWBPs, including: 4 precise(1) HWBPs inside DSP core and one of them is associated with a counter. 2 imprecise(1) HWBPs from AET. 4 imprecise(1) HWBPs from AET which are shared for watch point. (1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. 266 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Category Analysis Table 5-145. DSP Debug Features (continued) Hardware Feature Watch point Watch point with Data Counters/timers External Event Trigger In External Event Trigger Out Availability Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) Up to 2, Which can also be used as 4 watch points. 1x64-bits (cycle only) + 2x32-bits (water mark counters) 1 1 ARM: • Basic Debug – Execution Control – System Visibility • Advanced Debug – Global Start – Global Stop • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Program Trace – Program flow corruption – Code coverage – Path coverage – Thread/interrupt synchronization problems • Data Trace – Memory corruption • Timing Trace – Profiling • Analysis Actions – Stop program execution – Control trace streams – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 267 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com Table 5-146. ARM Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Basic Debug Hardware breakpoint Up to 14 HWBPs, including: 2 precise(1) HWBP inside ARM core which are shared with watch points. 8 imprecise(1) HWBPs from ETM’s address comparators, which are shared with trace function, and can be used as watch points. 4 imprecise(1) HWBPs from ICECrusher. Up to 6 watch points, including: Watch point 2 from ARM core which is shared with HWBPs and can be associated with a data. 8 from ETM’s address comparators, which are shared with trace function, and HWBPs. Analysis Watch point with Data 2 from ARM core which is shared with HWBPs. 8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators. Counters/timers 3x32-bit (1 cycle ; 2 event) External Event Trigger In 1 External Event Trigger Out 1 Internal Cross-Triggering Signals One between ARM and DSP Address range for trace 4 Data qualification for trace 2 System events for trace control 20 Trace Control Counters/Timers for trace control 2x16-bit State Machines/Sequencers 1x3-State State Machine Context/Thread ID Comparator 1 Independent trigger control units 12 On-chip Trace Capture Capture depth PC Capture depth PC + Timing Application accessible 4k bytes ETB 4k bytes ETB Y (1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. 5.34.1 JTAG Port Description The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and emulation signals EMU0 and EMU1. TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. PIN TRST TYPE I TCK I RTCK O TMS I Table 5-147. JTAG Port Description NAME Test Logic Reset Test Clock Returned Test Clock Test Mode Select DESCRIPTION When asserted (active low) causes all test and debug logic in the device to be reset along with the IEEE 1149.1 interface This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic.Depending on the emulator attached to , this is a free running clock or a gated clock depending on RTCK monitoring. Synchronized TCK. Depending on the emulator attached to, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK. Directs the next state of the IEEE 1149.1 test access port state machine 268 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com PIN TDI TDO EMU0 EMU1 TYPE I O I/O I/O SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 Table 5-147. JTAG Port Description (continued) NAME Test Data Input Test Data Output Emulation 0 Emulation 1 Scan data input to the device Scan data output of the device Channel 0 trigger + HSRTDX Channel 1 trigger + HSRTDX DESCRIPTION 5.34.2 Scan Chain Configuration Parameters Table 5-148 shows the TAP configuration details required to configure the router/emulator for this device. Router Port ID 17 18 19 Default TAP No No No Table 5-148. JTAG Port Description TAP Name C674x ARM926 ETB Tap IR Length 38 4 4 The router is revision C and has a 6-bit IR length. 5.34.3 Initial Scan Chain Configuration The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs. 5.34.3.1 Adding TAPS to the Scan Chain The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain. A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router’s TAP. TDO TDI CLK TMS Router Steps Router ARM926EJ-S/ETM Figure 5-88. Adding ARM926EJ-S to the scan chain Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID. Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 269 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 • Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '0'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '0'. – Parameter : The IR main count is '6'. – Parameter : The DR main count is '1'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. • Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa2002108'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. • Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. www.ti.com 270 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 • Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain. TDI TDO CLK TMS Router ARM926EJ-S/ETM Steps Router ARM926EJ-S/ETM ETB Figure 5-89. Adding ETB to the scan chain • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. • Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 271 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa3302108'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. • Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. • Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6 + 4'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1 + 1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. 