datasheet
超过460,000+ 应用技术资源下载
pdf

总线资料汇编

  • 1星
  • 日期: 2015-05-20
  • 大小: 3.22MB
  • 所需积分:1分
  • 下载次数:1
  • favicon收藏
  • rep举报
  • 分享
  • free评论
标签: 总线

ARINC 429 Part 1, Table 2, BNR Data (Label 335 reproduced in part). Changes are shaded in yellow.

MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) PART 1 FUNCTIONAL DESCRIPTION, ELECTRICAL INTERFACE, LABEL ASSIGNMENTS AND WORD FORMATS ARINC SPECIFICATION 429 PART 1-17 PUBLISHED: May 17, 2004 AN DOCUMENT Prepared by AIRLINES ELECTRONIC ENGINEERING COMMITTEE Published by AERONAUTICAL RADIO, INC. 2551 RIVA ROAD, ANNAPOLIS, MARYLAND 21401 This document is based on material submitted by various participants during the drafting process. Neither AEEC nor ARINC has made any determination whether these materials could be subject to valid claims of patent, copyright or other proprietary rights by third parties, and no representation or warranty, express or implied, is made in this regard. Any use of or reliance on this document shall constitute an acceptance thereof “as is” and be subject to this disclaimer. ARINC Standard – Errata Report 1. Document Title ARINC Specification 429 Part 1-17: Mark 33 – Digital Information Transfer System (DITS) Published: May 17, 2004 2. Reference Page Number: 70 Section Number: Att 2 , Table 2 Date of Submission: 3. Error ARINC 429 Part 1, Table 2, BNR Data, (Label 335 reproduced in part): 18MAR07 Label 335 Eqpt ID (HEX) 002 004 005 02F 038 03F 056 060 10A 10B Parameter Name Track Angle Rate Track Angle Rate Track Angle Rate Track Angle Rate Track Angle Rate Track Angle Rate ARINC Specification 429 (May 17, 2004) Min Units Transmit Range Sig Pos Resolution Interval (Scale) Bits Sense (msec) 2 Deg/Sec 32 11 0.015 10 Deg/Sec 32 11 0.015 10 Deg/Sec 32 11 0.015 10 Deg/Sec 32 11 0.015 10 Deg/Sec 32 11 Deg/Sec 32 11 0.015 10 0.015 10 Max Transmit Interval (msec) 2 20 20 20 20 20 20 Max TransPort Delay (msec) 3 Notes 4. Recommended Correction ARINC 429 Part 1, Table 2, BNR Data (Label 335 reproduced in part). Changes are shaded in yellow. Eqpt Label ID (HEX) Parameter Name 002 Track Angle Rate 004 Track Angle Rate 005 Track Angle Rate 02F 038 Track Angle Rate 335 03F 056 Track Angle Rate 060 Track Angle Rate 10A 10B ARINC Specification 429 Part 1-17 REVISED Units Range Sig (Scale) Bits Pos Sense Resolution Min Transmit Interval (msec) 2 Deg/Sec ± 32 11 CW 0.015 10 Deg/Sec ± 32 11 CW 0.015 10 Deg/Sec ± 32 11 CW 0.015 10 Deg/Sec ± 32 11 CW 0.015 10 Deg/Sec ± 32 11 CW 0.015 10 Deg/Sec ± 32 11 CW 0.015 10 Max Transmit Interval (msec) 2 20 20 20 20 20 20 Max TransPort Delay (msec) 3 Notes FMS IRS AHRS ADIRS GLNU GNU ARINC Errata Form 11/24/2004 5. Reason for Correction Table 2 from ARINC Specification 429 Part 1 provides baseline definition of Label 335, Track Angle Rate data. “Notes” column is expanded to show the system acronym for each of the sources identified by the “Equipment ID”. Positivr sense is specified as CW (clockwise) to conform to ARINC 705, AHRS, and ARINC 718A, Transponder. 6. Submitter (Optional) Robert H. (Bob) Saffell (Rockwell Collins) and Paul Prisaznuk (AEEC staff) Comments should be directed to daniel.martinec@arinc.com. Note: Items 2-5 may be repeated for additional errata. All recommendations will be evaluated by the staff. Any substantive changes will require submission to the relevant subcommittee for incorporation into a subsequent Supplement. [To be completed by IA Staff ] Errata Report Identifier: 07-051/ERR-005 Engineer Assigned: Dan Martinec Review Status: ARINC Errata Form 11/24/2004 © 2004 by AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401-7465 USA ARINC SPECIFICATION 429 PART 1-17 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) PART 1 FUNCTIONAL DESCRIPTION, ELECTRICAL INTERFACE, LABEL ASSIGNMENTS AND WORD FORMATS Published: May 17, 2004 Prepared by the Airlines Electronic Engineering Committee Specification 429 Specification 429 Adopted by the Airlines Electronic Engineering Committee: Adopted by the Industry: July 21, 1977 September 15, 1977 Summary of Document Supplements Supplement Adoption Date Published Specification 429-1 Specification 429-2 Specification 429-3 Specification 429-4 Specification 429-5 Specification 429-6 Specification 429-7 Specification 429-8 Specification 429-9 Specification 429-10 Specification 429-11 Specification 429-12 Specification 429-13 Specification 429-14 Specification 429-15 Specification 429-16 Specification 429-17 April 11, 1978 December 6, 1978 August 31, 1979 June 17, 1980 March 12, 1981 December 9, 1981 November 4, 1982 November 4, 1983 October 11, 1984 November 7, 1985 June 15, 1988 October 25, 1989 October 8, 1991 November 4, 1992 April 18, 1995 November 14, 2000 May 5, 2004 June 1, 1978 March 1, 1979 November 1, 1979 August 1, 1980 April 4, 1981 January 22, 1982 January 3, 1983 December 3, 1984 April 30, 1985 November 17, 1986 July 22, 1988 July 1, 1990 December 30, 1991 January 4, 1993 September 1, 1995 September 27, 2001 May 17, 2004 A description of the changes introduced by each supplement is included on goldenrod paper at the end of this document. FOREWORD Aeronautical Radio, Inc., the AEEC, and ARINC Standards Aeronautical Radio, Inc. (ARINC) was incorporated in 1929 by four fledgling airlines in the United States as a privately-owned company dedicated to serving the communications needs of the air transport industry. Today, the major U.S. airlines remain the Company’s principal shareholders. Other shareholders include a number of non-U.S. airlines and other aircraft operators. ARINC sponsors aviation industry committees and participates in related industry activities that benefit aviation at large by providing technical leadership and guidance and frequency management. These activities directly support airline goals: promote safety, efficiency, regularity, and cost-effectiveness in aircraft operations. The Airlines Electronic Engineering Committee (AEEC) is an international body of airline technical professionals that leads the development of technical standards for airborne electronic equipmentincluding avionics and in-flight entertainment equipment-used in commercial, military, and business aviation. The AEEC establishes consensus-based, voluntary form, fit, function, and interface standards that are published by ARINC and are known as ARINC Standards. The use of ARINC Standards results in substantial benefits to airlines by allowing avionics interchangeability and commonality and reducing avionics cost by promoting competition. There are three classes of ARINC Standards: a) ARINC Characteristics – Define the form, fit, function, and interfaces of avionics and other airline electronic equipment. ARINC Characteristics indicate to prospective manufacturers of airline electronic equipment the considered and coordinated opinion of the airline technical community concerning the requisites of new equipment including standardized physical and electrical characteristics to foster interchangeability and competition. b) ARINC Specifications – Are principally used to define either the physical packaging or mounting of avionics equipment, data communication standards, or a high-level computer language. c) ARINC Reports – Provide guidelines or general information found by the airlines to be good practices, often related to avionics maintenance and support. The release of an ARINC Standard does not obligate any airline or ARINC to purchase equipment so described, nor does it establish or indicate recognition or the existence of an operational requirement for such equipment, nor does it constitute endorsement of any manufacturer’s product designed or built to meet the ARINC Standard. In order to facilitate the continuous product improvement of this ARINC Standard, two items are included in the back of this volume: a) An Errata Report solicits any corrections to the text or diagrams in this ARINC Standard. b) An ARINC IA Project Initiation/Modification (APIM) form solicits any recommendations for addition of substantive material to this volume which would be the subject of a new Supplement. ii ITEM 1.0 1.1 1.2 1.3 1.4 1.4.1 1.4.2 1.4.3 2.0 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.5.1 2.1.5.2 2.1.5.3 2.1.6 2.2 2.2.1 2.2.2 2.2.3 2.2.3.1 2.2.3.2 2.2.4 2.2.4.1 2.2.4.2 2.2.5 2.2.5.1 2.2.5.2 2.2.5.3 2.2.6 2.2.6.1 2.2.6.2 2.3 2.3.1 2.3.1.1 2.3.1.2 2.3.1.3 2.3.1.4 2.3.1.5 2.3.1.5.1 2.3.2 2.3.3 2.3.4 2.4 2.4.1 2.4.1.1 2.4.1.2 2.4.2 2.4.3 2.4.4 2.4.5 3.0 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.4.1 3.1.4.2 ARINC SPECIFICATION 429 TABLE OF CONTENTS SUBJECT INTRODUCTION Purpose of this Document Organization of ARINC Specification 429 Relationship to ARINC Specification 419 “Mark 33 Digital Information Transfer System” Basic Philosophy Numeric Data Transfer ISO Alphabet No. 5 Data Transfer Graphic Data Transfer DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS Message Related Elements Direction of Information Flow Information Element Information Identifier Source/Destination Identifier Sign/Status Matrix BCD Numeric BNR Numeric Data Words Discrete Data Words Data Standards Electrically Related Elements Transmission System Interconnect Modulation Voltage Levels Transmitter Voltage Levels Receiver Voltage Levels Impedance Levels Transmitter Output Impedance Receiver Input Impedance Fault Tolerance Receiver External Fault Voltage Tolerance Transmitter External Fault Voltage Transmitter External Fault Load Tolerance Fault Isolation Receiver Fault Isolation Transmitter Fault Isolation Logic Related Elements Digital Language Numeric Data Discretes Maintenance Data (General Purpose) AIM Data File Data Transfer Bit-Oriented Protocol Determination Transmission Order Data Bit Encoding Logic Error Detection/Correction Timing Related Elements Bit Rate High Speed Operation Low Speed Operation Information Rates Clocking Method Word Synchronization Timing Tolerances MARK 33 DITS APPLICATIONS NOTES Radio Systems Management Word Format and Digital Language Update Rate Sign/Status Matrix Frequency Ranges and Switching Functions ADF DME iii PAGE 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 4 4 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 11 11 11 11 11 11 11 11 ITEM 3.1.4.3 3.1.4.4 3.1.4.5 3.1.4.6 3.1.4.7 3.2 ARINC SPECIFICATION 429 TABLE OF CONTENTS SUBJECT HF Communications ILS VOR/ILS VHF Communications ATC Transponder AIM Information Transfer ATTACHMENTS 1-1 1-2 2 3 4 5 6 7 8 9A 9B 9C 10 11 Label Codes Equipment Codes Data Standards Voltage Levels Input/Output Circuit Standards International Standards Organization Code #5 General Word Formats and Encoding Examples Data Bit Encoding Logic Output Signal Timing Tolerances General Aviation Labels and Data Standards General Aviation Word Examples General Aviation Equipment Identifiers Manufacturer Specific Status Word System Address Labels APPENDICES A B C D E X Laboratory Verification of ARINC 429 DITS Electrical Characteristics An Approach to a Hybrid Broadcast-Command/Response Data Bus Architecture Digital Systems Guidance (Part 1) Digital Systems Guidance (Part 2) Guidelines for Label Assignments Chronology & Bibliography ARINC Standard – Errata Report ARINC IA Project Initiation/Modification (APIM) PAGE 11 11 11 11 11 12 13 43 47 75 76 77 78 117 118 119 121 128 129 130 132 165 170 177 182 184 iv ARINC SPECIFICATION 429, PART 1 - Page 1 1.0 INTRODUCTION 1.1 Purpose of this Document This document defines the air transport industry’s standards for the transfer of digital data between avionics systems elements. Adherence to these standards is desired for all inter-systems communications in which the system line replaceable units are defined as unit interchangeable in the relevant ARINC characteristics. Their use for intra-system communications in systems in which the line replaceable units are defined in the ARINC characteristics as system interchangeable is not essential, although it may be convenient. 1.4 “Mark 33 Digital Information Transfer System” - Basic Philosophy This “Mark 33 Digital Information Transfer System (DITS)” specification describes a system in which an avionics system element having information to transmit does so from a designated output port over a single twisted and shielded pair of wires to all other system elements having need of that information. Bi-directional data flow on a given twisted and shielded pair of wires is not permitted. 1.4.1 Numeric Data Transfer 1.2 Organization of ARINC Specification 429 ARINC Specification 429 was originally published in a single volume through version 14 (429-14). The size of the document and the need for improved organization dictated the division of the document into three parts. Those three parts include: Part 1 Functional Description, Electrical Interface, Label Assignments and Word Formats Part 2 Discrete Word Data Formats Part 3 File Data Transfer Techniques c-15 Part 1 provides the basic description of the functions and the supporting physical and electrical interfaces for the data transfer system. Data word formats, standard label and address assignments, and application examples are defined. Part 2 lists discrete word bit assignments in label order. Part 3 describes protocols and message definitions for data transferred in large blocks and/or file format. For convenience of the user, the section and attachment numbering has been retained for the material moved from the original Specification to Part 3. Updates to each part of future releases of ARINC 429 will be independent of the other parts to accommodate timely revisions as industry needs dictate. The dash numbers for each Part will NOT be synchronized with the other Parts as time passes. Users of ARINC Specification 429 should ensure that the latest version of each Part is used when designing or procuring equipment. 1.3 Relationship to ARINC Specification 419 ARINC Specification 419, “Digital Data System Compendium”, is a catalog of the elements of the several digital data transmission systems that have found application during the “emergent” period of digital avionics technology. The maturing of this technology, now evident in the scope of its planned use on aircraft of the 1980s and beyond, has shown the need for a generally applicable digital information transfer system having capabilities not provided by any combination of the elements presently defined in Specification 419. In defining such a system, this document draws on the experience gained in the preparation of Specification 419 but is otherwise separate and distinct from it. Addition of the element specifications of the system defined herein to the Specification 419 catalog is not anticipated. The Mark 33 DITS numeric data transmission characteristics have been developed from those of successful predecessor air transport industry digital information transfer systems. Data for transmission, encoded in either twos complement fractional binary notation or binary coded decimal notation, is supplied from source systems at rates sufficiently high to ensure small incremental value changes between updates. Transmission is made “open loop”, i.e., sinks are not required to inform sources that information has been received. A parity bit is transmitted as part of each data word to permit simple error checks to be performed by the sinks. These, together with data reasonableness checks which may also be performed by the sinks, may be used to prevent the display or other utilization of a erroneous or suspect word. The inherently high integrity of the twisted and shielded wire transmission medium ensures that such drop-outs are few. The low rates of change of the data ensure that when one does occur, it is of no consequence. 1.4.2 ISO Alphabet No. 5 Data Transfer In addition to the transfer of BNR and BCD numeric data as just described, the Mark 33 DITS handles alpha and numeric data encoded per ISO Alphabet No. 5. The same “broadcast” transmission philosophy is used, although the c-1 “housekeeping” aspects of system operation differ in order to accommodate particular needs associated with this type of data. These differences will be addressed individually in this document as they arise. 1.4.3 Graphic Data Transfer A third type of data which may eventually be handled by the Mark 33 DITS is graphic data, i.e., the lines, circles, randomly positioned alpha/numeric text and other symbols used on CRT map and similar displays. The technique employed for this purpose can be basically similar to that used for ISO Alphabet No. 5 alpha/numeric data transfer. c-1 However, because a need for graphic data handling capability has not yet emerged, the air transport industry has decided not to be specific concerning this technique for the moment. When the need for graphic data handling is established, appropriate specification material will be developed. ARINC SPECIFICATION 429, PART 1 - Page 2 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS 2.1 Message Related Elements This section describes the digital data transfer system elements considered to be principally related to the message itself or the manner in which it is handled. 2.1.1 Direction of Information Flow The information output of an avionics system element should be transmitted from a designated port (or ports) to which the receiving ports of other system elements in need of that information are connected. In no case does information flow into a port designated for transmission. COMMENTARY A separate data bus (twisted and shielded pair of wires per Section 2.2.1) for each direction is used when data is required to flow both ways between two avionics systems elements. 