Photon-mediated coupling between distant matter qubits may enable secure communication over long distances, the implementation of distributed quantum computing schemes, and the exploration of new regimes of many-body quantum dynamics. Solid-state quantum emitters coupled to nanophotonic devices represent a promising approach towards these goals, as they combine strong lightmatter interaction and high photon collection efficiencies. However, nanostructured environments introduce mismatch and diffusion in optical transition frequencies of emitters, making reliable photonmediated entanglement generation infeasible. Here we address this long-standing challenge by employing silicon-vacancy color centers embedded in electromechanically deflectable nanophotonic waveguides. This electromechanical strain control enables control and stabilization of optical resonance between two silicon-vacancy centers on the hour timescale. Using this platform, we observe the signature of an entangled, superradiant state arising from quantum interference between two spatially separated emitters in a waveguide. This demonstration and the developed platform constitute a crucial step towards a scalable quantum network with solid-state quantum emitters.
远距离物质量子位之间的光子介导的耦合可以实现长距离的安全通信,分布式量子计算方案的实现以及对多体量子动力学新机制的探索。与纳米光子器件耦合的固态量子发射器代表了实现这些目标的一种有前途的方法,因为它们结合了强大的光物质相互作用和高光子收集效率。然而,纳米结构环境在发射器的光跃迁频率中引入失配和扩散,使得可靠的光子介导的纠缠产生不可行。在这里,我们通过采用嵌入在机电可偏转的纳米光子波导中的硅空位色心来解决这一长期挑战。这种机电应变控制能够在小时时间尺度上控制和稳定两个硅空位中心之间的光学共振。使用该平台,我们观察到了波导中两个空间分离的发射器之间的量子干扰引起的纠缠,超辐射状态的特征。该演示和开发的平台构成了向具有固态量子发射器的可扩展量子网络迈出的关键一步。
推荐帖子
评论