5.34.4 IEEE 1149.1 JTAG The JTAG(1) interface is used for BSDL testing and emulation of the device. The device requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required for proper operation. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. (1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. 272 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.34.4.1 JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0) BYTE ADDRESS 0x01C1 4018 Table 5-149. DEVIDR0 Register ACRONYM REGISTER DESCRIPTION DEVIDR0 JTAG Identification Register COMMENTS Read-only. Provides 32-bit JTAG ID of the device. The JTAG ID register is a read-only register that identifies the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each silicon revision is: • 0x0B7D 102F for silicon revision 1.0 • 0x0B7D 102F for silicon revision 1.1 • 0x1B7D 102F for silicon revision 2.0 For the actual register bit names and their associated bit field descriptions, see Figure 5-90 and Table 5-150. 31-28 27-12 VARIANT (4-Bit) PART NUMBER (16-Bit) R-xxxx R-1011 0111 1101 0001 LEGEND: R = Read, W = Write, n = value at reset 11-1 0 MANUFACTURER (11-Bit) LSB R-0000 0010 111 R-1 Figure 5-90. JTAG ID (DEVIDR0) Register Description - Register Value BIT 31:28 27:12 11-1 0 Table 5-150. JTAG ID Register Selection Bit Descriptions NAME VARIANT PART NUMBER MANUFACTURER LSB Variant (4-Bit) value Part Number (16-Bit) value Manufacturer (11-Bit) value LSB. This bit is read as a "1". DESCRIPTION Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 273 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 5.34.4.2 JTAG Test-Port Electrical Data/Timing www.ti.com Table 5-151. Timing Requirements for JTAG Test Port (see Figure 5-91) No. PARAMETER 1 tc(TCK) Cycle time, TCK 2 tw(TCKH) Pulse duration, TCK high 3 tw(TCKL) Pulse duration, TCK low 4 tc(RTCK) Cycle time, RTCK 5 tw(RTCKH) Pulse duration, RTCK high 6 tw(RTCKL) Pulse duration, RTCK low 7 tsu(TDIV-RTCKH) Setup time, TDI/TMS/TRST valid before RTCK high 8 th(RTCKH-TDIV) Hold time, TDI/TMS/TRST valid after RTCK high 1.3V, 1.2V MIN MAX 40 16 16 40 16 16 4 4 1.1V MIN MAX 50 20 20 50 20 20 4 6 1.0V MIN MAX 66.6 26.6 26.6 66.6 26.6 26.6 4 8 UNIT ns ns ns ns ns ns ns ns Table 5-152. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 5-91) No. PARAMETER 9 td(RTCKL-TDOV) Delay time, RTCK low to TDO valid 1.3V, 1.2V MIN MAX 18 1.1V MIN MAX 23 1.0V MIN MAX 31 UNIT ns TCK RTCK 2 5 1 4 3 6 TDO TDI/TMS/TRST 9 8 7 Figure 5-91. JTAG Test-Port Timing 5.34.5 JTAG 1149.1 Boundary Scan Considerations To use boundary scan, the following sequence should be followed: • Execute a valid reset sequence and exit reset • Wait at least 6000 OSCIN clock cycles • Enter boundary scan mode using the JTAG pins No specific value is required on the EMU0 and EMU1 pins for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing. 274 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com 6 Device and Documentation Support SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 6.1 Device Support 6.1.1 Development Support TI offers an extensive line of development tools for the device platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of the device applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application. Hardware Development Tools: Extended Development System (XDS™) Emulator For a complete listing of development-support tools for the device, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 6.1.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or NULL (e.g., OMAP-L138). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications. P Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. NULL Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Null devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device and Documentation Support 275 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default). Figure 6-1 provides a legend for reading the complete device. X OMAPL138 ( ) ZWT ( ) 3 E PREFIX X = Experimental Device P = Prototype Device Blank = Production Device Basic Secure Boot Enabled DEVICE SPEED RANGE (B) 3 = 300 MHz (Revision 1.x) 3 = 375 MHz (Revision 2.x) 4 = 456 MHz (Revision 2.x) DEVICE OMAPL138 SILICON REVISION(C) Blank = Silicon Revision 1.0 A = Silicon Revision 1.1 B = Silicon Revision 2.0 or 2.1 TEMPERATURE RANGE (JUNCTION) PACKAGE TYPE (A) Blank = 0°C to 90°C (Commercial Grade) D = -40°C to 90°C (Industrial Grade) A = -40°C to 105°C (Extended Grade) ZCE = 361 Pin Plastic BGA, with Pb-free Soldered Balls [Green], 0.65 mm Ball Pitch ZWT = 361 Pin Plastic BGA, with Pb-free Soldered Balls [Green], 0.8 mm Ball Pitch A. BGA = Ball Grid Array B. The device speed range symbolization indicates the maximum CPU frequency when the core voltage CVDD is set to 1.2 V. C. Parts marked revision B are silicon revision 2.1 if '21' is marked on the package, and silicon revision 2.0 if there is no '21' marking. Figure 6-1. Device Nomenclature 6.2 Documentation Support The following documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box. DSP Reference Guides SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory. SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set. SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache. SPRUFK9 TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the device. 