2.1.2 Information Element The basic information element is a digital word containing 32 bits. There are five application groups for such words, BNR data, BCD data, Discrete data, Maintenance data (general) and Acknowledgement, ISO Alphabet Number 5 and Maintenance (ISO Alphabet Number 5) data (AIM). Word formats for these different applications are depicted c-2 in Attachment 6 while the relevant data handling rules are set forth in Section 2.3.1. When less than the full data field is needed to accommodate the information conveyed in a word in the desired manner, the unused bit positions should be filled with binary zeros or, in the case of BNR/BCD numeric data, valid data bits. If valid data bits are used, the resolution possible for the information may exceed that called for in this Specification. The Commentary following Section 2.1.6 of this document refers. COMMENTARY To permit the use of identical error-checking hardware elements in the handling of BNR and BCD numeric c-1 data words, the format for the Mark 33 DITS BCD word differs from that used formerly for this type of data. Bit Number 32 is assigned to parity, Bit Numbers 31 and 30 to the sign/status matrix, Bit Number 29 is the most significant bit of the data field, and the maximum decimal value of the most significant character is 7. Previously, the BCD word contained no parity bit, the sign/status matrix occupied Bit Numbers 32 and 31, Bit Number 30 was the most significant data bit and the maximum decimal value of the most significant character was 3. This format made the word 8-bit byte oriented with respect to the data. This characteristic is not retained in the Mark 33 system. Also, latitude and longitude can only be encoded in the Mark 33 DITS word with the formerly specified resolution of 0.1 minute of arc if Bit Numbers 9 and 10 are used for data rather than the SDI function described c-1 in Section 2.1.4 of this document, and the word is structured differently from the standard shown in Attachment 6. Restructuring the word involves limiting the maximum value of the most significant character to 1 and moving the remaining BCD characters towards the MSB by two bit positions. It is possible, however, that future latitude and longitude displays will not be the simple, dedicated read-out type for which BCD data is intended. More likely is the use c-1 of some form of multiple-message display, such as a CRT, which will be backed by its own data processor and prefer inputs of BNR data. If this proves to be the case, these special provisions for BCD-encoding will not be required. 2.1.3 Information Identifier The type of information contained in a word is identified by a six-character label. The first three characters are octal c-2 characters coded in binary in the first eight bits of the word. The eight bits will: c-4 a. identify the information contained within BNR and BCD numeric data words (e.g., DME distance, static air temperature, etc.) and c-2 b. identify the word application for Discrete, Maintenance and AIM data. The last three characters of the six-character label are hexadecimal characters used to provide for identification of ARINC 429 bus sources. Each triplet of hexadecimal characters identifies a “black box” with one or more DITS c-12 ports. Each three character code (and black box) may have up to 255 eight bit labels assigned to it. The code is used administratively to retain distinction between unlike parameters having like labels assignments. COMMENTARY Some users have expressed a desire to have means for identifying label sets and buses associated with a particular equipment ID code. Octal label 377 has been assigned for this purpose. (The code appears in the 3 LSDs of the BCD Word format). The transmission of the equipment identifier word on a bus c-4 will permit receivers attached to the bus to recognize the source of the DITS information. Since the transmission of the equipment identifier word is optional, receivers should not depend on that word for correct operation. Label code assignments are set forth in Attachment 1-1 to this document. c-2 Special Note: In some ARINC 429 DITS applications, a bus will be dedicated to delivering a single information element from a source to one or more identical sink devices. In such circumstances, the sink device designer might be tempted to assume that decoding the word label is not necessary. Experience has shown, however, that system developments c-1 frequently occur that result in the need for additional information elements to appear on the bus. If a sink device designed for service prior to such a development cannot decode the original word label, it cannot differentiate between this word and the new data in the new situation. The message for sink designers should therefore be quite clear - provide label decoding from the outset, no matter how strong the temptation to omit it might be. ARINC SPECIFICATION 429, PART 1 - Page 3 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS COMMENTARY Adherence to the label code assignments of Attachment 1-1 is essential in inter-system communications and in intra-system communications where the system elements are defined as “unit interchangeable” per ARINC Report 403. The assignment of label codes for all such communications must be coordinated with the air transport industry if chaos is to be avoided. A manufacturer who finds that Attachment 1-1 does not specify the label he needs for such system application must not simply choose one from those unassigned and drive on. The user should contact AEEC Staff for assistance. A web page on the ARINC Website (ARINC.com) has been developed to assist you in contacting the AEEC Staff. 2.1.4 Source/Destination Identifier Bit Numbers 9 and 10 of numeric data words should be reserved for a data source/destination identification function. They are not available for this function in alpha/numeric (ISO Alphabet Number 5) data words (see Section 2.3.1.3 of this document) or when the resolution needed for numeric (BNR/BCD) data necessitates their use of valid data. The source/destination identifier function c-1 may find application when specific words need to be directed to a specific system of a multi-system installation or when the source system of a multi-system installation needs to be recognizable from the word content. When it is used, a source equipment should encode its aircraft installation number in Bit Numbers 9 and 10 as shown in the table below. A sink equipment should recognize words containing its own installation number code and words containing code “00,” the “all-call” code. COMMENTARY Equipment will fall into the categories of source only, sink only, or both source and sink. Use of the SDI bits by equipment functioning only as a source or only as a sink is described above. Both the source and sink texts above are applicable to equipment functioning as both a source and a sink. Such equipment should recognize the SDI bits on the inputs and should also encode the SDI bits, as applicable, on the outputs. DME, VOR, c-8 ILS and other sensors, are examples of source and sink equipment generally considered to be only source equipment. These are actually sinks for their own control panels. Many other types of equipment are also misconstrued as source only or sink only. A simple rule of thumb is: if a unit has a 429 input port and a 429 output port, it is a source and sink! With the increase of equipment consolidation, e.g., centralized control panels, the correct use of the SDI bits cannot be overstressed. code “00” is available as an “installation Number 4” identifier. When the SDI function is not used, binary zeros or valid data should be transmitted in Bit Numbers 9 and 10. COMMENTARY This document does not address the practical question of how the SDI bits will be set in those multi- installation systems in which the source/destination function is desired. One way would be to use program pins on the individual installation black boxes which c-1 would be wired to set up the appropriate code. The ARINC Characteristics devoted to the individual systems will define the method actually to be used. 2.1.5 Sign/Status Matrix This section describes the coding of the Sign/Status Matrix (SSM) field. In all cases the SSM field uses Bits 30 and 31. For BNR data words, the SSM field also includes Bit 29. The SSM field may be used to report hardware equipment condition (fault/normal), operational mode (functional test), or validity of data word content (verified/no computed data). The following definitions apply in this Specification: Invalid Data - is defined as any data generated by a source system whose fundamental characteristic is the inability to convey reliable information for the proper performance of a user system. There are two categories of invalid data, namely, “No Computed Data” and “Failure Warning.” No Computed Data - is a particular case of data invalidity where the source system is unable to compute reliable data for reasons other than system failure. This inability to compute reliable data is caused exclusively by a definite set of events or conditions whose boundaries are uniquely defined in the system characteristic. Failure Warning - is a particular case of data invalidity where the system monitors have detected one or more c-12 failures. These failures are uniquely characterized by boundaries defined in the system characteristic. The system indicators should always be flagged during a “Failure Warning” condition. When a “No Computed Data” condition exists, the source system should annunciate its outputs to be invalid by setting the sign/status matrix of the affected words to the “No Computed Data” code, as defined in the subsections which follow. The system indicators may or may not be flagged, depending on system requirements. Bit Number 10 9 0 0 0 1 1 0 1 1 Installation Number See Note Below 1 2 3 Note: In certain specialized applications of the SDI function the all-call capability may be forfeited so that While the unit is in the functional test mode, all output data words generated within the unit (i.e., pass through words are excluded) should be coded for “Functional Test.” Pass through data words are those words received by the unit and retransmitted without alteration. When the SSM code is used to transmit status and more than one reportable condition exists, the condition with the highest priority should be encoded in Bit Numbers 30 and 31. The order of condition priorities to be used is shown in the table below. ARINC SPECIFICATION 429, PART 1 - Page 4 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS 2.1.5 Sign/Status Matrix (cont’d) BCD NUMERIC SIGN/STATUS MATRIX Failure Warning No Computed Data Functional Test Normal Operation Priority 1 Priority 2 Priority 3 Priority 4 Each data word type has its own unique utilization of the SSM field. These various formats are described in the following subsections. 2.1.5.1 BCD Numeric When a failure is detected within a system which would cause one or more of the words normally output by that system to be unreliable, the system should stop transmitting the affected word or words on the data bus. Some avionic systems are capable of detecting a fault condition which results in less than normal accuracy. In these systems, when a fault of this nature (for instance, partial sensor loss) which results in degraded accuracy is detected, each unreliable BCD digit should be encoded “1111” when transmitted on the data bus. For equipments having a display, the “1111” code should, when received, be recognized as representing an inaccurate digit and a “dash” or equivalent symbol should be displayed in place of the inaccurate digit. Parameters for which such a degraded mode of operation is possible are identified in the Note column of the tables in Attachment 2. c-12 The sign (plus/minus, north/south, etc.) of BCD Numeric Data should be encoded in bit numbers 30 and 31 of the word as shown in the table below. Bit Numbers 30 and 31 of BCD Numeric Data words should be “zero” where no sign is needed. The “No Computed Data” code should be annunciated in the affected BCD Numeric Data word(s) when a source system is unable to compute reliable data for reasons other than system failure. When the “Functional Test” code appears in Bits 30 and 31 of an instruction input data word, it should be interpreted as a command to perform a functional test. COMMENTARY A typical instruction input to a radio, for example, would be a channel change command word. When this command word is received with the “Functional Test” coding in the SSM field, the radio should exercise its functional test. When the “Functional Test” code appears as a system output, it should be interpreted as advice that the data in the BCD Numeric Data word contents are the result of the execution of a functional test. A functional test should produce indications of 1/8 of positive full-scale values unless indicated otherwise in the associated ARINC Equipment Characteristic. Bit Number 31 30 0 0 0 1 1 0 1 1 Meaning Plus, North, East, Right, To, Above No Computed Data Functional Test Minus, South, West, Left, From, Below 2.1.5.2 BNR Numeric Data Words The status of the transmitter hardware should be encoded in the Status Matrix field (Bit Numbers 30 and 31) of BNR Numeric Data words as shown in the table below. A source system should annunciate any detected failure that causes one or more of the words normally output by that system to be unreliable by setting Bit Numbers 30 and 31 in the affected word(s) to the “Failure Warning” code defined in the table below. Words containing this code should continue to be supplied to the data bus during the failure condition. The “No Computed Data” code should be annunciated in the affected BNR Numeric Data word(s) when a source system is unable to compute reliable data for reasons other than system failure. When it appears as a system output, the “Functional Test” code should be interpreted as advice that the data in the c-12 word results from the execution of a functional test. A functional test should produce indications of 1/8 of positive full-scale values unless indicated otherwise in an ARINC equipment characteristic. If, during the execution of a functional test, a source system detects a failure which causes one or more of the words normally output by that system to be unreliable, it should immediately change the states of Bit Numbers 30 and 31 in the affected words such that the “Functional Test” annunciation is replaced with “Failure Warning” annunciation. BNR STATUS MATRIX Bit Number 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Test Normal Operation The sign (plus, minus, north, south, etc.) of BNR Numeric Data words should be encoded in the Sign Matrix field (Bit Number 29) as shown in the table below. Bit Number 29 should be “zero” when no sign is needed. ARINC SPECIFICATION 429, PART 1 - Page 5 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS SIGN MATRIX 2.1.6 Data Standards Bit Number 29 0 1 Meaning Plus, North, East, Right, To, Above Minus, South, West, Left, From, Below The units, ranges, resolutions, refresh rates, number of significant bits, pad bits, etc. for the items of information to be transferred by the Mark 33 DITS are tabulated in Attachment 2 to this document. Some avionic systems are capable of detecting a fault condition which results in less than normal accuracy. In these systems, when a fault of this nature (for instance, partial sensor loss) which results in degraded accuracy is detected, the equipment should continue to report “Normal” for the sign status matrix while indicating the degraded performance by coding bit 11 as follows: ACCURACY STATUS Bit Number 11 0 1 Meaning Nominal Accuracy Degraded Accuracy This implies that degraded accuracy can be coded only in BNR words not exceeding 17 bits of data. Parameters for which such a degraded mode of operation is possible are c-12 identified in the notes column of the tables in Attachment 2. 2.1.5.3 Discrete Data Words A source system should annunciate any detected failure that could cause one or more of the words normally output by that system to be unreliable. Three methods are defined. The first method is to set Bit Numbers 30 and 31 in the affected word(s) to the “Failure Warning” code defined in the table below. Words containing the “Failure Warning” code should continue to be supplied to the data bus during the failure condition. When using the second method, the equipment may stop transmitting the affected word or words c-15 on the data bus. Designers should use this method when the display or use of the discrete data by a system is undesirable. The third method applies to data words which c-12 are defined such that they contain failure information within the data field. For these applications, refer to the associated ARINC equipment characteristic to determine proper SSM c-15 reporting. Designers should preclude mixing operational and BITE data in the same word. The “No Computed Data” code should be annunciated in the affected Discrete Data word(s) when a source system is unable to compute reliable data for reasons other than system failure. When the “Functional Test” code appears as a system output, it should be interpreted as advice that the data in the Discrete Data word contents are the result of the execution of a functional test. c-12 DISCRETE DATA WORDS Bit Number 31 30 0 0 0 1 1 0 1 1 Meaning Verified Data, Normal Operation No Computed Data Functional Test Failure Warning COMMENTARY Note that Section 2.3.1.1 of this document calls for numeric data to be encoded in BCD and binary, the latter using twos complement fractional notation. In this notation, the most significant bit of the data field represents one half of the maximum value chosen for the parameter being defined. Successive bits represent the increments of a binary fraction series. Negative numbers are encoded as the twos complements of positive value and the negative sign is annunciated in the sign/status matrix. In establishing a given parameter’s binary data standards for inclusion in Attachment 2, the units maximum value and resolution are first determined in that order. The least significant bit of the word is then given a value equal to the resolution increment, and the number of significant bits is chosen such that the maximum value of the fractional binary series just exceeds the maximum value of the parameter, i.e., equals the next whole binary number greater than the maximum parameter value less one least significant bit value. For example, if the Mark 33 DITS is required to transfer altitude in units of feet over a range of zero to 100,000 feet with a resolution of one foot, the number of significant bits is 17 and the maximum value of the fractional binary series is 131,071 (i.e., 131,072 - 1). Note that because accuracy is a quality of the measurement process and not the data transfer process, it plays no part in the selection of word characteristics. Obviously, the resolution provided in the DITS word should equal or exceed the accuracy in order not to degrade it. For the binary representation of angular data, the Mark 33 DITS employs “degrees divided by 180o” as the unit of data transfer and ±1 (semicircle) as the range c-1 for twos complement fractional notation encoding (ignoring, for the moment, the subtraction of the least significant bit value). Thus the angular range 0 through 359.XXX degrees is encoded as 0 through ±179.XXX degrees, the value of the most significant bit is one half semicircle and there are no discontinuities in the code. This may be illustrated as follows. Consider encoding the angular range 0o to 360o in 1o increments. Per the general encoding rules above, the positive semicircle will cover the range 0o to 179o (one least significant bit less than full range). All the bits of the code will be “zeros” for 0o and “ones” for 179o, and the sign/status c-3 matrix will indicate the positive sign. The negative semicircle will cover the range 180o to 359o. All the bits will be “zeros” for 180o. The codes for angles between 181o to 359o will be determined by taking the twos complements of the fractional binary series for ARINC SPECIFICATION 429, PART 1 - Page 6 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS 2.1.6 Data Standards (cont’d) Prior to the selection of the voltage and impedance parameters set forth in this section of this document, the COMMENTARY (cont’d) pulse distortion likely to be encountered in systems built around them in existing size commercial aircraft the result of subtracting each value from 360. Thus, was evaluated and judged to be acceptable for a well- c-3 the code for 181o is the twos complement of the code for 179o. Throughout the negative semicircle, which designed receiver. No restriction is placed by this specification, therefore, on the number or length of includes 180o, the sign/status matrix contains the stubs for installations on aircraft no larger than those negative sign. existing, e.g., B 747. See Appendix A to this document for a report of this investigation. For convenience, all binary word ranges in Attachment 2 are shown as whole binary numbers rather than such numbers less one least significant bit value. Also, the resolutions shown are approximate only. Accurate resolutions can be determined, if required, by reference to the range values and numbers of significant bits for the words of interest. Tests have shown that some receivers continue decoding data properly when one side of the transmission line is open or shorted to ground. When c-4 this condition exists noise immunity decreases and intermittent operation may occur. Users desire protection against non-annunciated system operation in this mode. This protection may consist of additional circuitry to detect and annunciate the fault, or to c-5 It should be noted that in all applications of the twos complement fractional notation, the maximum value of the word, once chosen, cannot be changed by the use of increase the receiver threshold to above 5.5 volts, which is the maximum signal level under this one-wire fault condition. more bits in the data field. The number of bits in the word affects only the resolution of the data, not its range. Binary Coded Decimal (BCD) data is encoded per the numeric subset of the ISO Alphabet #5 code (see Attachment 5 to this document) using Bit Numbers 1 through 4 of the seven-bit-per-character code. Alpha/numeric data is encoded using all seven bits per character of the ISO Alphabet #5 code and is transmitted using the special word format described in Most ARINC Characteristics now contain text specifying that DITS receivers should discontinue operation when the voltage thresholds fall into the undefined regions between “Null” and “Hi” or “Null” and “Lo.” Manufacturers building DITS receivers are urged to incorporate this feature in their circuitry whether it is to be used in ARINC 7XX-series c-5 equipment or Non-ARINC devices. 2.2.2 Modulation Section 2.3.1.3 of this document. RZ bipolar modulation should be used. This is tri-level state modulation consisting of “HI,” “NULL” and “LO” 2.2 Electrically Related Elements states. This section describes the digital transfer system elements considered to be principally related to the electrical aspects of the signal circuit. 2.2.3 Voltage Levels 2.2.3.1 Transmitter Voltage Levels The differential output signal across the specified output 2.2.1 Transmission System Interconnect terminals (balanced to ground at the transmitter) should be as given in the following table when the transmitter is open A data source should be connected to the data sink(s) by circuit: means of a single twisted and shielded pair of wires. The c-5 shields should be grounded at both ends to an aircraft ground close to the rack connector and at all production breaks in the cable. Line A to HI (V) NULL (V) +10 +1.0 0 +0.5 LO (V) -10 +1.0 COMMENTARY Line B In practical wire line digital information transmission Line A systems, cable characteristics and electrical mismatches to +5 +0.5 0 +0.25 -5 +0.5 c-4 can produce distortion of the digital data pulses. Also, noise due to electrical interference perturbs digital Ground signals. Line B The performance of a digital receiver depends upon the receiver input signal characteristics (data with distortion and noise) and the receiver design. to Ground -5 +0.5 0 +0.25 +5 +0.5 ARINC SPECIFICATION 429, PART 1 - Page 7 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS 2.2.3.2 Receiver Voltage Levels The differential voltage presented at the receiver input terminals will be dependent upon line length, stub configuration and the number of receivers connected. In the absence of noise, the normal ranges of voltages presented to the receiver terminals (A and B) would be: “HI” +7.25V to +11V c-5 “NULL” +0.5V to -0.5V “LO” -7.25V to -11V In practice, these nominal voltages will be perturbed by noise and pulse distortion. Thus, receivers should associate the following voltage ranges with the three states indicated: “HI” +6.5V to 13V c-4 “NULL” +2.5V to -2.5V “LO” -6.5V to -13V only be approximate due to the wide range of characteristic impedances which may be encountered due to the variety of conductor wire gauges and insulation properties. Measurements on a few samples of wire showed a spread of characteristic impedance of 63 to 71 ohms. An extrapolation over the wire gauges 20 to 26 for wrapped and extruded insulation indicate an expected characteristic impedance spread of 60 to 80 ohms approx. Twisted shielded wire specifications do not control the characteristic impedance of the cable, thus future developments in insulation techniques may result in cables having characteristic impedances outside the range estimated. 2.2.4.2 Receiver Input Impedance The receiver should exhibit the following characteristics, measured at the receiver input terminals: COMMENTARY Differential Input Resistance RI = 12,000 ohms minimum c-4 Differential Input Capacitance CI = 50pF maximum Receiver reaction is currently undefined herein for Resistance to Ground RH and RG ≥ 12,000 ohms voltages that fall in the range just above and below the Capacitance to Ground CH and CG ≤ 50pF. “Null” range. Respective equipment characteristics should be referenced for desired receiver response in this range. However, it is desirable that all DITS The total receiver input resistance including the effects of receivers will discontinue operation when the voltage RI, RH and RG in parallel should be 8,000 ohms minimum c-4 levels fall into the undefined regions. Manufacturers (400 ohms minimum for twenty receiver loads). are urged, as new equipment is developed, to “design in” the rejection capability. No more than twenty receivers should be connected on to one digital data bus and each receiver should incorporate The opinion is held by some people that conditions on isolation provisions to ensure that the occurrence of any transmission lines will be encountered which will reasonably probable failure does not cause loss of data to require receivers to operate with less than the above the others. defined minimum difference of 4.0V between the NULL and HI and NULL and LO states. Receiver See Attachment 4 to this document for a pictorial designers are encouraged to investigate the representation of the input and output circuit standards. possibilities and problems of working with a minimum difference of 1 volt between these states and to report COMMENTARY their findings. The above characteristics apply to differential Receiver input common mode voltages (terminal A to amplifier receivers. Opto-isolator technology is ground and terminal B to ground) are not specified progressing and may soon find application in digital because of the difficulties of defining ground with any data receivers. Opto-isolator receivers impose slightly c-4 satisfactory degree of precision. Receiver greater loads on data buses than differential amplifier manufacturers are encouraged to work with the receivers and the way in which they are characterized is differential input voltage (line A to line B) and not line- different. It is probable, however, that a future revision to-ground voltages. of this Specification will include material specifically related to their use. 2.2.4 Impedance Levels 2.2.5 Fault Tolerance 2.2.4.1 Transmitter Output Impedance 2.2.5.1 Receiver External Fault Voltage Tolerance The transmitter output impedance should be 75 ±5 ohms, divided equally between line A and line B to provide an Receivers should withstand without sustaining damage the impedance balanced output. This output impedance should c-4 be present for the “HI,” “NULL” and “LO” transmitter following steady-state voltages being applied to their terminals, superimposed upon a normally operating bus. output conditions and also during transitions between these Operation within specification limits is not required under levels. these conditions. c-4 COMMENTARY a. 30 Vac RMS applied across terminals A and B, or The output impedance of the transmitter is specified as 75 ± 5 ohms to provide an approximate match to the characteristic impedance of the cable. The match can b. ±29 Vdc applied between terminal A and ground, or c. ±29 Vdc applied between terminal B and ground. ARINC SPECIFICATION 429, PART 1 - Page 8 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS 2.2.5.2 Transmitter External Fault Voltage Transmitter failures caused by external fault voltages should not cause other transmitters or other circuitry in the unit to function outside of their specification limits or to fail. 2.2.5.3 Transmitter External Fault Load Tolerance c-4 Transmitters should indefinitely withstand without sustaining damage a short circuit applied: a. across terminals A and B, or b. from terminal A to ground, or c. from terminal B to ground, or d. b and c above, simultaneously. 2.2.6 Fault Isolation 2.2.6.1 Receiver Fault Isolation Each receiver should incorporate isolation provisions to c-4 ensure that the occurrence of any reasonably probable internal LRU or bus receiver failure does not cause any input bus to operate outside of its specification limits (both undervoltage or overvoltage). 2.2.6.2 Transmitter Fault Isolation Each transmitter should incorporate isolation provisions to ensure that it does not under any reasonably probable LRU fault condition provide an output voltage in excess of: a. a voltage greater than 30 Vac RMS between terminal A and B, or c-4 b. greater than ±29 Vdc between A and ground, or c. greater than ±29 Vdc between B and ground. 2.3 Logic Related Elements This section describes the digital transfer system elements considered to be principally related to the logic aspects of the signal circuit. 2.3.1 Digital Language 2.3.1.1 Numeric Data The Mark 33 DITS should accommodate numeric data encoded in two digital languages, (i) BNR expressed in twos complement fractional notation and (ii) BCD per the numerical subset of ISO Alphabet Number 5 (see Attachment 5 to this document). An information item encoded in both languages will be assigned a unique address for each (see Section 2.1.3 and Attachment 1-1). Word formats are illustrated in Attachment 6 to this document. 2.3.1.2 Discretes In addition to handling numeric data as specified above, the Mark 33 DITS should also be capable of accommodating c-2 discrete items of information either in the unused (pad) bits of data words or, when necessary, in dedicated words. Any discrete information contained in a numeric data word c-2 assigned a label in Attachment 1-1 is specified in the definition for that word in Attachment 6. The rule to be followed in the assignment soft bits to discrete in numeric data words is to start with the least significant bit of the word and to continue towards the most significant bit available in the word. Attachment 6 shows its against the background of the generalized word structure. There are two types of discrete words. These are general purpose discrete words, and dedicated discrete words. c-2 Seven labels (270 XXX-276 XXX) are assigned to the general purpose words in Attachment 1-1. These words should be used in ascending label order (starting with 270 XXX) when the system receiving the data can identify its c-4 source by reference to the port at which it arrives. 2.3.1.3 Maintenance Data (General Purpose) The general purpose maintenance words are assigned labels in sequential order as are the labels for the general purpose discrete words. The lowest octal value label assigned to the maintenance words should be used when only one maintenance word is transmitted. When more than one c-2 word is transmitted the lowest octal value label should be used first and the other labels used sequentially until the message has been completed. The general purpose maintenance words may contain discrete, BCD or BNR numeric data but should never contain ISO Alphabet Number 5 messages. The general purpose maintenance words should be formatted according to the layouts of the c-12 corresponding BCD/BNR/discrete data words shown in Attachment 2. 2.3.1.4 AIM Data The information previously contained in this section is no longer applicable to ARINC Specification 429. For reference purposes, the section header is retained and the original contents of this section are located in Part 3 of this Specification. 2.3.1.5 File Data Transfer This section previously described a character-oriented file data transfer protocol. This definition was used as guidance for the character-oriented file transfer protocol descriptions incorporated into many ARINC equipment characteristics. The original contents of this section are located in Part 3 of this Specification. The protocol defined in Part 3 is preferred for new applications. The purpose of this bit-oriented communications protocol is to provide for the transparent transfer of data files using the ARINC 429 data bus. COMMENTARY c-13 The data transparent protocol described in Part 3 was developed in order to facilitate the communications of the ACARS Management Unit (MU) and the Satellite Data Unit (SDU). Its viability as a universal protocol was recognized by the Systems Architecture and Interfaces (SAI) Subcommittee, which recommended its inclusion herein as the standard means of file data transfer. c-14 c-13 c-5 ARINC SPECIFICATION 429, PART 1 - Page 9 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS The process for determining the protocol (characteroriented or bit-oriented) to be used in the interaction between two units, where this information is not predetermined is described in Part 3 of ARINC 429. 2.3.1.5.1 Bit-Oriented Protocol Determination The ALO word should be sent by any system which supports the bit-oriented Link Layer protocol just after the system powers-up, or performs a re-initialization for any reason. The ALO/ALR protocol process may also be used when a bit-oriented Link Layer protocol system needs to determine if any of its interfaces support the bit-oriented protocol. All systems which support the Link Layer bitoriented protocol must be able to respond to the initiation of this process. Attachment 11C of Part 3 to ARINC 429, shows the ALO and ALR word formats. When a system with a bit-oriented Link Layer protocol has the need to make this determination, it should construct the ALO word and transmit this word to the device in question. The system should then wait for a maximum period of time defined by T12. If the device in question has not responded within T12, the initiating system should initiate another ALO word and again delay up to T12. An initiating system will attempt a maximum of N6 ALO word operations before declaring the device in question as “Not bit-oriented” or “Not able to respond.” 2.3.2 Transmission Order The Least Significant Bit (LSB) and Least Significant Character (LSC) of each word should be transmitted first. It may be noted that the least significant bit of the word is the most significant bit of the label and that the label is transmitted ahead of the data in each case. This “reversed label” characteristic is a legacy from past systems in which the octal coding of the label field was, apparently, of no significance. 