276 Device and Documentation Support Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Copyright © 2009–2011, Texas Instruments Incorporated OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 SPRUH77 OMAP-L138 C6-Integra DSP+ARM Technical Reference Manual. Describes the System-on-Chip (SoC) system. The SoC system includes TI’s standard TMS320C674x Megamodule and several blocks of internal memory (L1P, L1D, and L2). SPRUGQ9 TMS320C674x/OMAP-L1x Processor Security User's Guide. Provides an overview of the security concepts implemented on TI Basic Secure Boot devices. 6.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 Device and Documentation Support 277 OMAP-L138 SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 www.ti.com 7 Mechanical Packaging and Orderable Information This section describes the orderable part numbers, packaging options, materials, thermal and mechanical parameters. 7.1 Thermal Data for ZCE Package The following table(s) show the thermal resistance characteristics for the PBGA–ZCE mechanical package. Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZCE] NO. 1 RΘJC 2 RΘJB 3 RΘJA 4 5 6 RΘJMA 7 8 9 10 PsiJT 11 12 13 14 15 PsiJB 16 17 Junction-to-case Junction-to-board Junction-to-free air Junction-to-moving air Junction-to-package top Junction-to-board °C/W (1) 7.6 11.3 23.9 21.2 20.3 19.5 18.6 0.2 0.3 0.3 0.4 0.5 11.2 11.1 11.1 11.0 10.9 AIR FLOW (m/s)(2) N/A N /A 0.00 0.50 1.00 2.00 4.00 0.00 0.50 1.00 2.00 4.00 0.00 0.50 1.00 2.00 4.00 (1) These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 500 mW and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness (2) m/s = meters per second 278 Mechanical Packaging and Orderable Information Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): OMAP-L138 OMAP-L138 www.ti.com SPRS586D – JUNE 2009 – REVISED OCTOBER 2011 7.2 Thermal Data for ZWT Package The following table(s) show the thermal resistance characteristics for the PBGA–ZWT mechanical package. Table 7-2. Thermal Resistance Characteristics (PBGA Package) [ZWT] NO. 1 RΘJC 2 RΘJB 3 RΘJA 4 5 6 RΘJMA 7 8 9 10 PsiJT 11 12 13 14 15 PsiJB 16 17 Junction-to-case Junction-to-board Junction-to-free air Junction-to-moving air Junction-to-package top Junction-to-board °C/W (1) 7.3 12.4 23.7 21.0 20.1 19.3 18.4 0.2 0.3 0.3 0.4 0.5 12.3 12.2 12.1 12.0 11.9 AIR FLOW (m/s)(2) N/A N /A 0.00 0.50 1.00 2.00 4.00 0.00 0.50 1.00 2.00 4.00 0.00 0.50 1.00 2.00 4.00 (1) These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness (2) m/s = meters per second Copyright © 2009–2011, Texas Instruments Incorporated Mechanical Packaging and Orderable Information 279 Submit Documentation Feedback Product Folder Link(s): OMAP-L138 PACKAGE OPTION ADDENDUM www.ti.com 22-Sep-2011 PACKAGING INFORMATION Orderable Device OMAPL138BZCE3 OMAPL138BZCE4 OMAPL138BZCEA3 OMAPL138BZCEA3E OMAPL138BZCED4 OMAPL138BZCED4E OMAPL138BZWT3 OMAPL138BZWT4 OMAPL138BZWTA3 OMAPL138BZWTA3E OMAPL138BZWTD4 OMAPL138BZWTD4E Status (1) Package Type Package Drawing ACTIVE NFBGA ZCE Pins 361 Package Qty 1 ACTIVE NFBGA ZCE 361 160 ACTIVE NFBGA ZCE 361 1 ACTIVE NFBGA ZCE 361 1 ACTIVE NFBGA ZCE 361 1 ACTIVE NFBGA ZCE 361 ACTIVE NFBGA ZWT 361 90 ACTIVE NFBGA ZWT 361 1 ACTIVE NFBGA ZWT 361 90 ACTIVE NFBGA ZWT 361 ACTIVE NFBGA ZWT 361 1 ACTIVE NFBGA ZWT 361 90 Eco Plan (2) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Lead/ Ball Finish MSL Peak Temp (3) SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR Call TI Call TI SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR Call TI Call TI SNAGCU Level-3-260C-168 HR SNAGCU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Samples (Requires Login) (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 22-Sep-2011 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Audio Amplifiers Data Converters DLP® Products DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID OMAP Mobile Processors Wireless Connectivity Applications www.ti.com/audio Communications and Telecom www.ti.com/communications amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps www.dlp.com Energy and Lighting www.ti.com/energy dsp.ti.com Industrial www.ti.com/industrial www.ti.com/clocks Medical www.ti.com/medical interface.ti.com Security www.ti.com/security logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com Transportation and Automotive www.ti.com/automotive microcontroller.ti.com Video and Imaging www.ti.com/video www.ti-rfid.com www.ti.com/omap www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

    Top_arrow
    回到顶部
    EEWORLD下载中心所有资源均来自网友分享,如有侵权,请发送举报邮件到客服邮箱bbs_service@eeworld.com.cn 或通过站内短信息或QQ:273568022联系管理员 高员外,我们会尽快处理。