2.3.3 Data Bit Encoding Logic A “HI” state after the beginning of the bit interval returning to a “NULL” state before the end of the same bit interval signifies a logic “one.” A “LO” state after the beginning of the bit interval returning to a “NULL” state before the end of the same bit interval signifies a logic “zero.” This is represented graphically in Attachment 7 to this document. 2.3.4 Error Detection/Correction The last bit of each word should be encoded such that word parity is rendered odd to allow error detection in receivers. Note that the parity calculation encompasses all 31 label and information bits of the word. capability specified above may be used as desired in receiving terminals. BNR data, for example, may be checked for parity by reference to the binary state of Bit Number 32 of each word. Also, the data may be submitted to reasonableness checks. BCD may be submitted to reasonableness checks. BCD data intended for human consumption in the cockpit is normally smoothed before transmission to ensure tolerable levels of display jitter. As this process eliminates any obviously wild data points, the need for further error detection is questionable. As pointed out in the Commentary following Section 2.1.2 of this document, the parity bit was added to the BCD word for reasons related to BCD/BNR transmitter hardware commonality, not because a need for it existed for error detection. 2.4 Timing Related Elements This section describes the digital data transfer system elements considered to be principally related to the timing aspects of the signal circuit. 2.4.1 Bit Rate 2.4.1.1 High Speed Operation The bit rate for high speed operation of the system should be 100 kilobits per second ±1%. 2.4.1.2 Low Speed Operation The bit rate for low speed operation of the system should be within the range 12.0 to 14.5 kilobits per second. The selected rate should be maintained within 1%. NOTE: High bit rate and low bit rate messages will not be intermixed on the same bus. COMMENTARY Although the bit rates specified above should be held within the stated tolerances over the long term, individual bit lengths may fall outside the limits expected from these tolerances. Bit symmetry and jitter should be within the tolerances specified in Attachment 8. Also, notwithstanding the RFI performance of the ARINC 429 DITS reported in Appendix 1 to this document, system designers are advised to avoid selection of 13.6 kilobits per second for low speed operations and precisely 100 kilobits per second for c-5 high speed operations to ensure that the system is not responsible for interference to LORAN C systems with which the aircraft might be equipped. COMMENTARY 2.4.2 Information Rates Air transport industry experience with digital information transfer systems pre-dating the Mark 33 DITS has shown that the twisted shielded pair of wires can be regarded as a high integrity link unlikely to introduce bit errors into the data passing through it. It is for this reason that no means for error correction are specified in this document. The error detection The minimum and maximum transmit intervals for each item of information transferred by the Mark 33 DITS are c-4 specified in the tables of Attachment 2. Words with like labels but with different SDI codes should be treated as unique items of information. Each and every unique item of information should be transmitted once during an c-5 interval bounded in length by the minimum and maximum ARINC SPECIFICATION 429, PART 1 - Page 10 2.0 DIGITAL INFORMATION TRANSFER SYSTEM STANDARDS 2.4.2 Information Rates (cont’d) values specified in Attachment 2. Stated another way, a word having the same label and four different SDI codes c-5 should appear on the bus four times (once for each SDI code) during that time interval. COMMENTARY There are no values given for refresh rates in this Specification. However, it is desirable that data be refreshed at least once per transmission. Those data actually requiring long processing times or a large number of samples are the only types not expected to be refreshed with every transmission. Discretes contained within data words should be transferred at the bit rate and repeated at the update rate of the primary data. Words dedicated to discretes should be repeated continuously at the rates defined in Attachment 2. COMMENTARY The time intervals between successive transmissions of a given BCD word specified in table 1 of Attachment 2 to this document are, in general, too short for the signal to be of use in driving a display device directly. If the signal was so used the least significant character of the display, would change too rapidly for human perception. Considerations other than human factors demand the time intervals specified. Thus, display designers should incorporate into their devices means for selecting those words to be used for updating the display from the greater quantity delivered. 2.4.3 Clocking Method Clocking is inherent in the data transmission. The identification of the bit interval is related to the initiation of either a “HI” or “LO” state from a previous “NULL” state in a bipolar RZ code. 2.4.4 Word Synchronization The digital word should be synchronized by reference to a gap of four bit times (minimum) between the periods of word transmissions. The beginning of the first transmitted bit following this gap signifies the beginning of the new word. 2.4.5 Timing Tolerances The waveform timing tolerances should be as shown in Attachment 8 to this document. COMMENTARY RF interference radiated by the Mark 33 DITS using the waveform characteristics specified in this section has been shown not to exceed that permitted by Figure 21-5 of RTCA Document DO-160, “Environmental Conditions and Test Procedures for Airborne Electronic/Electrical Equipment and Instruments.” Also, conducted RF interference is within the limits specified in Figure 21-2 of DO-160. Appendix 1 to this document refers. ARINC SPECIFICATION 429, PART 1 - Page 11 3.0 MARK 33 DITS APPLICATIONS NOTES 3.1 Radio Systems Management 3.1.4.3 HF Communications One special application of the Mark 33 DITS is to radio systems frequency selection and function switching. The following paragraphs set forth the rules which should be followed in the application of the DITS to ensure interchangeability of radios and control sources. 3.1.1 Word Format and Digital Language The standard DITS 32-bit BCD word should be used, of which Bit Numbers 1 through 8 constitute the label, Bit Numbers 9 and 10 are reserved for a source/destination identifier code, bit Numbers 11 through 29 constitute the data, Bit Numbers 30 and 31 form the sign/status matrix and Bit Number 32 is the word parity bit. The data field should contain the frequency to which the radio defined by the label field is to tune encoded in BCD characters, together with the discretes required for function switching for that radio. Attachment 6 shows how the word should be structured for each radio system requiring the DITS management service. 3.1.2 Update Rate The nominal update rate for all radio systems management words should be five times per second. 3.1.3 Sign/Status Matrix Since sign is not a characteristic of radio systems management information, the normal states of the sign/status matrix bits will be binary “zeros.” However, the radios should recognize the codes for “functional test” and “no computed data,” (see Section 2.1.5 of this document). They should interpret the former as an instruction to perform a functional test or functional test sequence. They should regard the latter as an instruction to remain tuned to the frequency contained in the last valid word received until either another valid word is decoded or their primary power is removed. 3.1.4 Frequency Ranges and Switching Functions 3.1.4.1 ADF Frequency Range: Frequency Selection Increment: Characters encoded in DITS words: Switching Functions: 2.8MHz to 24MHz 1kHz or .1kHz 10MHz, 1MHz, 0.1MHz, USB/LSB mode selection SB/AM mode selection Note: Two words may be transmitted for HF frequency selection to facilitate frequency resolution of 0.1kHz. 3.1.4.4 ILS Frequency Range: Frequency Selection Increment: Characters encoded in DITS words: Switching Functions: 108.00MHz to 111.95MHz 50kHz 10MHz, 1MHz, 0.1MHz, 0.01MHz, (100MHz character is always decimal 1) None 3.1.4.5 VOR/ILS Frequency Range: Frequency Selection Increment: 108.00 MHz to 117.95MHz 50kHz Characters encoded in DITS words: Switching Functions: 10MHz, 1MHz, 0.1MHz, 0.01MHz, (100MHz character is always decimal 1) ILS Mode 3.1.4.6 VHF Communications Frequency Range: Frequency Selection Increment: Characters encoded in DITS words: Switching Functions: 117.975MHz to 137.000MHz 25kHz or 8.33kHz 10MHz, 1MHz, 0.1MHz, 0.01MHz, (100MHz character is always decimal 1) None c-17 Frequency Range: Frequency Selection Increment: Characters encoded in DITS word: Switching Functions: 190kHz to 1750kHz 0.5kHz 1000kHz, 100kHz, 10kHz, 1kHz 0.5kHz on/off, BFO on/off, ADF/ANT mode selection 3.1.4.2 DME Frequency Range: (VOR/ILS) Frequency Selection Increment: (VOR/ILS) Characters encoded in DITS word: Switching Functions: 108.00MHz to 135.95MHz 50kHz 10Mhz, 1Mhz, 0.1MHz 0.05MHz (VOR/ILS only) (100MHz character is 1 for VOR/ILS, 10MHz character is limited to 7) VOR/ILS/MLS Frequency, DME modes, Directed Frequency Numbers, Display Control 3.1.4.7 ATC Transponder Note: The ATC Transponder operates on two frequencies (one receive and one transmit) which do not require selection. Reply code selection, however, is required and it is this that the Mark 33 DITS accommodates). Reply Code Ranges: Code increments: Number of characters encoded in DITS words: Switching Functions: 0-7 in four independent groups 1 decimal digit per group ALL Ident. Pulse Select, Altitude Reporting On/Off, Altitude Source Select, X-pulse Select (reserved), VFR/IFR Select (reserved), IRS/FMC Input Select (reserved). ARINC SPECIFICATION 429, PART 1 - Page 12 3.0 MARK 33 DITS APPLICATIONS NOTES 3.2 AIM Information Transfer The information previously contained in this section is no longer applicable to ARINC Specification 429. For reference purposes, the section header is retained and the original contents of this section are located in Part 3. ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 13 Code No. (Octal) 00 0 00 1 00 2 00 3 00 4 00 5 00 6 00 7 010 011 012 01 3 014 015 016 017 020 021 02 2 023 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 XX0 0 0 0 000 0 0 2 0 0 0 0 000 0 5 6 0 0 0 0 000 0 6 0 0 0 0 0 000 0 0 2 0 0 0 0 001 0 5 6 0 0 0 0 001 0 6 0 0 0 0 0 001 1 1 5 0 0 0 0 001 0 0 2 0 0 0 0 001 0 0 1 0 0 0 0 010 0D0 0 0 0 0 010 0D0 0 0 0 0 011 0 0 0 0 0 011 0 0 2 0 0 0 0 100 0 0 4 0 0 0 0 100 0 3 8 0 0 0 0 100 0 0 2 0 0 0 0 100 0 0 4 0 0 0 0 100 0 3 8 0 0 0 0 100 0 0 2 0 0 0 0 101 0 0 4 0 0 0 0 101 0 0 5 0 0 0 0 101 0 2 5 0 0 0 0 101 0 3 8 0 0 0 0 101 0 4D0 0 0 0 101 0 5 6 0 0 0 0 101 0 6 0 0 0 0 0 101 0 0 2 0 0 0 0 101 0 0 4 0 0 0 0 101 0 3 8 0 0 0 0 101 0 4D0 0 0 0 101 0 B 8 0 0 0 0 101 0 0 4 0 0 0 0 110 0 0 5 0 0 0 0 110 0 3 8 0 0 0 0 110 0 0 2 0 0 0 0 110 0 0 4 0 0 0 0 110 0 0 5 0 0 0 0 110 0 3 8 0 0 0 0 110 0 0 4 0 0 0 0 111 0 3 8 0 0 0 0 111 0 B 8 0 0 0 0 111 0 1 0 0 0 0 0 111 0 4D0 0 0 0 111 0 5 5 0 0 0 0 111 0 A0 0 0 0 0 111 0 B 0 0 0 0 0 111 0 2 0 0 0 0 1 000 0 4D0 0 0 1 000 0 6D0 0 0 1 000 0 A1 0 0 0 1 000 0 0 2 0 0 0 1 000 0 0 2 0 0 0 1 000 0 2 0 0 0 0 1 000 0 2 0 0 0 0 1 000 0 6D0 0 0 1 000 0 A1 0 0 0 1 000 0 A1 0 0 0 1 000 0 2 0 0 0 0 1 001 0 4D0 0 0 1 001 0 6D0 0 0 1 001 0 A1 0 0 0 1 001 0 2 0 0 0 0 1 001 0 4D0 0 0 1 001 0 6D0 0 0 1 001 0 A1 0 0 0 1 001 0 Not Used 1 Distance to Go 1 Distance to Go 1 Distance to Go 0 Time to Go 0 Time to Go 0 Time to Go 0 Time to Station 1 Cross Track Distance 0 Runway Distance to Go 1 Engine Discrete 0 Engine Discrete 1 Spare 0 Present Position - Latitude 0 Present Position - Latitude 0 Present Position - Latitude 1 Present Position - Longitude 1 Present Position - Longitude 1 Present Position - Longitude 0 Ground Speed 0 Ground Speed 0 Ground Speed 0 Ground Speed 0 Ground Speed 0 QTY-LD SEL (LB) 0 Ground Speed 0 Ground Speed 1 Track Angle - True 1 Track Angle - True 1 Track Angle - True 1 QTY-FLT Deck (LB) 1 Control Word for TCAS/Mode S 0 Magnetic Heading 0 Magnetic Heading 0 Magnetic Heading 1 Wind Speed 1 Wind Speed 1 Wind Speed 1 Wind Speed 0 Wind Direction - True 0 Wind Direction - True 0 Control Word for TCAS/Mode S 1 Selected Runway - True 1 Total-FLT Deck (LB) 1 Selected Runway Heading 1 Selected Runway Heading 1 Selected Runway Heading 0 Selected Vertical Speed 0 TNK-LD SEL (LB) 0 Landing Gear Position Infor & System Status 0 Selected Vertical Speed 1 Selected EPR 1 Selected N1 1 Selected EPR 1 Selected N1 1 Landing Gear Position Infor & System Status 1 Selected EPR 1 Selected N1 0 Selected Mach 0 QTY-LD SEL (KG) 0 Landing Gear Position Infor & System Status 0 Selected Mach 1 Selected Heading 1 QTY-LD SEL (KG) 1 Landing Gear Position Infor & System Status 1 Selected Heading Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-25 6-25 6-25 6-25-1 6-25-1 6-25 6-25 6-25 6-25 6-25 6-25 6-25 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 14 Code No. (Octal) 024 02 5 02 6 027 03 0 031 032 03 3 034 03 5 0 36 0 37 04 0 041 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 1 1 0 0 0 1 010 0 2 0 0 0 0 1 010 0 6D0 0 0 1 010 0 A1 0 0 0 1 010 0 B 1 0 0 0 1 010 0 2 0 0 0 0 1 010 0 4D0 0 0 1 010 0 A1 0 0 0 1 010 0 0 3 0 0 0 1 011 0 2 0 0 0 0 1 011 0 A1 0 0 0 1 011 0 0 2 0 0 0 1 011 0 1 1 0 0 0 1 011 0 2 0 0 0 0 1 011 0 4D0 0 0 1 011 0 5 6 0 0 0 1 011 0 6 0 0 0 0 1 011 0 A1 0 0 0 1 011 0 B 1 0 0 0 1 011 0 2 0 0 0 0 1 100 0 2 4 0 0 0 1 100 0 4D0 0 0 1 100 0 B 6 0 0 0 1 100 0 2 0 0 0 0 1 100 0 B 8 0 0 0 1 100 0 1 2 0 0 0 1 101 0 2 0 0 0 0 1 101 0 B 2 0 0 0 1 101 0 0 2 0 0 0 1 101 0 1 0 0 0 0 1 101 0 2 0 0 0 0 1 101 0 5 5 0 0 0 1 101 0 5 6 0 0 0 1 101 0 6 0 0 0 0 1 101 0 B 0 0 0 0 1 101 0 0 2 0 0 0 1 110 0 0 6 0 0 0 1 110 0 1 1 0 0 0 1 110 0 2 0 0 0 0 1 110 0 2 5 0 0 0 1 110 0 5 6 0 0 0 1 110 0 6 0 0 0 0 1 110 0 B 0 0 0 0 1 110 0 0 2 0 0 0 1 110 0 0 6 0 0 0 1 110 0 0 9 0 0 0 1 110 0 2 0 0 0 0 1 110 0 2 5 0 0 0 1 110 0 5 5 0 0 0 1 110 0 5 6 0 0 0 1 110 0 6 0 0 0 0 1 110 0 A9 0 0 0 1 110 0 0 2 0 0 0 1 111 0 2 0 0 0 0 1 111 0 5 5 0 0 0 1 111 0 5 6 0 0 0 1 111 0 6 0 0 0 0 1 111 0 C 7 0 0 0 1 111 0 0 2 0 0 0 1 111 0 B 9 0 0 0 1 111 0 0 0 1 0 000 0 0 2 0 0 1 0 000 0 0 4 0 0 1 0 000 0 2 0 0 0 1 0 000 0 5 6 0 0 1 0 000 0 6 0 0 0 1 0 000 0 A4 0 0 1 0 000 0 Selected Course #1 0 Selected Course #1 0 Landing Gear Position Infor & System Status 0 Selected Course #1 0 Selected Course #1 1 Selected Altitude 1 Load SEL Control 1 Selected Altitude 0 Selected Airspeed 0 Selected Airspeed 0 Selected Airspeed 1 TACAN Selected Course 1 Selected Course # 2 1 Selected Course # 2 1 Total-FLT Deck (KG) 1 TACAN Selected Course 1 TACAN Selected Course 1 Selected Course # 2 1 Selected Course # 2 0 VHF COM Frequency 0 VHF COM Frequency 0 TNK-LD SEL (KG) 0 VHF COM Frequency 1 Beacon Transponder Code 1 Beacon Transponder Code 0 ADF Frequency 0 ADF Frequency 0 ADF Frequency 1 ILS Frequency 1 ILS Frequency 1 ILS Frequency 1 Landing System Mode/Frequency 1 ILS Frequency 1 ILS Frequency 1 ILS Frequency 0 VOR/ILS Frequency 0 Baro Correction (mb) #3 0 VOR/ILS Frequency 0 VOR/ILS Frequency 0 VOR/ILS Frequency 0 VOR/ILS Frequency 0 VOR/ILS Frequency #1 0 VOR/ILS Frequency 1 DME Frequency 1 Baro Correction (ins of Hg) #3 1 DME Frequency 1 DME Frequency 1 DME Frequency 1 Paired DME Frequency 1 DME Frequency 1 DME Frequency #1 1 DME Frequency 0 MLS Frequency 0 MLS Frequency 0 MLS Channel Selection 0 MLS Frequency Channel 0 MLS Frequency Channel 0 MLS Frequency 1 HF COM Frequency 1 HF COM Frequency 0 Spare 1 Set Latitude 1 Set Latitude 1 Set Latitude 1 Set Latitude 1 Set Latitude 1 Set Latitude Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-25 6-25 6-25 6-45 6-45 6-46 6-40 6-40 6-40 6-44 Note 3 6-44-1 6-41 6-41 6-42 X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 15 Code No. (Octal) 042 043 044 04 5 04 6 04 7 05 0 05 1 05 2 05 3 05 4 05 5 05 6 05 7 06 0 06 1 06 2 06 3 06 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 0010 0 0 4 0010 0 2 0 0010 0 5 6 0010 0 6 0 0010 0A4 0010 0 0 2 0010 0 0 4 0010 0 2 0 0010 0 5 6 0010 0 6 0 0010 0A4 0010 0 0 4 0010 0 3 8 0010 0 0 3 0010 0 3 3 0010 1 0A0010 1 0B0010 0 2 0 0010 0 2 4 0010 0 3 3 0010 0B60010 1 0A0010 1 0B0010 0 0010 0 0010 0 0 4 0010 0 3 7 0010 0 3 8 0010 0 0 4 0010 0 0 5 0010 0 3 8 0010 0 0 4 0010 0 3 7 0010 0 3 8 0010 0 0010 0 0 2 0010 0 0 5 0010 0 3 7 0010 0 5 6 0010 0 6 0 0010 0 0010 0 2 5 0011 0 3 7 0011 0 3C0011 0 0 2 0011 0 0B0011 0 2 5 0011 0 3 7 0011 0 3C0011 0 5 6 0011 0 6 0 0011 0 0 2 0011 0 0B0011 0 3 7 0011 0 3C0011 0 5 6 0011 0 6 0 0011 0 0 2 0011 0 0B0011 0 3 7 0011 0 3C0011 0 5 6 0011 0 6 0 0011 0 0B0011 0 3 7 0011 0 3C0011 567 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 011 011 011 011 011 011 011 011 011 100 100 101 101 101 101 101 101 110 110 110 110 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 8 0 Set Longitude 0 Set Longitude 0 Set Longitude 0 Set Longitude 0 Set Longitude 0 Set Longitude 1 Set Magnetic Heading 1 Set Magnetic Heading 1 Set Magnetic Heading 1 Set Magnetic Heading 1 Set Magnetic Heading 1 Set Magnetic Heading 0 True Heading 0 True Heading 1 Minimum Airspeed 0 Engine Serial No. (LSDs) 0 Engine Serial No. (LSDs) 0 Engine Serial No. (LSDs) 1 VHF COM Frequency 1 VHF COM Frequency 1 Engine Serial No. (MSDs) 1 VHF COM Frequency 1 Engine Serial No. (MSDs) 1 Engine Serial No. (MSDs) 0 Spare 1 Spare 0 Body Pitch Acceleration 0 Longitude Zero Fuel CG 0 Body Pitch Acceleration 1 Body Roll Acceleration 1 Track Angle - Magnetic 1 Body Roll Acceleration 0 Body Yaw Acceleration 0 Zero Fuel Weight (KG) 0 Body Yaw Acceleration 1 Spare 0 Estimated Time of Arrival 0 Wind Direction - Magnetic 0 Gross Weight (KG) 0 ETA (Active Waypoint) 0 ETA (Active Waypoint) 1 Spare 0 S/G Hardware Part No 0 Tire Loading (Left Body Main) 0 Tire Pressure (Left Inner) 1 ACMS Information 1 Pseudo Range 1 S/G Software Configuration Part No. 1 Tire Loading (Right Body Main) 1 Tire Pressure (Left Outer) 1 ACMS Information 1 ACMS Information 0 ACMS Information 0 Pseudo Range Fine 0 Tire Loading (Left Wing Main) 0 Tire Pressure (Right Inner) 0 ACMS Information 0 ACMS Information 1 ACMS Information 1 Range Rate 1 Tire Loading (Right Wing Main) 1 Tire Pressure (Right Outer) 1 ACMS Information 1 ACMS Information 0 Delta Range 0 Tire Loading (Nose) 0 Tire Pressure (Nose) Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X 6-15 X 6-15 X 6-15 X X X 6-16 X X 6-16 X 6-16 X X X X X X X X X X X X X X X 6-36 X X X 6-29 X X 6-37 X X X X X 6-29 X X X X X X 6-29 X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 16 Code No. (Octal) 065 06 6 06 7 07 0 07 1 07 2 07 3 07 4 07 5 07 6 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 3 0011 0 0B0011 0 3 7 0011 0 0 2 0011 0 0B0011 0 3 7 0011 0 3 7 0011 0 0 2 0011 0 0B0011 0 2 9 0011 0 3 7 0011 0 5 6 0011 0 6 0 0011 0 CC0 0 1 1 0 0 2 0011 0 0B0011 0 2 9 0011 0 3 3 0011 0 3 7 0011 0 CC0 0 1 1 0 0 2 0011 0 0B0011 0 1C0011 0 2 9 0011 0 2 F0011 0 3 3 0011 0 CC0 0 1 1 0 0 2 0011 0 0B0011 0 1C0011 0 2 9 0011 0A2 0011 0 CC0 0 1 1 0D0 0011 0 0 2 0011 0 0B0011 0 2C0011 0 3 3 0011 0 3 7 0011 0 5 6 0011 0 6 0 0011 1 1 4 0011 0 0 2 0011 0 0 3 0011 0 0 8 0011 0 0B0011 0 2 9 0011 0 2C0011 0 3 7 0011 0 3E0011 1 1 4 0011 0 0 8 0011 0 0B0011 0 2 9 0011 0 3 7 0011 0 3E0011 1 1 4 0011 567 010 010 010 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111 111 8 1 Gross Weight 1 SV Position X 1 Gross Weight 0 Longitudinal Center of Gravity 0 SV Position X Fine 0 Longitudinal Center of Gravity 1 Lateral Center of Gravity 0 Reference Airspeed (Vref) 0 SV Position Y 0 AC Frequency (Engine) 0 Hard landing Magnitude #1 0 Reference Airspeed (Vref) 0 Reference Airspeed (Vref) 0 Brakes - Metered Hydraulic Pressure L (Normal) 1 Take-Off Climb Airspeed (V2) 1 SV Position Y Fine 1 AC Frequency (Alt. Sources) 1 VBV 1 Hard Landing Magnitude #2 1 Brakes - Metered Hydraulic Pressure L (Alt) 0 VR (Rotation Speed) 0 SV Position Z 0 Stator Vane Angle 0 AC Voltage (Engine) 0 Stator Vane Angle 0 Stator Vane Angle 0 Brakes - Metered Hydraulic Pressure R (Normal) 1 V1 (Critical Engine Failure Speed) 1 SV Position Z Fine 1 Oil Quantity 1 Oil Quantity 1 V2 (Critical Engine Failure Speed) 1 Brakes - Metered Hydraulic Pressure R (Alt.) 1 Engine Oil Quantity 0 Zero Fuel Weight 0 UTC Measure Time 0 Zero Fuel Weight 0 LP Compressor Bleed Position (3.0) 0 Zero Fuel Weight (lb) 0 Zero Fuel Weight 0 Zero Fuel Weight 0 Zero Fuel Weight 1 Gross Weight 1 Gross Weight 1 Maximum Hazard Alert Level Output 1 Geodetic Altitude 1 AC Voltage (Alt. Sources) 1 Gross Weight 1 Gross Weight 1 Gross Weight 1 Aircraft Gross Weight 0 Hazard Azimuth Output 0 GNSS Altitude (MSL) 0 AC Voltage (Bus Bar) 0 Longitudinal Center of Gravity 0 Longitudinal Center of Gravity 0 Aircraft Longitudinal Center of Gravity Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 17 Code No. (Octal) 07 7 10 0 10 1 10 2 10 3 10 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 2 0 0 1 1 111 0 0 8 0 0 1 1 111 0 0 B0 0 1 1 111 0 2 9 0 0 1 1 111 0 3 7 0 0 1 1 111 0 5 6 0 0 1 1 111 0 6 0 0 0 1 1 111 1 1 4 0 0 1 1 111 0 0 1 0 1 0 0 000 0 0 2 0 1 0 0 000 0 1 1 0 1 0 0 000 0 2 0 0 1 0 0 000 0 2 9 0 1 0 0 000 0 3 7 0 1 0 0 000 0 5 6 0 1 0 0 000 0 6 0 0 1 0 0 000 0 A1 0 1 0 0 000 0 B 1 0 1 0 0 000 0 BB0 1 0 0 000 0 0 2 0 1 0 0 000 0 0 B0 1 0 0 000 0 2 0 0 1 0 0 000 0 2 5 0 1 0 0 000 0 2 9 0 1 0 0 000 0 5 A0 1 0 0 000 0 A1 0 1 0 0 000 0 BB0 1 0 0 000 1 1 4 0 1 0 0 000 0 0 2 0 1 0 0 001 0 0 B0 1 0 0 001 0 2 0 0 1 0 0 001 0 2 9 0 1 0 0 001 0 5 6 0 1 0 0 001 0 6 0 0 1 0 0 001 0 A1 0 1 0 0 001 0 0 1 0 1 0 0 001 0 0 2 0 1 0 0 001 0 0 3 0 1 0 0 001 0 0 B0 1 0 0 001 0 1 B0 1 0 0 001 0 2 0 0 1 0 0 001 0 2 9 0 1 0 0 001 0 5 6 0 1 0 0 001 0 6 0 0 1 0 0 001 0 A1 0 1 0 0 001 0 BB0 1 0 0 001 0 0 1 0 1 0 0 010 0 0 2 0 1 0 0 010 0 1 B0 1 0 0 010 0 2 0 0 1 0 0 010 0 2 9 0 1 0 0 010 0 2 B0 1 0 0 010 0 5 6 0 1 0 0 010 0 6 0 0 1 0 0 010 0 A1 0 1 0 0 010 0 BB0 1 0 0 010 1 Target Airspeed 1 Hazard Azimuth Output 1 GPS Hor/Vert Deviation 1 AC Load (Engine) 1 Lateral Center of Gravity 1 Target Airspeed 1 Target Airspeed 1 Zero Fuel Center of Gravity 0 Selected Course #1 0 Selected Course #1 0 Selected Course #1 0 Selected Course #1 0 AC Load (Alt. Source) 0 Gross Weight (Kilogram) 0 Selected Course #1 0 Selected Course #1 0 Selected Course #1 0 Selected Course #1 0 Outbound Flaps - PDU 1 Selected Heading 1 HDOP 1 Selected Heading 1 Selected Heading 1 DC Current (TRU) 1 FQIC 1 Selected Heading 1 Inboard Flaps - PDU 1 C/G Target 0 Selected Altitude 0 VDOP 0 Selected Altitude 0 DC Current (Battery) 0 Selected Altitude 0 Selected Altitude 0 Selected Altitude 1 Selected Airspeed 1 Selected Airspeed 1 Selected Airspeed 1 GNSS Track Angle 1 Left/PDU Flap 1 Selected Airspeed 1 DC Voltage (TRU) 1 Selected Airspeed 1 Selected Airspeed 1 Selected Airspeed 1 Left Outboard Flap Position 0 Selected Vertical Speed 0 Selected Vertical Speed 0 Right/PDU Flap 0 Selected Vertical Speed 0 DC Voltage (Battery) 0 Selected Vertical Speed 0 Selected Vertical Speed 0 Selected Vertical Speed 0 Selected Vertical Speed 0 Right Outboard Flap Position Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X 6-27 X X X X X X X X X X X 6-27 X X X X X X X X X 6-27 X X X X X X X 6-27 X X X X X X X X X X X 6-27 X X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 18 Code No. (Octal) 10 5 10 6 10 7 110 11 1 11 2 11 3 11 4 11 5 11 6 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 2 0 1 0 0 010 0 1 0 0 1 0 0 010 0 1 B0 1 0 0 010 0 2 0 0 1 0 0 010 0 2 9 0 1 0 0 010 0 5 5 0 1 0 0 010 0 5 6 0 1 0 0 010 0 6 0 0 1 0 0 010 0 A1 0 1 0 0 010 0 B 0 0 1 0 0 010 0 BB0 1 0 0 010 0 0 2 0 1 0 0 011 0 1 B0 1 0 0 011 0 2 0 0 1 0 0 011 0 2 9 0 1 0 0 011 0 5 6 0 1 0 0 011 0 6 0 0 1 0 0 011 0 A1 0 1 0 0 011 0 BB0 1 0 0 011 0 0 2 0 1 0 0 011 0 1 B0 1 0 0 011 0 3 7 0 1 0 0 011 0 5 6 0 1 0 0 011 0 6 0 0 1 0 0 011 0 BB0 1 0 0 011 0 0 1 0 1 0 0 100 0 0 2 0 1 0 0 100 0 0 B0 1 0 0 100 0 1 0 0 1 0 0 100 0 1 1 0 1 0 0 100 0 2 0 0 1 0 0 100 0 A1 0 1 0 0 100 0 B 1 0 1 0 0 100 0 BB0 1 0 0 100 0 0 1 0 1 0 0 100 0 0 B0 1 0 0 100 0 1D0 1 0 0 100 0 0 2 0 1 0 0 101 0 0 B0 1 0 0 101 0 A1 0 1 0 0 101 0 A1 0 1 0 0 101 0 BB0 1 0 0 101 0 0 1 0 0 101 0 0 2 0 1 0 0 110 0 2 9 0 1 0 0 110 0 2 F 0 1 0 0 110 0 3 F 0 1 0 0 110 0 5 6 0 1 0 0 110 0 6 0 0 1 0 0 110 0 BB0 1 0 0 110 0 CC0 1 0 0 110 1 0 A0 1 0 0 110 1 0 B0 1 0 0 110 1 3 A0 1 0 0 110 0 0 2 0 1 0 0 110 0 2 9 0 1 0 0 110 0 2 F 0 1 0 0 110 0 3 F 0 1 0 0 110 0 5 6 0 1 0 0 110 0 6 0 0 1 0 0 110 0 BC0 1 0 0 110 0 CC0 1 0 0 110 0 0 2 0 1 0 0 111 0 0 B0 1 0 0 111 0 2 9 0 1 0 0 111 0 5 5 0 1 0 0 111 0 5 6 0 1 0 0 111 0 6 0 0 1 0 0 111 0 CC0 1 0 0 111 1 Selected Runway Heading 1 Selected Runway Heading 1 Left/PDU Slat 1 Selected Runway Heading 1 Oil Temperature Input (IDG/CSD) 1 Selected Runway Heading 1 Selected Runway Heading 1 Selected Runway Heading 1 Selected Runway Heading 1 Selected Runway Heading 1 Left Inboard Flap Position 0 Selected Mach 0 Right/PDU Slat 0 Selected Mach 0 Oil Temperature Input (IDG/CSD) 0 Selected Mach 0 Selected Mach 0 Selected Mach 0 Right Inboard Flap Position 1 Selected Cruise Altitude 1 Flap/Slat Lever 1 Longitude Zero Fuel C/G 1 Selected Cruise Altitude 1 Selected Cruise Altitude 1 Flap Lever Position - Median Value 0 Selected Course #2 0 Selected Course #2 0 GNSS Latitude 0 Selected Course #2 0 Selected Course #2 0 Selected Course #2 0 Selected Course #2 0 Selected Course #2 0 Flap Lever Position - Center 1 Test Word A 1 GNSS Longitude 1 Test Word A 0 Runway Length 0 GNSS Ground Speed 0 Selected EPR 0 Selected N1 0 Flap Lever Position - Left 1 Spare 0 Desired Track 0 Brake Temperature (Left Inner L/G) 0 Ambient Pressure 0 Pamb Sensor 0 Desired Track 0 Desired Track 0 Flap Lever Position - Right 0 Wheel Torque Output 0 Selected Ambient Static Pressure 0 Selected Ambient Static Pressure 0 Ambient Pressure 1 Waypoint Bearing 1 Brake Temperature (Left Outer L/G) 1 Fuel Temperature 1 Fuel Temperature 1 Waypoint Bearing 1 Waypoint Bearing 1 Fuel Temperature 1 Wheel Torque Output 0 Cross Track Distance 0 Horizontal GLS Deviation Rectilinear 0 Brake Temperature (Right Inner L/G) 0 Horizontal GLS Deviation Rectilinear 0 Cross Track Distance 0 Cross Track Distance 0 Wheel Torque Output Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X 6-27 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-27 X X X X X X X X X X X X X X X X X X 6-26 X 6-27 X X X X X X 6-26 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 19 Code No. (Octal) 11 7 12 0 12 1 12 2 12 3 12 4 12 5 12 6 12 7 13 0 13 1 13 2 13 3 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 0100 0 0B0100 0 2 9 0100 0 5 5 0100 0 5 6 0100 0 6 0 0100 0 CC0 1 0 0 0 0 2 0101 0 0B0101 0 2 9 0101 0 5 6 0101 0 6 0 0101 0 0 2 0101 0 0B0101 0 2 5 0101 0 2 9 0101 0 5 6 0101 0 6 0 0101 0 0 2 0101 0 2 9 0101 0 5 6 0101 0 6 0 0101 0 0 2 0101 0 0B0101 0A5 0101 1E20101 0 0 2 0101 0 0B0101 0 3 1 0101 0 5 6 0101 0 6 0 0101 0 0 2 0101 0 2 6 0101 0 2 9 0101 0 5 6 0101 0 6 0 0101 0 0 2 0101 0 1B0101 0 3 3 0101 1 0A0101 1 0B0101 1E20101 0 0B0101 0 1A0101 0 1C0101 0 2 F0101 0 3 5 0101 0 3 F0101 1 0A0101 1 0B0101 1 3A0101 0 1A0101 0 1C0101 0 2D0101 0 2 F0101 0 3 3 0101 0 3 5 0101 1 3A0101 0 1A0101 0 1C0101 0 3 3 0101 0 3 5 0101 0 0B0101 0 1A0101 0 2 F0101 0 3 F0101 1 0A0101 1 0B0101 567 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 010 010 010 010 010 010 011 011 011 011 011 011 011 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 8 1 Vertical Deviation 1 Vertical GLS Deviation Rectilinear 1 Brake Temperature (Right Inner L/G) 1 Vertical GLS Deviation Rectilinear 1 Vertical Deviation 1 Vertical Deviation 1 Wheel Torque Output 0 Range to Altitude 0 GNSS Latitude Fine 0 Pack Bypass Turbine Position 0 Range to Altitude 0 Range to Altitude 1 Horizontal Command Signal 1 GNSS Longitude Fine 1 Pitch Limit 1 Pack Outlet Temperature 1 Horizontal Command Signal 1 Horizontal Command Signal 0 Vertical Command Signal 0 Pack Turbine Inlet Temperature 0 Vertical Command Signal 0 Vertical Command Signal 1 Throttle Command 1 Digital Time Mark 1 Client Device for GNSS Receiver 0 Horizontal Alarm Limit 1 Universal Time Coordinated (UTC) 1 Universal Time Coordinated (UTC) 1 Universal Time Coordinated (UTC) 1 Universal Time Coordinated (UTC) 1 Universal Time Coordinated (UTC) 0 Vertical Deviation (wide) 0 FWC Word 0 Pack Flow 0 Vertical Deviation (Wide) 0 Vertical Deviation (Wide) 1 Selected Landing Altitude 1 Slat Angle 1 P14 1 Fan Discharge Static Pressure 1 Fan Discharge Static Pressure 1 Vertical Alarm Limit 0 Aut Horiz Integ Limit 0 Fan Inlet Total Temperature 0 Fan Inlet Total Temperature 0 Fan Inlet Total Temperature 0 Intruder Range 0 Fan Inlet Total Temperature 0 Selected Total Air Temperature 0 Selected Total Air Temperature 0 Inlet Temperature 1 Fan Inlet Total Pressure 1 Fan Inlet Total Pressure 1 Fan Inlet Total Pressure 1 Fan Inlet Total Pressure 1 Fan Inlet Total Pressure 1 Intruder Altitude 1 Inlet Pressure 0 Exhaust Gas Total Pressure 0 Exhaust Gas Total Pressure 0 Exhaust Gas Total Pressure 0 Intruder Bearing 1 Aut Horiz Integ Limit 1 Thrust Lever Angle 1 Thrust Lever Angle 1 Thrust Lever Angle 1 Selected Throttle Lever Angle 1 Selected Throttle Lever Angle Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X 6-27 X X X X X X 6-26 X X X X X X X X X X X X X X X X X X 6-49 X X 6-25 X X 6-25 X X X X X X X X X 6-11 X X X X 6-50 X X X X X 6-21 X X X X X X X X X X 6-22 X X X X X 6-23 X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 20 Code No. (Octal) 13 4 13 5 13 6 13 7 14 0 14 1 14 2 14 3 14 4 14 5 14 6 14 7 15 0 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 1 C0 1 0 1 110 1 0 A0 1 0 1 110 1 0 B0 1 0 1 110 1 3 A0 1 0 1 110 0 1 C0 1 0 1 110 0 2 9 0 1 0 1 110 0 5 A0 1 0 1 110 0 0 B0 1 0 1 111 0 1 C0 1 0 1 111 0 2 9 0 1 0 1 111 0 5 A0 1 0 1 111 0 1 B0 1 0 1 111 0 2 A0 1 0 1 111 0 2 F 0 1 0 1 111 0 3 F 0 1 0 1 111 0 5 A0 1 0 1 111 1 0 A0 1 0 1 111 1 0 B0 1 0 1 111 1 4 0 0 1 0 1 111 0 0 1 0 1 1 0 000 0 0 B0 1 1 0 000 0 2 5 0 1 1 0 000 0 2 9 0 1 1 0 000 0 5 A0 1 1 0 000 1 1 4 0 1 1 0 000 0 0 1 0 1 1 0 000 0 0 B0 1 1 0 000 0 2 5 0 1 1 0 000 0 2 9 0 1 1 0 000 0 5 A0 1 1 0 000 1 1 4 0 1 1 0 000 0 0 2 0 1 1 0 001 0 0 3 0 1 1 0 001 0 0 B0 1 1 0 001 0 2 5 0 1 1 0 001 0 5 A0 1 1 0 001 1 1 4 0 1 1 0 001 0 0 1 0 1 1 0 001 0 4 1 0 1 1 0 001 0 5 A0 1 1 0 001 1 1 4 0 1 1 0 001 2 4 1 0 1 1 0 001 0 2 B0 1 1 0 010 0 4 1 0 1 1 0 010 0 5 A0 1 1 0 010 1 1 4 0 1 1 0 010 3 4 1 0 1 1 0 010 0 0 2 0 1 1 0 010 0 2 5 0 1 1 0 010 0 2 9 0 1 1 0 010 0 A1 0 1 1 0 010 1 1 4 0 1 1 0 010 0 2 5 0 1 1 0 011 0 2 9 0 1 1 0 011 0 A1 0 1 1 0 011 1 1 2 0 1 1 0 011 1 1 4 0 1 1 0 011 0 2 5 0 1 1 0 011 0 2 9 0 1 1 0 011 0 A1 0 1 1 0 011 1 1 4 0 1 1 0 011 1 1 5 0 1 1 0 011 0 0 2 0 1 1 0 100 0 0 B0 1 1 0 100 0 2 9 0 1 1 0 100 0 3 1 0 1 1 0 100 0 5 6 0 1 1 0 100 0 6 0 0 1 1 0 100 1 1 4 0 1 1 0 100 0 Power Lever Angle 0 Throttle Lever Angle 0 Throttle Lever Angle 0 Throttle Lever Angle 1 Engine Vibration #1 1 Engine Fan Vibration 1 ACT 1 Fuel Quantity Display 0 Vertical Figure of Merit 0 Engine Vibration #2 0 Engine Turbine Vibration 0 ACT 2 Fuel Quantity Display 1 Flap Angle 1 Flap Angle 1 Thrust Reverser Position Feedback 1 Thrust Reverser Position Feedback 1 Center+ACT1+ACT2 FQ Display 1 Selected Thrust Reverser Position 1 Selected Thrust Reverser Position 1 Flap Angle 0 Flight Director - Roll 0 UTC Fine 0 Flight Director - Roll 0 Precooler Output Temperature 0 Actual Fuel Quantity Display 0 Pump Contactor States 1 Flight Director - Pitch 1 UTC Fine Fractions 1 Flight Director - Pitch 1 Precooler Input Temperature 1 Preselected Fuel Quantity Display 1 Pump Contactor and Pushbutton States 0 Flight Director - Fast/Slow 0 Flight Director - Fast/Slow 0 UTC Fine Fractions 0 Flight Director - Fast/Slow 0 Left Wing Fuel Quantity Display 0 Pump Push Button and LP Switch State 1 Flight Director - Yaw 1 HPA Command Word 1 Center Wing Fuel Quantity Display 1 Pump LP Switch State and FCMC Commands 1 HPA Response Word 0 Altitude Error 0 ACU/BSU Contorl Word 0 Right Wing Fuel Quantity Display 0 Valve Feedback 0 ACU/BSU Contorl Word 1 TACAN Control 1 Discrete Status 2 EFIS 1 Discrete Status 2 EFIS 1 AFS DFDR Discretes #1 1 Valve Feedback 0 Discrete Status 3 EFIS 0 Discrete Data #9 0 AFS DFDR Discretes #2 0 TACAN Control 0 Valve Feedback 1 Discrete Status 4 EFIS 1 Discrete Data #10 1 AFS DFDR Discretes #3 1 Valve Feedback 1 TACAN Control Word 0 Universal Time Constant (UTC) 0 Universal Time Constant (UTC) 0 Cabin Altitude Rate 0 Universal Time Constant (UTC) 0 Universal Time Coordinate 0 Universal Time Coordinate 0 FCMC Valve Commands Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-11 6-11 6-11 6-27 6-27 6-27 6-30 6-47 6-48/Note 1 6-12/6-27 6-12/6-27 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 21 Code No. (Octal) 15 1 15 2 15 3 15 4 15 5 15 6 157 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 2 0 1 1 0 100 0 2 7 0 1 1 0 100 0 2 9 0 1 1 0 100 0 5 5 0 1 1 0 100 0 5 6 0 1 1 0 100 0 5 A0 1 1 0 100 0 6 0 0 1 1 0 100 1 1 4 0 1 1 0 100 0 2 7 0 1 1 0 101 0 2 9 0 1 1 0 101 0 3 8 0 1 1 0 101 0 4 1 0 1 1 0 101 0 5 5 0 1 1 0 101 0 AD0 1 1 0 101 1 1 4 0 1 1 0 101 0 1 1 0 101 0 0 2 0 1 1 0 101 0 2 7 0 1 1 0 101 0 2 9 0 1 1 0 101 0 4 1 0 1 1 0 101 0 5 5 0 1 1 0 101 1 1 4 0 1 1 0 101 0 0 2 0 1 1 0 110 0 2 7 0 1 1 0 110 0 2 9 0 1 1 0 110 0 5 5 0 1 1 0 110 0 5 6 0 1 1 0 110 0 6 0 0 1 1 0 110 1 1 4 0 1 1 0 110 0 1 C0 1 1 0 110 0 2 5 0 1 1 0 110 0 2 7 0 1 1 0 110 0 2 9 0 1 1 0 110 0 3 3 0 1 1 0 110 0 5 5 0 1 1 0 110 0 5 A0 1 1 0 110 0 BB0 1 1 0 110 1 0 A0 1 1 0 110 1 0 B0 1 1 0 110 1 1 4 0 1 1 0 110 0 1 C0 1 1 0 111 0 2 7 0 1 1 0 111 0 2 9 0 1 1 0 111 0 3 3 0 1 1 0 111 0 4D0 1 1 0 111 0 5 5 0 1 1 0 111 0 BB0 1 1 0 111 1 0 A0 1 1 0 111 1 0 B0 1 1 0 111 1 1 4 0 1 1 0 111 0 1 1 0 111 0 1 C0 1 1 0 111 0 2 7 0 1 1 0 111 0 3 3 0 1 1 0 111 0 4D0 1 1 0 111 0 5 5 0 1 1 0 111 0 BB0 1 1 0 111 1 0 A0 1 1 0 111 1 0 B0 1 1 0 111 1 1 4 0 1 1 0 111 0 1 1 0 111 1 Localizer Bearing (True) 1 MLS Azimuth Deviation 1 Cabin Altitude 1 MLS Azimuth Deviation 1 Localizer Bearing (True) 1 LB/KG Control Word 1 Localizer Bearing (True) 1 FCMC Valve Commands 0 MLS Elevation Deviation 0 Cabin Pressure 0 Cabin Pressure 0 Open Loop Steering 0 MLS GP Deviation 0 Cabin Pressure 0 Overhead Panel Switch/Pushbutton & Refuel Panel Battery Power Supply Switch States 0 777 Cabin Interphone System - System Address Label 1 Maximum Altitude 1 Flare 1 Pressurization Valve Position (Gr. #1) 1 Closed Loop Steering 1 MLS Selected Azimuth 1 Level States 0 Runway Heading (True) 0 MLS Auxilliary Data 0 Pressurization Valve Position (Gr. #2) 0 MLS Max Selectable GP 0 Runway Heading (True) 0 Runway Heading (True) 0 Level States and Low Warning and Transfer Indications 1 Maintenance Data #6 1 Discrete Status 5 EFIS 1 MLS Selected GP Angle 1 Discrete #1 1 Maintenance Data #6 1 MLS Selected Glide Path 1 FQIC 1 Maintenance Data #6 1 Maintenance Data #6 1 Maintenance Data #6 1 XFR Pump Faults & Wing Imbalance Warning 0 Maintnance Data #7 0 MLS Dataword 1 0 Discrete #12 0 Maintenance Data #7 0 L Tank Faults 0 MLS Basic Data Wd 1 0 Maintenance Data #7 0 Maintenance Data #7 0 Maintenance Data #7 0 Refuel Panel Switch States 0 CVR #2 - System Address Label 1 Maintenance Data #8 1 MLS Dataword 2 1 Maintenance Data #8 1 R Tank Faults 1 MLS Basic Data Wd 2 1 Maintenance Data #8 1 Maintenance Data #8 1 Maintenance Data #8 1 Trim Tank Probe Capacitance 1 CVR #1 - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 22 Code No. (Octal) 16 0 16 1 16 2 16 3 16 4 16 5 16 6 16 7 17 0 17 1 17 2 17 3 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 1C0111 0 2 5 0111 0 2 7 0111 0 3 3 0111 0 4D0111 0 5 5 0111 0 BB0 1 1 1 1 0A0111 1 0B0111 1 1 4 0111 0 1C0111 0 2 5 0111 0 2 7 0111 0 3 3 0111 0 4D0111 0 5 5 0111 1 0A0111 1 0B0111 1 1 4 0111 0 1 2 0111 0 2 5 0111 0 2 7 0111 0 2 9 0111 0 5 5 0111 0 DE 0 1 1 1 1 1 4 0111 1 4 0 0111 0 2 7 0111 0 3 7 0111 0 5 5 0111 1 1 4 0111 0111 0 0 2 0111 0 0 3 0111 0 0 7 0111 0 2 5 0111 0 2 7 0111 0 3B0111 0 5 5 0111 1 1 4 0111 0 0 7 0111 0 0B0111 0 2 7 0111 0 5 5 0111 1 1 4 0111 0 0 7 0111 0 0B0111 1 1 4 0111 0 0 2 0111 1 1 4 0111 0 2 5 0111 0C50111 1 1 4 0111 0111 0 0 2 0111 0A5 0111 XXX0 1 1 1 XXX0 1 1 1 0 1 0 0111 0 2 5 0111 0 2 9 0111 0 3B0111 0 5 5 0111 0 BD0 1 1 1 0D0 0111 0111 567 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 010 010 010 010 010 010 010 010 010 011 011 011 011 011 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 8 0 Maintenance Data #9 0 Discrete Status 6 EFIS 0 MLS Dataword 3 0 Maintenance Data #9 0 C Tank Faults 0 MLS Basic Data Wd 3 0 Maintenance Data #9 0 Maintenance Data #9 0 Maintenance Data #9 0 Valve Feedback 1 Maintenance Data #10 1 Discrete Status 7 EFIS 1 MLS Dataword 4 1 Maintenance Data #10 1 A Tank Faults 1 MLS Basic Data Wd 4 1 Maintenance Data #10 1 Maintenance Data #10 1 Indicated Pump Status 0 ADF Bearing 0 ADF Bearing Left/Right 0 MLS Dataword 5 0 Crew Oxygen Pressure 0 MLS Basic Data Wd 5 0 Stick Shaker Margin Proportional Signal 0 Indicated Pump Status 0 Density Altitude 1 MLS Dataword 6 1 Zero Fuel Weight (lb) 1 MLS Basic Data Wd 6 1 Indicated Pump Status 1 747 DFDR & A330/340 SSFDR - System Address Label 0 Minimum Descent Altitude (MDA) 0 Target Height 0 Radio Height 0 Radio Height 0 MLS Dataword 7 0 Radio Height 0 MLS ABS GP Angle 0 Indicated Pump Status 1 Radio Height 1 Vertical Velocity 1 MLS Dataword 8 1 MLS ABS Azimuth Angle 1 Indicated Valve Status 0 RALT Check Point Dev. 0 North/South Velocity 0 Indicated Valve Status 1 EPU Estimate Position Uncertainty/ (ANP) Actual Navi. Perf. 1 Indicated Valve Status 0 Decision Height Selected (EFI) 0 Decision Height Selected (EFI) 0 Wing Imbalance and FQI Failure Warning 0 DFDAU - System Address Label 1 RNP Required Navigation Performance 1 Vertical Alarm Limit (VAL) and SBAS System Identifier 1 Manufacturer Specific Status 0 Subsystem Identifier 1 Localizer Deviation 1 Localizer Deviation 1 Hydraulic Quantity 1 Localizer Deviation 1 Localizer Deviation 1 Hydraulic Quantity 1 Hydraulic Oil 1 SDU #2 - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 6-13/6-27 6-13/6-27 6-25 6-25 6-25 See Attachment 11 See Attachment 10/Note 1 6-34/Note 1 6-6/6-27 6-6/6-27 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 23 Code No. (Octal) 17 4 17 5 17 6 17 7 20 0 20 1 20 2 20 3 20 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 3 0 1 1 1 110 0 0 B0 1 1 1 110 0 1 0 0 1 1 1 110 0 2 9 0 1 1 1 110 0 3 B0 1 1 1 110 0 5 5 0 1 1 1 110 0D0 0 1 1 1 110 0 1 1 1 110 0 0 3 0 1 1 1 110 0 2 9 0 1 1 1 110 0 3 3 0 1 1 1 110 0 1 1 1 110 0 0 3 0 1 1 1 111 0 2 9 0 1 1 1 111 0 3 8 0 1 1 1 111 0 5 A0 1 1 1 111 0 AD0 1 1 1 111 1 1 4 0 1 1 1 111 0 0 3 0 1 1 1 111 0 2 9 0 1 1 1 111 0 3 8 0 1 1 1 111 0 5 5 0 1 1 1 111 0 5 A0 1 1 1 111 0 AD0 1 1 1 111 1 1 4 0 1 1 1 111 0 1 1 1 111 0 0 2 1 0 0 0 000 0 0 4 1 0 0 0 000 0 5 6 1 0 0 0 000 0 6 0 1 0 0 0 000 1 1 4 1 0 0 0 000 0 0 9 1 0 0 0 000 0 5 A1 0 0 0 000 1 1 2 1 0 0 0 000 1 1 4 1 0 0 0 000 1 1 5 1 0 0 0 000 1 4 0 1 0 0 0 000 1 4 2 1 0 0 0 000 1 0 0 0 000 0 0 2 1 0 0 0 001 0 0 9 1 0 0 0 001 0 2 9 1 0 0 0 001 0 5 A1 0 0 0 001 1 1 4 1 0 0 0 001 1 4 0 1 0 0 0 001 1 4 2 1 0 0 0 001 0 0 2 1 0 0 0 001 0 0 6 1 0 0 0 001 0 1 8 1 0 0 0 001 0 2 9 1 0 0 0 001 0 3 5 1 0 0 0 001 0 3 8 1 0 0 0 001 0 5 A1 0 0 0 001 1 0 A1 0 0 0 001 1 0 B1 0 0 0 001 1 1 4 1 0 0 0 001 1 4 0 1 0 0 0 001 0 0 2 1 0 0 0 010 0 0 6 1 0 0 0 010 0 2 9 1 0 0 0 010 0 3 8 1 0 0 0 010 0 5 6 1 0 0 0 010 0 5 A1 0 0 0 010 0 6 0 1 0 0 0 010 1 1 4 1 0 0 0 010 1 4 0 1 0 0 0 010 0 Delayed Flap Approach Speed (DFA) 0 East/West Velocity 0 Glideslope Deviation 0 Hydraulic Pressure 0 Glideslope Deviation 0 Glideslope Deviation 0 Hydraulic Oil Pressure 0 RFU - System Address Label 1 Economical Speed 1 EGT (APU) 1 Hydraulic Pump Case Drain Temperature 1 HGA/IGA HPA - System Address Label 0 Economical Mach 0 RPM (APU) 0 Left Static Pressure Uncorrected, mb 0 Fuel Temperature - Set to Zero 0 Static Pressure Left, Uncorrected, mb 0 Left Outer Tank Fuel Temp & Advisory Warning 1 Economical Flight Level 1 Oil Quantity (APU) 1 Right Static Pressure Uncorrected, mb 1 Distance to LTP/FTP 1 Fuel Temperature Left Wing Tank 1 Static Pressure Right, Uncorrected, mb 1 Inner Tank 1 Fuel Temp & Advisory Warning 1 LGA/HPA - System Address Label 0 Drift Angle 0 Drift Angle 0 Drift Angle 0 Drift Angle 0 Inner Tank 2 Fuel Temp & Advisory Warning 1 DME Distance 1 Fuel Temperature Right Wing Tank 1 TACAN Distance 1 Inner Tank 3 Fuel Temp & Advisory Warning 1 DME 1 Mach Maximum Operation (Mmo) 1 Projected Future Latitude 1 GPS/GNSS Sensor - System Address Label 0 Energy Management (clean) 0 DME Distance 0 Cabin Compartment Temperature (Group #1) 0 Fuel Temperature - Set to Zero 0 Inner Tank 4 Fuel Temp & Advisory Warning 0 Mach Rate 0 Projected Future Latitude Fine 1 Energy Management Speed Brakes 1 Altitude (1013.25mB) 1 Altitude 1 Cabin Compartment Temperature (Group #2) 1 Own A/C Altitude 1 Altitude (1013.25mB) 1 Fuel Tank #6 Temperature 1 Ambient Static Pressure 1 Ambient Static Pressure 1 Trim Tank Fuel Temp & Advisory Warning 1 Altitude 0 Utitlity Airspeed 0 Baro Corrected Altitude #1 0 Cabin Duct Temperature (Group #1) 0 Baro Corrected Altitude #1 0 Baro Altitude 0 Fuel Tank #7 Temperature 0 Baro Altitude 0 Right Outer Tank Fuel Temp & Advisory Warning 0 Baro Corrected Altitude Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-6/6-27 6-6/6-27 See Attachment 11 See Attachment 11 See Attachment 11 6-1-1 6-25 See Attachment 11 6-7/6-27 6-24/6-27 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 24 Code No. (Octal) 20 5 20 6 20 7 21 0 21 1 21 2 21 3 21 4 21 5 21 6 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1000 0 0 6 1000 0 1A1000 0 2 9 1000 0 3 8 1000 0 5A1000 0B91000 1 0A1000 1 0B1000 1 4 0 1000 0 0 6 1000 0 1 8 1000 0 2 9 1000 0 3 8 1000 0 5 6 1000 0 6 0 1000 0 CC1 0 0 0 1 4 0 1000 0 0 2 1000 0 0 6 1000 0 0A1000 0 2 5 1000 0 2 9 1000 0 3 8 1000 0B91000 1 4 0 1000 0 0 6 1000 0 2 9 1000 0 3 8 1000 1 4 0 1000 1000 0 0 2 1000 0 0 3 1000 0 0 6 1000 0 1A1000 0 2 9 1000 0 3 8 1000 0 AD1 0 0 0 1 0A1000 1 0B1000 1 4 0 1000 1 4 2 1000 1000 0 0 4 1000 0 0 5 1000 0 0 6 1000 0 2 9 1000 0 3 8 1000 0 3B1000 0 5 6 1000 0 6 0 1000 1 4 0 1000 1 4 2 1000 1000 0 0 2 1000 0 0 6 1000 0 3 8 1000 0 8D1000 1 4 0 1000 1 4 2 1000 XXX1 0 0 0 0 0 6 1000 0 1A1000 0 2 9 1000 0 2 9 1000 0 3 8 1000 0 AD1 0 0 0 1 4 0 1000 XXX1 0 0 0 567 010 010 010 010 010 010 010 010 010 010 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 110 110 110 110 110 110 110 111 111 8 1 HF COM Frequency (New Format) 1 Mach 1 Mach 1 Cabin Duct Temperature (Group #2) 1 Mach 1 Fuel Tank #8 Temperature 1 HF COM Frequency (New Format) 1 Mach Number 1 Mach Number 1 Mach 0 Computed Airspeed 0 Altitude (Variable Resolution) 0 Cabin Temp. Reg. Valve Position (Group #1) 0 Computed Airspeed 0 Computed Airspeed 0 Computed Airspeed 0 Taxi Speed 0 Computed Airspeed (CAS) 1 HF Control Word 1 Max. Allowable Airspeed 1 Max. Allowable Airspeed 1 Operational Software Part Number 1 Cabin Temp. Reg. Valve Position (Group #2) 1 Max. Allowable Airspeed 1 HF Control Word 1 Airspeed Maximum Operating (VMO) 0 True Airspeed 0 Cargo Compartment Temperature 0 True Airspeed 0 True Airspeed 0 FCMC Com A340-500/600 - System Address Label 1 Total Air Temperature 1 Total Air Temperature 1 Total Air Temperature 1 Total Air Temperature 1 Cargo Duct Temperature 1 Total Air Temperature 1 Total Air Temperature Indicated 1 Total Fan Inlet Temperature 1 Total Fan Inlet Temperature 1 Total Air Temp (TAT) 1 Projected Future Longitude 1 FCMC Mon A340-500/600 - System Address Label 0 Altitude Rate 0 Altitude Rate 0 Altitude Rate 0 Cargo Temp. Reg. Valve Position 0 Altitude Rate 0 Altitude Rate 0 Altitude Rate 0 Altitude Rate 0 Altitude Rate 0 Projected Future Longitude Fine 0 FCMC Int A340-500/600 - System Address Label 1 Static Air Temperature 1 Static Air Temperature 1 Static Air Temperature 1 Fuel Used 1 Static Air Temp (SAT) 1 Veritical Time Interval 0 ICAO Aircraft Address (Part 1) 1 Impacted Pressure, Uncorrected, mb 1 Impact Pressure 1 N1 Actual (EEC) 1 EPR Actual (EEC) 1 Impacted Pressure, Uncorrected, mb 1 Impacted Pressure, Uncorrected, mb 1 Impact Pressure Subsonic 0 ICAO Aircraft Address (Part 2) Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-43 6-27 6-27 6-27 6-20 6-27 6-37 6-27 6-27 See Attachment 11 6-27 See Attachment 11 6-27 See Attachment 11 6-27 6-27 6-27 Note 1 Note 1 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 25 Code No. (Octal) 21 7 22 0 22 1 22 2 22 3 22 4 22 5 22 6 22 7 23 0 23 1 23 2 23 3 23 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1000 0 0 6 1000 0 2 9 1000 0 2 9 1000 0 3 8 1000 1 4 0 1000 0 0 6 1001 0 3 8 1001 1 4 0 1001 1001 0 0 6 1001 0 3 8 1001 0 AD1 0 0 1 1 2C1001 1 4 0 1001 1001 0 0 6 1001 0 1 1 1001 1 1 2 1001 1 1 5 1001 1 2C1001 1 4 0 1001 1001 0 0 6 1001 1 2C1001 1 4 0 1001 1001 0 0 6 1001 1 2C1001 1 4 0 1001 1001 0 0 2 1001 0 0 6 1001 0 2B1001 0 5 6 1001 0 6 0 1001 1 2C1001 1 4 0 1001 1001 0 0 2 1001 1001 0 1 9 1001 0 3D1001 0 5 3 1001 0 7E1001 0 0 6 1001 0 3 8 1001 1 1 4 1001 1001 0 0 6 1001 0 3 8 1001 1 1 4 1001 0 0 4 1001 0 0 5 1001 0 0 6 1001 0 5 5 1001 1 1 4 1001 0 0 2 1001 0 0 6 1001 0 3 8 1001 0 5 6 1001 0 6 0 1001 1 1 4 1001 0 0 2 1001 0 0 6 1001 0 3 8 1001 0 5 6 1001 0 6 0 1001 1001 567 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 010 010 010 010 010 010 010 010 011 011 011 011 011 011 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 110 110 110 110 110 110 8 1 Geometric Vertical Rate 1 Static Pressure, Corrected (In. Hg) 1 N1 Limit (EEC) 1 EPR Actual (EEC) 1 Static Pressure, Average, Corrected (In. Hg) 1 Static Pressure Corrected (In. Hg) 0 Baro Corrected Altitude #2 0 Baro Corrected Altitude #2 0 Baro Corrected Altitude #2 0 MCDU #1 - System Address label (Recipient) 1 Indicated Angle of Attack (Average) 1 Indicated Angle of Attack (Average) 1 Indicated Angle of Attack (Average) 1 Indicated Angle of Attack (Average) 1 Angle of Attach Indicated Average 1 MCDU #2 - System Address label (Recipient) 0 Indicated Angle of Attack (#1 Left) 0 VOR Omnibearing 0 TACAN Bearing 0 Bearing 0 Indicated Angle of Attack (#1 Left) 0 Angle of Attack, Indicated (#1 Left) 0 MCDU #3 - System Address Label 1 Indicated Angle of Attack (#1 Right) 1 Indicated Angle of Attack (#1 Right) 1 Angle of Attack, Indicated (#1 Right) 1 Printer #1 - System Address Label 0 Indicated Angle of Attack (#2 Left) 0 Indicated Angle of Attack (#2 Left) 0 Angle of Attack, Indicated (#2 Left) 0 Printer #2 - System Address Label 1 Min. Maneuvering Airspeed 1 Indicated Angle of Attack (#2 Right) 1 Compensated Altitude Rate 1 Minimum Maneuvering Airspeed 1 Minimum Maneuvering Airspeed 1 Indicated Angle of Attack (#2 Right) 1 Angle of Attack, Indicated (#2 Right) 1 HUD - System Address Label 0 Min. Op. Fuel Temp (non-conflicting) 0 Data Loader - System Addess Label (High Speed) 1 CFDS Bite Command Summary for HFDR 1 AVM Command 1 CFDS Bite Command Summary for HFDR 1 BITE Command Word 0 True Airspeed 0 True Airspeed 0 Left Outer Probes Capacitance 0 MCDU #4 - System Address Label 1 Total Air Temperature 1 Total Air Temperature 1 Inner 2 Tank Probe Capacitance 0 Altitude Rate 0 Altitude Rate 0 Altitude Rate 0 GLS Airport ID 0 Inner 4 Tank Probe Capacitance 1 ACMS Information 1 Static Air Temperature 1 Static Air Temperature 1 ACMS Information 1 ACMS Information 1 Right Outer Probe Capacitance 0 ACMS Information 0 Baro Correction (mb) #1 0 Baro Correction (mb) #1 0 ACMS Information 0 ACMS Information 0 EIVMU 1 - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X See Attachment 11 X X See Attachment 11 X X 6-10 X X X X X See Attachment 11 X X X X See Attachment 11 X X X X See Attachment 11 X X X X X X X X See Attachment 11 X X See Attachment 11 X X 6-28 X X X 6-25 X 6-25 X X See Attachment 11 X 6-25 X X X 6-25 X X X X X 6-31 X 6-25 X 6-25 X X X X 6-31 X X X X X See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 26 Code No. (Octal) 23 5 23 6 23 7 24 0 24 1 24 2 24 3 24 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 2 1 0 0 1 110 0 0 6 1 0 0 1 110 0 3 8 1 0 0 1 110 0 5 6 1 0 0 1 110 0 6 0 1 0 0 1 110 1 0 0 1 110 0 0 2 1 0 0 1 111 0 0 6 1 0 0 1 111 0 3 8 1 0 0 1 111 0 5 6 1 0 0 1 111 0 6 0 1 0 0 1 111 1 0 0 1 111 0 0 2 1 0 0 1 111 0 0 6 1 0 0 1 111 0 0 B1 0 0 1 111 0 3 8 1 0 0 1 111 0 5 6 1 0 0 1 111 0 6 0 1 0 0 1 111 1 0 0 1 111 0 1 0 1 0 000 0 0 2 1 0 1 0 000 0 0 6 1 0 1 0 000 0 2 C1 0 1 0 000 0 3 8 1 0 1 0 000 0 4D1 0 1 0 000 0 5 6 1 0 1 0 000 0 6 0 1 0 1 0 000 1 4 0 1 0 1 0 000 1 6 0 1 0 1 0 000 1 0 1 0 000 0 0 6 1 0 1 0 001 0 0 9 1 0 1 0 001 0 1 0 1 0 1 0 001 0 1 1 1 0 1 0 001 1 1 2 1 0 1 0 001 0 1 A1 0 1 0 001 0 3 8 1 0 1 0 001 0 3 B1 0 1 0 001 0 AD1 0 1 0 001 1 4 0 1 0 1 0 001 1 0 1 0 001 0 3 7 1 0 1 0 001 0 5 5 1 0 1 0 001 XXX1 0 1 0 001 0 0 9 1 0 1 0 010 0 1 0 1 0 1 0 010 0 1 1 1 0 1 0 010 0 1 2 1 0 1 0 010 0 1 C1 0 1 0 010 0 3 3 1 0 1 0 010 0 3 B1 0 1 0 010 0 8D1 0 1 0 010 1 0 A1 0 1 0 010 1 0 B1 0 1 0 010 1 4 0 1 0 1 0 010 1 0 1 0 010 1 ACMS Information 1 Baro Correction (ins. Hg) #1 1 Baro Correction (ins. Hg) #1 1 ACMS Information 1 ACMS Information 1 EIVMU 2 - System Address Label 0 ACMS Information 0 Baro Correction (mb) #2 0 Baro Correction (mb) #2 0 ACMS Information 0 ACMS Information 0 EIVMU 3 - System Address Label 1 ACMS Information 1 Baro Correction (ins. Hg) #2 1 Horizontal Uncertainty Level 1 Baro Correction (ins. Hg) #2 1 ACMS Information 1 ACMS Information 1 EIVMU 4 - System Address Label 0 Spare 1 Min. Airspeed for Flap Extension 1 Corrected Angle of Attack 1 Reserved (Special Use) 1 Corrected Angle of Attack 1 FQIS System Data 1 Min. Airspeed for Flap Extension 1 Min. Airspeed for Flap Extension 1 Angle of Attack, Corrected 1 Tank Unit Data 1 APM-MMR - System Address Label 0 Total Pressure 0 Ground Station ID (Word #1) 0 Ground Station ID (Word #1) 0 Ground Station ID (Word #1) 0 Ground Station ID (Word #1) 0 Total Pressure 0 Total Pressure 0 Speed Deviation 0 Total Pressure, Uncorrected, mb 0 Total Pressure 0 MMR - System Address Label 1 Zero Fuel Weight (kg) 1 GLS Runway Selection 1 Simulator to Avionics Control Word 0 Ground Station ID (Word #2) 0 Ground Station ID (Word #2) 0 VOR Ground Station Ident Word #2 0 Ground Station ID (Word #2) 0 Fuel Flow (Engine Direct) 0 Fuel Flow (Wf) 0 Mach Error 0 Fuel Flow Rate 0 Fuel Mass Flow 0 Fuel Mass Flow 0 Angle of Attack, Normalized 0 ILS - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X 6-31 6-25 6-25 See Attachment 11 6-31 See Attachment 11 See Attachment 11 X X X X X 6-35 X X X X 6-38 X See Attachment 11 X X X X X X X X X X X See Attachment 11 X X X Note 1 X X X X X X X X X X X X See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 27 Code No. (Octal) 24 5 24 6 24 7 25 0 25 1 25 2 25 3 25 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1010 0 0 3 1010 0 0A1010 0 2 9 1010 0 3 8 1010 0 3B1010 0 5 6 1010 0 6 0 1010 0 AD1 0 1 0 1 4 0 1010 1010 0 0 2 1010 0 0 6 1010 0 0 9 1010 0 1C1010 0 2 9 1010 0 3 8 1010 0 3B1010 1010 0 0 2 1010 0 0 9 1010 0 0B1010 0 1 F1010 0 2C1010 0 3B1010 0 4D1010 0 5 6 1010 0 5A1010 0 6 0 1010 0 EB1 0 1 0 1 1 4 1010 1 4 0 1010 1010 0 0 2 1010 0 2B1010 0 2C1010 0 3 8 1010 0 5A1010 0 AD1 0 1 0 1 1 4 1010 1 2B1010 1010 0 0 1 1010 0 0 2 1010 0 0 6 1010 0 1A1010 0 3 8 1010 1010 0 0 1 1010 0 0 2 1010 0 0 6 1010 0 1A1010 0 2 F1010 0 3 8 1010 0 3 F1010 0 EB1 0 1 0 1010 0 0 2 1010 0 1E1010 0 3 8 1010 1010 0 0 2 1010 0 1 2 1010 0 1E1010 0 4D1010 0 5 5 1010 1 3A1010 1 4 0 1010 1010 567 010 010 010 010 010 010 010 010 010 010 010 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 101 101 110 110 110 110 110 110 110 110 8 1 Minimum Airspeed 1 Minimum Airspeed 1 Minimum Airspeed 1 N3 (Engine) 1 Average Static Pressure mb, Uncorrected 1 EPR Error 1 Minimum Airspeed 1 Minimum Airspeed 1 Average Static Pressure mb, Uncorrected 1 Static Pressure, Uncorrected 1 MLS - System Address Label 0 General Maximum Speed (VCMAX) 0 Average Static Pressure 0 DME Ground Station Ident Word #1 0 N1 (Engine Direct) 0 N1 (Engine Direct) 0 Average Static Pressure mb, Corrected 0 Angle of Attack Error 0 AHRS - System Address Label 1 Control Minimum Speed (VCMIN) 1 DME Ground Station Ident Word #1 1 Horizontal Figure of Merit 1 Total Fuel 1 Total Fuel 1 Speed Error 1 Total Fuel 1 Control Minimum Speed (VCMIN) 1 Total Fuel 1 Control Minimum Speed (VCMIN) 1 Fuel to Remain 1 Fuel on Board 1 Airspeed Minimum Vmc 1 High-Speed Data Unit #1 (HSDU #1) - SAL 0 Continuous N1 Limit 0 Maximum Continuous EPR Limit 0 Preselected Fuel Quantity 0 Indicated Side Slip Angle 0 Preselected Fuel Quantity 0 Indicated Side Slip Angle or AOS 0 Preselected Fuel Quantity 0 Temperature Rate of Change 0 High-Speed Data Unit #1 (HSDU #2) - SAL 1 Distance to Go 1 Distance to Go 1 Baro Corrected Altitude #3 1 Flight Leg Counter 1 Baro Corrected Altitude #3 1 VDR #1 - System Address Label 0 Time to Go 0 Time to Go 0 Baro Corrected Altitude #4 0 EPR Idle 0 EPR Idle Reference 0 Baro Corrected Altitude #4 0 EPR Idle Reference 0 Time Until Jettison Complete 0 VDR #2 - System Address Label 1 Go-Around N1 Limit 1 Go-Around EPR Limit 1 Corrected Side Slip Angle 1 VDR #3 - System Address Label 0 Cruise N1 Limit 0 ADF Ground Station Ident Word #1 0 Cruise EPR Limit 0 Actual Fuel Quantity (test) 0 GBAS ID 0 N1 Cruise 0 Altitude Rate 0 Network Server System (NSS) - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 6-19 See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 28 Code No. (Octal) 25 5 25 6 25 7 26 0 26 1 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1010 0 1 2 1010 0 1E1010 0 2 F1010 0 3 F1010 0 4D1010 0 5 5 1010 0 8E1010 1 3A1010 1 4 0 1010 1010 0 0 2 1010 0 0A1010 0 2 7 1010 0 2C1010 0 4D1010 0 5 5 1010 0 5 6 1010 0 5A1010 0 6 0 1010 1 1 4 1010 1 4 0 1010 1010 0 0 2 1010 0 2 7 1010 0 2C1010 0 5 5 1010 0 5 6 1010 0 5A1010 0 6 0 1010 1 1 4 1010 1 4 0 1010 0 0 2 1011 0 0B1011 0 2C1011 0 3 1 1011 0 3 3 1011 0 5 6 1011 0 5A1011 0 6 0 1011 0A2 1011 1 0A1011 1 0B1011 1 1 4 1011 0 0 2 1011 0 2C1011 0 3 3 1011 0 5 6 1011 0 5A1011 0 6 0 1011 0A2 1011 1 0A1011 1 0B1011 1 1 4 1011 1 4 4 1011 567 110 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 8 1 Climb N1 Limit 1 ADF Ground Station Ident Word #2 1 Climb EPR Limit 1 Max. Climb EPR Rating 1 Max. Climb EPR Rating 1 Fuel Quantity (gal) 1 GBAS ID/ Airport ID 1 Spoiler Position 1 N1 Climb 1 Impact Pressure 1 Electronic Flight Bag - Left - System Address Label 0 Time for Climb 0 V Stick Shaker 0 MLS Ground Station Ident Word #1 0 Fuel Quantity (Tanks) #1 0 Fuel Discretes 0 MLS Station ID #1 0 Time for Climb 0 Fuel Quantity - Left Outer Cell 0 Time for Climb 0 Left Outer Tank Fuel Quantity 0 Equivalent Airspeed 0 Electronic Flight Bag -Right - System Address Label 1 Time for Descent 1 MLS Ground Station Ident Word #2 1 Fuel Quantity (Tanks) #2 1 MLS Station ID #2 1 Time for Descent 1 Fuel Quantity Left W/T Tank 1 Time for Descent 1 Inner Tank 1 Fuel Quantity 1 Total Pressure (High Range) 0 Date/Flight Leg 0 Date 0 Fuel Quantity (Tanks) #3 0 Date (No Flight Leg) 0 T5 0 Date/Flight Leg 0 Fuel Quantity Center Tank 0 Date/Flight Leg 0 Date/Flight Leg 0 LP Turbine Discharge Temperature 0 LP Turbine Discharge Temperature 0 Collector Cell 1 and 2 Fuel Quantity 1 Flight Number 1 Fuel Quantity (Tanks) #4 1 P49 1 Flight Number (BCD) 1 Fuel Quantity Right I/C or W/T Tank 1 Flight Number (BCD) 1 Flight Number 1 LP Turbine Inlet Pressure 1 LP Turbine Inlet Pressure 1 Fuel On Board At Engine Start 1 Range Ring Radius Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 X X X X X X 6-8 X X X 6-18 X X X X 6-8 X 6-8 X X X X 6-9 X X X X X X 6-9 X X X X 6-52 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 29 Code No. (Octal) 26 2 26 3 26 4 26 5 26 6 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 2 1 0 1 1 0 0 1 0 Documentary Data 0 0 A 1 0 1 1 0 0 1 0 Predictive Airspeed Variation 0 1 C 1 0 1 1 0 0 1 0 LP Compressor Exist Pressure (PT3) 0 2 C 1 0 1 1 0 0 1 0 Fuel Quantity (Tanks) #5 0 3 3 1 0 1 1 0 0 1 0 LP Compressor Exist Pressure 0 4 D 1 0 1 1 0 0 1 0 T/U CAP-L Tank 1-4 0 5 6 1 0 1 1 0 0 1 0 Documentary Data 0 5 A 1 0 1 1 0 0 1 0 Fuel Quantity - Right Outer Cell 0 6 0 1 0 1 1 0 0 1 0 Documentary Data 1 0 A 1 0 1 1 0 0 1 0 HP Compressor Inlet Total Pressure 1 0 B 1 0 1 1 0 0 1 0 HP Compressor Inlet Total Pressure 1 1 4 1 0 1 1 0 0 1 0 Center Tank Fuel Quantity 1 4 4 1 0 1 1 0 0 1 0 Display Range 0 0 2 1 0 1 1 0 0 1 1 Minimum Airspeed for Flap Retraction 0 0 A 1 0 1 1 0 0 1 1 Minimum Airspeed for Flap Retraction 0 1 0 1 0 1 1 0 0 1 1 ILS Ground Station Ident Word #1 0 1 C 1 0 1 1 0 0 1 1 LP Compressor Exit Temperature 0 2 C 1 0 1 1 0 0 1 1 Fuel Quantity (Tanks) #6 0 3 3 1 0 1 1 0 0 1 1 LP Compressor Exit Temperature 0 4 D 1 0 1 1 0 0 1 1 T/U CAP-L Tank 5-8 0 5 5 1 0 1 1 0 0 1 1 Ground Station/Approach 0 5 6 1 0 1 1 0 0 1 1 Minimum Airspeed For Flap Retraction 0 6 0 1 0 1 1 0 0 1 1 Minimum Airspeed For Flap Retraction 1 0 A 1 0 1 1 0 0 1 1 Selected Compressor Inlet Temperature (Total) 1 0 B 1 0 1 1 0 0 1 1 Selected Compressor Inlet Temperature (Total) 1 1 4 1 0 1 1 0 0 1 1 Collector Cell 3 and 4 Fuel Quantity 0 0 2 1 0 1 1 0 1 0 0 Time to Touchdown 0 0 A 1 0 1 1 0 1 0 0 Minimum Airspeed for Slats Retraction 0 1 0 1 0 1 1 0 1 0 0 ILS Ground Station Ident Word #2 0 1 C 1 0 1 1 0 1 0 0 HP Compressor Exit Pressure 0 2 C 1 0 1 1 0 1 0 0 Fuel Quantity (Tanks) #7 0 2 F 1 0 1 1 0 1 0 0 Burner Pressure 0 3 3 1 0 1 1 0 1 0 0 HP Compressor Exit Pressure 0 3 F 1 0 1 1 0 1 0 0 Burner Pressure 0 4 D 1 0 1 1 0 1 0 0 T/U CAP-L Tank 9-12 0 5 5 1 0 1 1 0 1 0 0 Ground Station/Approach 0 5 6 1 0 1 1 0 1 0 0 Time to Touchdown 0 6 0 1 0 1 1 0 1 0 0 Time to Touchdown 1 0 A 1 0 1 1 0 1 0 0 Selected Compressor Discharge Temperature 1 0 B 1 0 1 1 0 1 0 0 Selected Compressor Discharge Temperature 1 1 4 1 0 1 1 0 1 0 0 Fuel Quantity (Tanks) #7 1 3 A 1 0 1 1 0 1 0 0 Burner Pressure 0 0 2 1 0 1 1 0 1 0 1 Minimum Buffet Airspeed 0 0 4 1 0 1 1 0 1 0 1 Integrated Vertical Acceleration 0 0 A 1 0 1 1 0 1 0 1 Maneuvering Airspeed 0 1 C 1 0 1 1 0 1 0 1 HP Compressor Exit Temperature (TT4.5) 0 2 C 1 0 1 1 0 1 0 1 Fuel Quantity (Tanks) #8 0 3 3 1 0 1 1 0 1 0 1 HP Compressor Exit Temperature 0 3 8 1 0 1 1 0 1 0 1 Integrated Vertical Acceleration 0 4 D 1 0 1 1 0 1 0 1 T/U CAP-L Tank 13-14 0 5 6 1 0 1 1 0 1 0 1 Minimum Buffet Airspeed 0 6 0 1 0 1 1 0 1 0 1 Minimum Buffet Airspeed 1 0 A 1 0 1 1 0 1 0 1 Selected Compressor Discharge Temperature 1 0 B 1 0 1 1 0 1 0 1 Selected Compressor Discharge Temperature 1 1 4 1 0 1 1 0 1 0 1 Inner Tank 3 Fuel Quantity 0 0 1 1 0 1 1 0 1 1 0 Test Word B 0 1 D 1 0 1 1 0 1 1 0 Test Word B 0 4 D 1 0 1 1 0 1 1 0 T/U CAP-C Tank 1-4 1 1 4 1 0 1 1 0 1 1 0 Inner Tank 2 Fuel Quantity 1 0 1 1 0 1 1 0 Cabin Video System - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-14 6-51 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 30 Code No. (Octal) 26 7 27 0 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1011 0 0A1011 0 2B1011 0 3 3 1011 0 4D1011 0 5 6 1011 0 6 0 1011 1 0A1011 1 0B1011 1 1 4 1011 0 0 1 1011 0 0 2 1011 0 0 4 1011 0 0 5 1011 0 0 6 1011 0 0B1011 0 1A1011 0 1B1011 0 1C1011 0 1E1011 0 2 3 1011 0 2 4 1011 0 2 5 1011 0 2 7 1011 0 2 9 1011 0 2 F1011 0 3 1 1011 0 3 3 1011 0 3 5 1011 0 3 7 1011 0 3 8 1011 0 3 9 1011 0 3A1011 0 3B1011 0 3D1011 0 3E1011 0 3 F1011 0 4 1 1011 0 4A1011 0 4D1011 0 5 0 1011 0 5 3 1011 0 5 5 1011 0 5 6 1011 0 5A1011 0 6 0 1011 0 6 0 1011 0 6 0 1011 0A2 1011 0A8 1011 0 AD1 0 1 1 0C51011 1 0A1011 1 0B1011 1 1 4 1011 1 1 5 1011 1 4 0 1011 1 4 2 1011 1 4 4 1011 567 011 011 011 011 011 011 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 8 1 Maximum Maneuver Airspeed 1 Predictive Maximum Maneuver Speed 1 Throttle Position Command 1 Spare T/C 1 T/U CAP-C Tank 5-8 1 Maximum Maneuver Airspeed 1 Maximum Maneuver Airspeed 1 HP Compressor Inlet Temperature (Total) 1 HP Compressor Inlet Temperature (Total) 1 Inner Tank 4 Fuel Quantity 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 GPWS Discrete 0 MU Output Data Word, Communication Link Status 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 MCDU Normal Discrete Word 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 SDU To ACARS MU/CMU Status Word 0 Discrete Data #1 0 T/U CAP-C Tank 9 0 VDR Status Word 0 HFDL Status Word 0 MLS Discrete 0 Status Discretes 0 Discrete Data #1 0 Intent Status 0 Status Discretes 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Discrete Data #1 0 Unusable, and Empty Warning 0 Stored TACAN Control Word 0 Discrete Data #1 0 Aircraft Category (Disc Data 1) 0 Display Mode Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 31 Code No. (Octal) 27 1 27 2 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1011 0 0 5 1011 0 0 6 1011 0 1 8 1011 0 1A1011 0 1C1011 0 1E1011 0 2 9 1011 0 2 F1011 0 3 1 1011 0 3 3 1011 0 3 5 1011 0 3 8 1011 0 3A1011 0 3B1011 0 3 F1011 0 4 1 1011 0 4D1011 0 5 5 1011 0 5 6 1011 0 5A1011 0 6 0 1011 0A2 1011 0A8 1011 0 AD1 0 1 1 0C51011 1 0A1011 1 0B1011 1 1 4 1011 1 4 0 1011 1 4 2 1011 1 4 4 1011 0 0 1 1011 0 0 2 1011 0 0 3 1011 0 0 5 1011 0 1 8 1011 0 1A1011 0 1C1011 0 2 5 1011 0 2 9 1011 0 2 F1011 0 3 5 1011 0 3 8 1011 0 3A1011 0 3B1011 0 3 F1011 0 4D1011 0 5 3 1011 0 5 6 1011 0 5A1011 0 6 0 1011 0 AD1 0 1 1 0C51011 1 0A1011 1 0B1011 1 1 4 1011 1 4 0 1011 1 4 4 1011 567 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 8 1 Discrete Data #2 1 AHRS Discrete 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 SDU To ACARS MU/CMU Join/Leave Message 1 T/U CAP-A Tank 1-4 1 MMR Discrete 1 Discrete Data #2 1 Fuel Density 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Discrete Data #2 1 Fuel Transfer Indication 1 Discrete Data #2 1 Altitude Filter Limits (Disc Data 2) 1 Altitude Filter Setting 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Air Data AHARS 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 T/U CAP-A Tank 5-8 0 HFDL Slave (Disc Data 2) 0 Discrete Data #3 0 Fuel Density 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Discrete Data #3 0 Fuel Transfer Indication 0 Discrete Data #3 0 Target Selection Word Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 32 Code No. (Octal) 27 3 27 4 27 5 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 1 1 0 1 1 101 0 0 3 1 0 1 1 101 0 0 B1 0 1 1 101 0 1 8 1 0 1 1 101 0 1 C1 0 1 1 101 0 2 5 1 0 1 1 101 0 2 9 1 0 1 1 101 0 2 F 1 0 1 1 101 0 3 3 1 0 1 1 101 0 3 5 1 0 1 1 101 0 3 B1 0 1 1 101 0 3 F 1 0 1 1 101 0 4D1 0 1 1 101 0 5 5 1 0 1 1 101 0 5 A1 0 1 1 101 0 C 5 1 0 1 1 101 1 0 A1 0 1 1 101 1 0 B1 0 1 1 101 1 1 4 1 0 1 1 101 0 0 1 1 0 1 1 110 0 0 3 1 0 1 1 110 0 0 A1 0 1 1 110 0 1 8 1 0 1 1 110 0 1 C1 0 1 1 110 0 2 5 1 0 1 1 110 0 2 9 1 0 1 1 110 0 2 F 1 0 1 1 110 0 3 3 1 0 1 1 110 0 3 5 1 0 1 1 110 0 3 B1 0 1 1 110 0 3 F 1 0 1 1 110 0 4D1 0 1 1 110 0 5 A1 0 1 1 110 0 C 5 1 0 1 1 110 1 0 A1 0 1 1 110 1 0 B1 0 1 1 110 1 1 4 1 0 1 1 110 0 0 1 1 0 1 1 110 0 0 2 1 0 1 1 110 0 0 3 1 0 1 1 110 0 1 8 1 0 1 1 110 0 1 C1 0 1 1 110 0 2 5 1 0 1 1 110 0 2 9 1 0 1 1 110 0 2 B1 0 1 1 110 0 2 F 1 0 1 1 110 0 3 5 1 0 1 1 110 0 3 8 1 0 1 1 110 0 3 B1 0 1 1 110 0 3 F 1 0 1 1 110 0 4 A1 0 1 1 110 0 4D1 0 1 1 110 0 5 A1 0 1 1 110 0 5 6 1 0 1 1 110 0 6 0 1 0 1 1 110 1 0 A1 0 1 1 110 1 0 B1 0 1 1 110 1 1 4 1 0 1 1 110 1 Discrete Data #4 1 Discrete Data #4 1 GNSS Sensor Status 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 T/U CAP-A Tank 9-11 1 GNSS Status 1 Sensor Valves Left Wing Tank 1 Discrete Data #4 1 Discrete Data #4 1 Discrete Data #4 1 Memos and Status 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 T/U CAP-R Tank 1-4 0 Sensor Valves Center Wing Tank 0 Discrete Data #5 0 Discrete Data #5 0 Discrete Data #5 0 Fuel Transfer Indications 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 IR Discrete Word #2 1 Discrete Data #6 1 Discrete Data #6 1 T/U CAP-R Tank 5-8 1 Discrete Data #6 1 Sensor Valves Right Wing Tank 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Discrete Data #6 1 Miscellaneous Warning Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 33 Code No. (Octal) 27 6 27 7 30 0 30 1 30 2 30 3 30 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1011 0 1 8 1011 0 1C1011 0 2 5 1011 0 2 9 1011 0 2 F1011 0 3 F1011 0 4D1011 0 5 0 1011 0 5 6 1011 0 5 8 1011 0 5A1011 0 6 0 1011 0 BB1 0 1 1 1 1 4 1011 0 0 1 1011 0 0 2 1011 0 0 3 1011 XXX1 0 1 1 0 0 4 1011 0 1 8 1011 0 3 8 1011 0 4D1011 1 1 4 1011 0 0 1 1100 0 1A1100 0 3D1100 0 5A1100 1 0A1100 1 0B1100 TBD1 1 0 0 1100 0 0 1 1100 0 0 2 1100 0 1A1100 0 5 6 1100 0 5A1100 0 6 0 1100 1 0A1100 1 0B1100 1100 0 0 1 1100 0 0 2 1100 0 1A1100 0 5 6 1100 0 5A1100 0 6 0 1100 1 0A1100 1 0B1100 1100 0 0 1 1100 0 0 2 1100 0 1A1100 0 5 6 1100 0 5A1100 0 6 0 1100 1 0A1100 1 0B1100 1100 0 0 1 1100 0 1A1100 0 5A1100 1 0A1100 1 0B1100 1100 567 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 010 010 8 0 Discrete Data #7 0 Discrete Data #7 0 Discrete Data #7 0 Discrete Status 8 EFIS 0 Discrete Data #7 0 Discrete Data #7 0 Discrete Data #7 0 T/U CAP-R Tank 9-12 0 VDR Mode 0 Discrete Data #7 0 Output Status Word #2 0 Discrete Data #7 0 Discrete Data #7 0 Discrete Data #7 0 Discrete Data #7 0 FCC to Simulator Control Word - Simulator Use Only 0 FMC to Simulator Control Word - Simulator Use Only 0 TCC to Simulator Control Word - Simulator Use Only 1 General Test Word 1 IRS Maintenance Discrete 1 Discrete Data #8 1 IR Test 1 T/U CAP-R Tank 13-14 1 Fuel Transfer and CG Status 0 Application Dependent 0 Application Dependent 0 Application Dependent 0 Internal Parameter for SPATIAAL 0 ECU Internal Temperature 0 ECU Internal Temperature 0 Data Loader Address Label (Low Speed) 0 FMC 1 - System Address Label 1 Application Dependent 1 Application Dependent 1 Application Dependent 1 Application Dependent 1 Internal Parameter for SPATIAAL 1 Application Dependent 1 Demanded Fuel Metering Valve Position 1 Demanded Fuel Metering Valve Position 1 FMC 2 - System Address Label 0 Application Dependent 0 Application Dependent 0 Application Dependent 0 Application Dependent 0 Internal Parameter for SPATIAAL 0 Application Dependent 0 Demanded Variable Stator Vane Position 0 Demanded Variable Stator Vane Position 0 AIDS (DFDAU) - System Address Label 1 Application Dependent 1 Application Dependent 1 Application Dependent 1 Application Dependent 1 Internal Parameter for SPATIAAL 1 Application Dependent 1 Demanded Variable Bleed Valve Position 1 Demanded Variable Bleed Valve Position 1 CFDIU - System Address Label 0 Application Dependent 0 Application Dependent 0 Internal Parameter for SPATIAAL 0 Demanded HPT Clearance Valve Position 0 Demanded HPT Clearance Valve Position 0 ACARS - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Note 1 See Attachment 11 See Attachment 11 See Attachment 11 See attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 34 Code No. (Octal) 30 5 30 6 30 7 31 0 31 1 31 2 31 3 31 4 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 1 1 1 0 0 0 1 0 1 Application Dependent 0 1 A 1 1 0 0 0 1 0 1 Application Dependent 0 5 A 1 1 0 0 0 1 0 1 Internal Parameter for SPATIAAL 1 0 A 1 1 0 0 0 1 0 1 Demanded LPT Clearance Valve Position 1 0 B 1 1 0 0 0 1 0 1 Demanded LPT Clearance Valve Position 1 1 0 0 0 1 0 1 Weight/Balance System - System Address Label 0 0 1 1 1 0 0 0 1 1 0 Application Dependent 0 1 A 1 1 0 0 0 1 1 0 Application Dependent 0 5 A 1 1 0 0 0 1 1 0 Internal Parameter for SPATIAAL 1 1 0 0 0 1 1 0 TCAS - System Address Label 0 0 1 1 1 0 0 0 1 1 1 Application Dependent 0 1 A 1 1 0 0 0 1 1 1 Application Dependent 0 5 A 1 1 0 0 0 1 1 1 Internal Parameter for SPATIAAL 1 1 0 0 0 1 1 1 Satellite Data Unit (SDU) - System Address Label 0 0 2 1 1 0 0 1 0 0 0 Present Position - Latitude 0 0 4 1 1 0 0 1 0 0 0 Present Position - Latitude 0 2 9 1 1 0 0 1 0 0 0 Aileron Position 0 3 8 1 1 0 0 1 0 0 0 Present Position - Latitude 0 4 D 1 1 0 0 1 0 0 0 COMP CAP - TANK 0 5 6 1 1 0 0 1 0 0 0 Present Position Latitude 0 5 A 1 1 0 0 1 0 0 0 Internal Parameter for SPATIAAL 0 6 0 1 1 0 0 1 0 0 0 Present Postion Latitude 1 1 4 1 1 0 0 1 0 0 0 Right Outer Tank Fuel Quantity 1 1 0 0 1 0 0 0 GPWS - System Address Label 0 0 2 1 1 0 0 1 0 0 1 Present Position - Longitude 0 0 4 1 1 0 0 1 0 0 1 Present Position - Longitude 0 2 9 1 1 0 0 1 0 0 1 Aileron Trim 0 3 8 1 1 0 0 1 0 0 1 Present Position - Longitude 0 3 B 1 1 0 0 1 0 0 1 Control Wheel Roll Force 0 5 6 1 1 0 0 1 0 0 1 Present Postion Longitude 0 5 A 1 1 0 0 1 0 0 1 Internal Parameter for SPATIAAL 0 6 0 1 1 0 0 1 0 0 1 Present Position Longitude 1 1 4 1 1 0 0 1 0 0 1 Right Outer Tank Fuel Quantity 1 1 0 0 1 0 0 1 GNLU 1 - System Address Label 0 0 2 1 1 0 0 1 0 1 0 Ground Speed 0 0 4 1 1 0 0 1 0 1 0 Ground Speed 0 0 5 1 1 0 0 1 0 1 0 Ground Speed 0 2 9 1 1 0 0 1 0 1 0 Rudder Position 0 3 8 1 1 0 0 1 0 1 0 Ground Speed 0 5 6 1 1 0 0 1 0 1 0 Ground Speed 0 5 A 1 1 0 0 1 0 1 0 Fuel Quantity ACT 1 0 6 0 1 1 0 0 1 0 1 0 Ground Speed 1 1 4 1 1 0 0 1 0 1 0 Additional Center Tank (Act 1) Fuel Quantity 1 1 0 0 1 0 1 0 GNLU 2 - System Address Label 0 0 2 1 1 0 0 1 0 1 1 Track Angle - True 0 0 4 1 1 0 0 1 0 1 1 Track Angle - True 0 2 5 1 1 0 0 1 0 1 1 Track Angle - True 0 2 9 1 1 0 0 1 0 1 1 Rudder Trim 0 3 8 1 1 0 0 1 0 1 1 Track Angle - True 0 5 6 1 1 0 0 1 0 1 1 Track Angle - True 0 5 A 1 1 0 0 1 0 1 1 Fuel Quantity ACT 2 0 6 0 1 1 0 0 1 0 1 1 Track Angle - True 1 1 4 1 1 0 0 1 0 1 1 Additional Center Tank (Act 2) Fuel Quantity 1 1 0 0 1 0 1 1 GNLU 3 - System Address Label 0 0 2 1 1 0 0 1 1 0 0 Stabilizer Position Indication (B747-400) 0 0 4 1 1 0 0 1 1 0 0 True Heading 0 2 5 1 1 0 0 1 1 0 0 True Heading 0 2 9 1 1 0 0 1 1 0 0 Elevator Position 0 3 8 1 1 0 0 1 1 0 0 True Heading 0 3 B 1 1 0 0 1 1 0 0 Control Wheel Pitch Force 0 5 A 1 1 0 0 1 1 0 0 Internal Parameter for SPATIAAL 1 1 4 1 1 0 0 1 1 0 0 Rear Center Tank (RCT) Fuel Quantity 1 1 0 0 1 1 0 0 GNU 1 - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 See Attachment 11 6-27 See Attachment 11 6-27 See Attachment 11 6-27 See Attachment 11 See Attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 35 Code No. (Octal) 31 5 31 6 31 7 32 0 32 1 32 2 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 1 1100 0 0 2 1100 0 0 4 1100 0 0 5 1100 0 2 9 1100 0 3 8 1100 0 5 6 1100 0 5A1100 0 6 0 1100 0A1 1100 1100 0 0 2 1100 0 0 4 1100 0 2 9 1100 0 3 8 1100 0 5 6 1100 0 5A1100 0 6 0 1100 0D0 1100 1 0A1100 1 0B1100 1100 0 0 2 1100 0 0 4 1100 0 0 5 1100 0 2 5 1100 0 2 9 1100 0 3 8 1100 0 5 6 1100 0 5A1100 0 6 0 1100 0D0 1100 0 0 4 1101 0 0 5 1101 0 2 5 1101 0 2 9 1101 0 3 5 1101 0 3 8 1101 0 4D1101 0 5 6 1101 0 6 0 1101 0 0 2 1101 0 0 4 1101 0 0 5 1101 0 2 9 1101 0 3 8 1101 0 5 6 1101 0 6 0 1101 1 0A1101 1 0B1101 1101 0 0 2 1101 0 0 4 1101 0 0 5 1101 0 2 9 1101 0 3 8 1101 0 5 6 1101 0 6 0 1101 1 0A1101 1 0B1101 1101 567 110 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 8 1 Stabilizer Position 1 Wind Speed 1 Wind Speed 1 Wind Speed 1 Stabilizer Position 1 Wind Speed 1 Wind Speed 1 Internal Parameter for SPATIAAL 1 Wind Speed 1 Stabilizer Position 1 GNU 2 - System Address Label 0 Wind Direction (True) 0 Wind Angle 0 Oil Temperature (Engine) 0 Wind Angle 0 Wind Direction (True) 0 Internal Parameter for SPATIAAL 0 Wind Direction (True) 0 Engine Oil Temperature 0 Engine Oil Temperature 0 Engine Oil Temperature 0 GNU 3 - System Address Label 1 Track Angle - Magnetic 1 Track Angle - Magnetic 1 Track Angle - Magnetic 1 Track Angle - Magnetic 1 Oil Pressure (Engine) 1 Track Angle - Magnetic 1 Track Angle - Magnetic 1 Internal Parameter for SPATIAAL 1 Track Angle - Magnetic 1 Oil Pressure (Engine) 0 Magnetic Heading 0 Magnetic Heading 0 Magnetic Heading 0 Engine Fuel Pressure 0 Own Aircraft Magnetic Heading 0 Magnetic Heading 0 Density - Tank 0 Magnetic Heading 0 Magnetic Heading 1 Drift Angle 1 Drift Angle 1 Drift Angle 1 Engine Fuel Temperature 1 Drift Angle 1 Drift Angle 1 Drift Angle 1 Exhaust gas Temperature (Total) 1 Exhaust gas Temperature (Total) 1 Autothrottle Computer - System Address Label 0 Flight Path Angle 0 Flight Path Angle 0 Flight Path Angle 0 Engine Nacelle Temperature 0 Flight Path Angle 0 Flight Path Angle 0 Flight Path Angle 0 Total Compressor Discharge Temperature 0 Total Compressor Discharge Temperature 0 FCC 1 - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 36 Code No. (Octal) 32 3 32 4 32 5 32 6 32 7 33 0 33 1 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 2 1 1 0 1 0 0 1 1 Geometric Altitude 0 0 4 1 1 0 1 0 0 1 1 Flight Path Acceleration 0 0 5 1 1 0 1 0 0 1 1 Flight Path Acceleration 0 3 8 1 1 0 1 0 0 1 1 Flight Path Acceleration 0 5 6 1 1 0 1 0 0 1 1 Geometric Altitude 0 6 0 1 1 0 1 0 0 1 1 Geometric Altitude 1 0 A 1 1 0 1 0 0 1 1 Variable Stator Vane Position 1 0 B 1 1 0 1 0 0 1 1 Variable Stator Vane Position 1 1 0 1 0 0 1 1 FCC 2 - System Address Label 0 0 4 1 1 0 1 0 1 0 0 Pitch Angle 0 0 5 1 1 0 1 0 1 0 0 Pitch Angle 0 2 5 1 1 0 1 0 1 0 0 Pitch Angle 0 3 8 1 1 0 1 0 1 0 0 Pitch Angle 0 4 D 1 1 0 1 0 1 0 0 Tank VSO Quantity 0 5 A 1 1 0 1 0 1 0 0 Effective Pitch Angle 1 0 A 1 1 0 1 0 1 0 0 Selected Fuel Metering Valve Position 1 0 B 1 1 0 1 0 1 0 0 Selected Fuel Metering Valve Position 1 1 4 1 1 0 1 0 1 0 0 Effective Pitch Angle 1 1 0 1 0 1 0 0 FCC 3 - System Address Label 0 0 4 1 1 0 1 0 1 0 1 Roll Angle 0 0 5 1 1 0 1 0 1 0 1 Roll Angle 0 1 A 1 1 0 1 0 1 0 1 Engine Control Trim Feedback 0 2 5 1 1 0 1 0 1 0 1 Roll Angle 0 2 F 1 1 0 1 0 1 0 1 Stator Vane Feedback 0 3 8 1 1 0 1 0 1 0 1 Roll Angle 0 3 F 1 1 0 1 0 1 0 1 Stator Vane Feedback 0 5 A 1 1 0 1 0 1 0 1 Effective Roll Angle 1 0 A 1 1 0 1 0 1 0 1 Selected Fuel Metering Vane Position 1 0 B 1 1 0 1 0 1 0 1 Selected Fuel Metering Vane Position 1 1 4 1 1 0 1 0 1 0 1 Effective Roll Angle 1 1 0 1 0 1 0 1 APU - System Address Label 0 0 4 1 1 0 1 0 1 1 0 Body Pitch Rate 0 0 5 1 1 0 1 0 1 1 0 Body Pitch Rate 0 3 8 1 1 0 1 0 1 1 0 Body Pitch Rate 0 4 D 1 1 0 1 0 1 1 0 Uplift Quantity 0 5 A 1 1 0 1 0 1 1 0 Maintenance Word 1 0 A 1 1 0 1 0 1 1 0 Compressor Discharge Static Pressure 1 0 B 1 1 0 1 0 1 1 0 Compressor Discharge Static Pressure 1 1 0 1 0 1 1 0 APU Controller - System Address Label 0 0 4 1 1 0 1 0 1 1 1 Body Roll Rate 0 0 5 1 1 0 1 0 1 1 1 Body Roll Rate 0 3 8 1 1 0 1 0 1 1 1 Body Roll Rate 0 4 D 1 1 0 1 0 1 1 1 Uplift Density 1 0 A 1 1 0 1 0 1 1 1 Fuel Metering Valve Position 1 0 B 1 1 0 1 0 1 1 1 Fuel Metering Valve Position 1 1 0 1 0 1 1 1 Mode Control Panel (MCP) - System Address Label 0 0 4 1 1 0 1 1 0 0 0 Body Yaw Rate 0 0 5 1 1 0 1 1 0 0 0 Body Yaw Rate 0 2 F 1 1 0 1 1 0 0 0 HC/TC Cooling Valve Position Feedback 0 3 8 1 1 0 1 1 0 0 0 Body Yaw Rate 0 3 F 1 1 0 1 1 0 0 0 HC/TC Cooling Valve Position Feedback 1 0 A 1 1 0 1 1 0 0 0 Selected HPT Clearance Valve Postion 1 0 B 1 1 0 1 1 0 0 0 Selected HPT Clearance Valve Postion 1 1 0 1 1 0 0 0 FMC 3 - System Address Label 0 0 4 1 1 0 1 1 0 0 1 Body Longitudinal Acceleration 0 0 5 1 1 0 1 1 0 0 1 Body Longitudinal Acceleration 0 2 F 1 1 0 1 1 0 0 1 LTC Cooling Valve Position Feedback 0 3 8 1 1 0 1 1 0 0 1 Body Longitudinal Acceleration 0 3 F 1 1 0 1 1 0 0 1 LTC Cooling Valve Position Feedback 1 0 A 1 1 0 1 1 0 0 1 Selected LPT Clearance Valve Position 1 0 B 1 1 0 1 1 0 0 1 Selected LPT Clearance Valve Position 1 1 0 1 1 0 0 1 ATC Transponder - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-27 See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 37 Code No. (Octal) 33 2 33 3 33 4 33 5 33 6 33 7 34 0 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0 0 4 1 1 0 1 1 0 1 0 Body Lateral Acceleration 0 0 5 1 1 0 1 1 0 1 0 Body Lateral Acceleration 0 2 F 1 1 0 1 1 0 1 0 A/O Heat Exchanger Valve Postion Feedback 0 3 8 1 1 0 1 1 0 1 0 Body Lateral Acceleration 0 3 F 1 1 0 1 1 0 1 0 A/O Heat Exchanger Valve Postion Feedback 1 1 0 1 1 0 1 0 DADC - System Address Label 0 0 4 1 1 0 1 1 0 1 1 Body Normal Acceleration 0 0 5 1 1 0 1 1 0 1 1 Body Normal Acceleration 0 2 F 1 1 0 1 1 0 1 1 Acceleration Fuel Flow Limit 0 3 8 1 1 0 1 1 0 1 1 Body Normal Acceleration 0 3 F 1 1 0 1 1 0 1 1 Acceleration Fuel Flow Limit 0 0 4 1 1 0 1 1 1 0 0 Platform Heading 0 0 5 1 1 0 1 1 1 0 0 Platform Heading 0 2 F 1 1 0 1 1 1 0 0 Fuel Flow Command 0 3 8 1 1 0 1 1 1 0 0 Platform Heading 0 3 F 1 1 0 1 1 1 0 0 Fuel Flow Command 1 1 0 1 1 1 0 0 CTU - System Address Label 0 0 2 1 1 0 1 1 1 0 1 Track Angle Rate 0 0 4 1 1 0 1 1 1 0 1 Track Angle Rate 0 0 5 1 1 0 1 1 1 0 1 Track Angle Rate 0 2 F 1 1 0 1 1 1 0 1 2.5 Bld Actuator Postion 0 3 8 1 1 0 1 1 1 0 1 Track Angle Rate 0 3 F 1 1 0 1 1 1 0 1 2.5 Bld Actuator Postion 0 5 6 1 1 0 1 1 1 0 1 Track Angle Rate 0 6 0 1 1 0 1 1 1 0 1 Track Angle Rate 1 0 A 1 1 0 1 1 1 0 1 Selected Variable Bleed Valve Position 1 0 B 1 1 0 1 1 1 0 1 Selected Variable Bleed Valve Position 0 0 2 1 1 0 1 1 1 1 0 Maximum Climb Angle 0 0 4 1 1 0 1 1 1 1 0 Inertial Pitch Rate 0 0 5 1 1 0 1 1 1 1 0 Inertial Pitch Rate 0 1 A 1 1 0 1 1 1 1 0 Engine Torque 0 2 F 1 1 0 1 1 1 1 0 N2 Corrected to Sta. 2.5 0 3 8 1 1 0 1 1 1 1 0 Inertial Pitch Rate 0 3 F 1 1 0 1 1 1 1 0 N2 Corrected to Sta. 2.5 1 0 A 1 1 0 1 1 1 1 0 Variable Bleed Value Position 1 0 B 1 1 0 1 1 1 1 0 Variable Bleed Value Position 0 0 2 1 1 0 1 1 1 1 1 EPR - Required for Level Flight 0 0 2 1 1 0 1 1 1 1 1 N1 - Required for Level Flight 0 0 4 1 1 0 1 1 1 1 1 Inertial Roll Rate 0 0 5 1 1 0 1 1 1 1 1 Inertial Roll Rate 0 1 A 1 1 0 1 1 1 1 1 Engine Rating 0 3 8 1 1 0 1 1 1 1 1 Inertial Roll Rate 1 0 A 1 1 0 1 1 1 1 1 HPT Clearance Valve Position 1 0 B 1 1 0 1 1 1 1 1 HPT Clearance Valve Position 0 0 3 1 1 1 0 0 0 0 0 EPR Actual 0 0 4 1 1 1 0 0 0 0 0 Inertial Yaw Rate 0 0 4 1 1 1 0 0 0 0 0 Track Angle Rate 0 0 5 1 1 1 0 0 0 0 0 Inertial Yaw Rate 0 1 A 1 1 1 0 0 0 0 0 EPR Actual 0 2 9 1 1 1 0 0 0 0 0 EPR Actual (Engine Direct) 0 2 D 1 1 1 0 0 0 0 0 EPR Actual 0 2 F 1 1 1 0 0 0 0 0 EPR Actual 0 3 3 1 1 1 0 0 0 0 0 EPR Actual 0 3 F 1 1 1 0 0 0 0 0 EPR Actual 1 3 A 1 1 1 0 0 0 0 0 N1 Take Off 1 4 0 1 1 1 0 0 0 0 0 Pressure Ratio (Pt/Ps) 1 1 1 0 0 0 0 0 HF DATA Radio/Data #1 - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 38 Code No. (Octal) 34 1 34 2 34 3 34 4 34 5 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 2 1110 0 0 3 1110 0 0 3 1110 0 0 4 1110 0 1A1110 0 1A1110 0 2 9 1110 0 2 9 1110 0 2 F1110 0 2 F1110 0 3 8 1110 0 3 F1110 0 4D1110 1 0A1110 1 0B1110 1 3A1110 1 4 0 1110 0 0 2 1110 0 0 3 1110 0 0 3 1110 0 1A1110 0 1A1110 0 2 9 1110 0 2 9 1110 0 2 F1110 0 3B1110 0 3B1110 0 3 F1110 0 4D1110 1 0A1110 1 0B1110 1 4 0 1110 0 0 3 1110 0 0 3 1110 0 1A1110 1 0A1110 1 0B1110 0 1A1110 0 1C1110 0 2 9 1110 0 2 F1110 0 3 3 1110 0 3 F1110 0 4D1110 0D0 1110 1 0A1110 1 0B1110 1 3A1110 1110 0 0 2 1110 0 1A1110 0 1C1110 0 2 9 1110 0 2 F1110 0 3 3 1110 0 3 F1110 0 4D1110 0D0 1110 1 0A1110 1 0B1110 1 3A1110 1110 567 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 8 1 Target N1 1 N1 Command 1 EPR Command 1 Grid Heading 1 N1 Command 1 EPR Command 1 N1 Command (Engine) 1 EPR Command (Engine) 1 N1 Command 1 EPR Command 1 Grid Heading 1 EPR Command 1 I/O S/W REV 1&2 1 Command Fan Speed 1 Command Fan Speed 1 N1 Reference 1 Pressure Ratio (Ps/Pso) 0 N1 Bug Drive 0 N1 Limit 0 EPR Limit 0 N1 Maximum 0 EPR Maximum 0 N1 Limit (TCC) 0 EPR Limit (TOC) 0 Maximum Available EPR 0 N1 Limit 0 EPR Limit 0 Maximum Available EPR 0 S/W Rev-Tank 0 Maximum Allowed Fan Speed 0 Maximum Allowed Fan Speed 0 Air Density Ratio 1 N1 Derate 1 EPR Rate 1 N1 Demand 1 N1 Command vs. TLA 1 N1 Command vs. TLA 0 N2 0 N2 0 N2 0 N2 0 N2 0 N2 0 Fuel Discretes 0 N2 0 Selected Actual Core Speed 0 Selected Actual Core Speed 0 N2 Speed 0 HF DATA Radio/Data #2 - System Address Label 1 NDB Effectivity 1 Exhaust Gas Temperature 1 Exhaust Gas Temperature 1 Exhaust Gas Temperature 1 Exhaust Gas Temperature 1 Exhaust Gas Temperature 1 Exhaust Gas Temperature 1 Discretes Status 1&3 1 EGT 1 Selected Exhaust Gas Temperature (Total) 1 Selected Exhaust Gas Temperature (Total) 1 EGT Trimmed 1 Remote Data Concentrator - System Address Label Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 39 Code No. (Octal) 34 6 34 7 35 0 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 3 1110 0 1A1110 0 2 F1110 0 3 3 1110 0 3 F1110 0 4D1110 0D0 1110 1 0A1110 1 0B1110 1 3A1110 0 1 8 1110 0 2 9 1110 0 3 0 1110 0 3 5 1110 0D0 1110 1 0A1110 1 0B1110 1 3A1110 0 0 3 1110 0 0 4 1110 0 0 6 1110 0 0B1110 0 1 8 1110 0 1 9 1110 0 1A1110 0 1C1110 0 2 3 1110 0 2 4 1110 0 2 5 1110 0 2 7 1110 0 2 9 1110 0 2 F1110 0 3 2 1110 0 3 5 1110 0 3 8 1110 0 3D1110 0 3E1110 0 3 F1110 0 4 0 1110 0 4D1110 0 5 0 1110 0 5 3 1110 0 5 5 1110 1 0A1110 1 0B1110 1 1 4 1110 1 1 5 1110 1 4 0 1110 1 4 4 1110 2 4 1 1110 3 4 1 1110 567 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 8 0 N1 Actual 0 N1 Actual 0 N1 Actual 0 N1 Actual 0 N1 Actual 0 Cable Cap-Hi-Z 0 N1 0 Selected Actual Fan Speed 0 Selected Actual Fan Speed 0 N1 Speed Actual 1 Antenna Control 1 Fuel Flow (Engine) 1 Sector Control 1 Antenna Control 1 Fuel Flow 1 LPT Clearance Valve Position 1 LPT Clearance Valve Position 1 Fuel Flow 0 Maintenance Data #1 0 IRS Maintenance Discrete 0 Maintenance Data #1 0 GPS Test Word (manufacturer specific) 0 Maintenance Data #1 0 CFDS Bite Fault Summary Word for HFDR 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 MU Output Data Word Failure Status 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 IRS Maintenance Word #1 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data #1 0 Maintenance Data FQIS 1-3 0 VDR Fault Summary Word 0 CFDS Bite Fault Summary Word for HFDR 0 ILS Maintenance Word 0 Maintenance Data #1 0 Maintenance Data #1 0 Fuel Density 0 Maintenance Data #1 0 Maintenance Data #1 0 CDTI Fault Summary Word 0 Maintenance Data #1 0 Maintenance Data #1 Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 40 Code No. (Octal) 35 1 35 2 35 3 35 4 35 5 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 0 6 1110 0 0B1110 0 1A1110 0 1C1110 0 2 4 1110 0 2 5 1110 0 2 9 1110 0 2E1110 0 2 F1110 0 3 1 1110 0 3 8 1110 0 3 F1110 0 4D1110 0 5 5 1110 1 0A1110 1 0B1110 1 1 4 1110 1 4 0 1110 0 1A1110 0 1C1110 0 2 4 1110 0 2 5 1110 0 2E1110 0 2 F1110 0 3 F1110 0 4D1110 0 5 5 1110 1 0A1110 1 0B1110 1 1 4 1110 1 4 0 1110 0 1A1110 0 1C1110 0 2 5 1110 0 2 F1110 0 3 8 1110 0 3D1110 0 3 F1110 0 4D1110 0D0 1110 1 0A1110 1 0B1110 1 1 4 1110 0 0 2 1110 0 1A1110 0 1C1110 0 2 F1110 0 3D1110 0 3 F1110 0 4D1110 0 5 6 1110 0 6 0 1110 0 BB1 1 1 0 1 0A1110 1 0B1110 0 0B1110 0 2 7 1110 0 3 8 1110 0 3D1110 0 4D1110 XXX1 1 1 0 567 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 8 1 Maintenance Data #2 1 SRU Test Word (manufacturer specific) 1 Maintenance Data #2 1 Maintenance Data #2 1 MU Output Data Word Failure Status 1 Maintenance Data #2 1 Maintenance Data #2 1 Maintenance Data #2 1 Maintenance Data #2 1 Maintenance Data #2 1 IRS Maintenance Word #2 1 Maintenance Data #2 1 Maintenance Data FQIS 1&3 1 MMR Maintenance Word 1 Maintenance Data #2 1 Maintenance Data #2 1 Inner Tank 1 Probe Capacitance 1 Maintenance Data #2 0 Maintenance Data #3 0 Maintenance Data #2 0 Maintenance Word 0 Maintenance Data #2 0 Maintenance Data #2 0 Maintenance Data #2 0 Maintenance Data #2 0 Maintenance Data FQIS 1-4 0 MLS Bite Status 0 Maintenance Data #2 0 Maintenance Data #2 0 Center, ACT & RCT Probe Capacitance 0 Maintenance Data #3 Flight Count 1 Maintenance Data #4 1 Maintenance Data #4 1 Maintenance Data #4 1 Maintenance Data #4 1 IRS Maintenance Word #3 1 Maintenance Data #4 1 Maintenance Data #4 1 Maintenance Data FQIS 1-4 1 Vibration 1 Maintenance Data #4 1 Maintenance Data #4 1 Inner Tank 1 Probe Capacitance 0 Maintenance Data #5 0 Maintenance Data #5 0 Maintenance Data #5 0 Maintenance Data #5 0 N1 Vibration 0 Maintenance Data #5 0 FQIS Tank ID 0 Maintenance Data #5 0 Maintenance Data #5 0 Maintenance Data #5 0 Maintenance Data #5 0 Maintenance Data #5 1 GNSS Fault Summary 1 MLS Maintenance Data 1 IRS Maintenance Word #4 1 N2 Vibration 1 Maintenance Data FQIS 2-4 1 Acknowledgement Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 6-5/Note 1 ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 41 Code No. (Octal) 35 6 35 7 36 0 36 1 36 2 36 3 36 4 36 5 36 6 36 7 37 0 37 1 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1234 0 3D1110 XXX1 1 1 0 YYY1 1 1 0 0 0 2 1110 0 1 7 1110 0 2 4 1110 0 3 5 1110 0 3 7 1110 0 3D1110 0 4D1110 0 5 6 1110 0 5A1110 0 6 0 1110 0 0 2 1111 0 0 4 1111 0 0 5 1111 0 3 8 1111 0 3D1111 0 5 6 1111 0 6 0 1111 1 0A1111 1 0B1111 1 4 2 1111 1111 0 0 4 1111 0 0 5 1111 0 3 8 1111 0 3D1111 1 0A1111 1 0B1111 1111 0 0 4 1111 0 3 8 1111 1 0A1111 1 0B1111 1 1 5 1111 1111 0 0 4 1111 0 3 8 1111 1 0A1111 1 0B1111 1111 0 0 4 1111 0 0 5 1111 0 3 8 1111 1 3A1111 1111 0 0 4 1111 0 0 5 1111 0 3 8 1111 1 3A1111 1111 0 0 4 1111 0 3 8 1111 1 3A1111 1111 0 0 4 1111 0 3 8 1111 1 3A1111 1111 0 0 4 1111 0 0 5 1111 0 0B1111 0 2 5 1111 0C51111 0 0 0 1111 567 111 111 111 111 111 111 111 111 111 111 111 111 111 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 010 010 010 010 010 010 011 011 011 011 011 011 011 011 100 100 100 100 100 100 8 0 N3 Vibration 0 Maintenance ISO #5 Message 0 BITE Status Word 1 ISO Alphabet #5 Message 1 ISO Alphabet #5 Message 1 ISO Alphabet #5 Message 1 TCAS Intruder Data File 1 ISO Alphabet #5 Message 1 BB Vibration 1 Maintenance Data FQIS 2-3 1 ISO Alphabet #5 Message 1 Part Number (Manufacturer - Specific) 1 ISO Alphabet #5 Message 0 Flight Information 0 Potential Vertical Speed 0 Potential Vertical Speed 0 Potential Vertical Speed 0 N1 Rotor Imbalance Angle 0 Flight Information 0 Flight Information 0 Throttle Rate of Change 0 Throttle Rate of Change 0 RAIM Status Word 0 ACESS - System Address Label 1 Altitude (Inertial) 1 Altitude (Inertial) 1 Altitude (Inertial) 1 LPT Rotor Imbalance Angle (737 only) 1 Derivative of Thrust vs. N1 1 Derivative of Thrust vs. N1 1 EFIS - System Address Label 0 Along Track Horizontal Acceleration 0 Along Track Horizontal Acceleration 0 Derivative of Thrust vs. TLA 0 Derivative of Thrust vs. TLA 0 Range Rate 0 PSS - System Address Label 1 Cross Track Acceleration 1 Cross Track Acceleration 1 Corrected Thrust 1 Corrected Thrust 1 System Address Label for CSS 0 Vertical Acceleration 0 Vertical Acceleration 0 Vertical Acceleration 0 N1 APR Rating 0 AES - System Address Label 1 Inertial Vertical Velocity (EFI) 1 Inertial Vertical Velocity (EFI) 1 Inertial Vertical Velocity (EFI) 1 N1 Max Reverse 1 Engine Indication Unit - System Address Label 0 North-South Velocity 0 North-South Velocity 0 IGV Position 0 Multicast - System Address Label 1 East-West Velocity 1 East-West Velocity 1 EGV Request 1 Bridge - System Address Label 0g 0g 0 GNSS Height WGS-84 (HAE) 0 Decision Height Selected (EFI) 0 Decision Height Selected (EFI) 1 General Aviation Equipment Identifier Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X 6-3/Note 1 Note 1 6-3 X X 6-33 X X X X X X X X X X See Attachment 11 X X X X X X X See Attachment 11 X X X X X X See Attachment 11 X X X X X See Attachment 11 X X X X X See Attachment 11 X X X X X See Attachment 11 X 6-2-1 X X X See Attachment 11 X X X X See Attachment 11 X X X X X X See Attachment 9B ATTACHMENT 1-1 LABEL CODES ARINC SPECIFICATION 429, PART 1 - Page 42 Code No. (Octal) 37 2 37 3 37 4 37 5 37 6 37 7 Eqpt. ID Transmission Order Bit Position (Hex) Parameter 1 2 3 4 567 8 0051 1 0A1 1 0B1 1 0051 1 0A1 1 0B1 1 0051 1 0A1 1 0B1 1 0041 0051 0331 0381 1 0A1 1 0B1 XXX 1 1 0041 0051 0331 0381 XXX 1 0301 XXX 1 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 101 101 101 101 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111 111 111 0 Wind Direction - Magnetic 0 Actual Fan Speed 0 Actual Fan Speed 0 Cabin Terminal #3 - System Address Label 0 North-South Velocity - Magnetic 0 Actual Core Speed 0 Actual Core Speed 0 Cabin Terminal #4 - System Address Label 0 East-West Velocity - Magnetic 0 Left Thrust Reverser Position 0 Left Thrust Reverser Position 0 Cabin Terminal #1 - System Address Label 1 Along Heading Acceleration 1 Along Heading Acceleration 1 Spare DC1 1 Along Heading Acceleration 1 Right Thrust Reverser Position 1 Right Thrust Reverser Position 1 GPS Differential Correction Word A 1 Cabin Terminal #2 - System Address Label 0 Cross Heading Acceleration 0 Cross Heading Acceleration 0 Spare DC2 0 Cross Heading Acceleration 0 GPS Differential Correction Word B 1 Equipment Identification 1 Equipment Identification Data Notes & Cross Ref. to Tables in Att. 6 BNR BCD DISC SAL X X X X X X X X X X X X X X X X X X X X X X X X X X X See Attachment 11 See Attachment 11 See Attachment 11 See Attachment 11 6-17/Note 2 [1] XXX or YYY is applicable to all Equipment IDs. [2] The preferred SSM encoding method for the Equipment Identification Word is according to the Discrete word guidelines. When this label was originally assigned, it was recognized as a non-BNR word. The SSM encoding was according to the BCD and DISC guidelines that were identical at that time. During development of Supplement 4, the SSM for DISC was revised to it current form to provide enhanced failure warning. When the SSM encoding was changed, some systems retained the BCD encoding for the Equipment Identification word and others changed to DISC encoding. There are ARINC standards that are still active that have the SSM for Equipment Identification designated as BCD. You will need to check with the equipment manufacturer to determine the SSM format. [3] The Label does not adhere to ARINC 429 Standard Signal Format and contains both BCD and BRN bit encoding depending on the selected mode. ARINC SPECIFICATION 429, PART 1 - Page 43 ATTACHMENT 1-2 EQUIPMENT CODES Equip ID (Hex) Equipment Type Equip ID (Hex) Equipment Type 000 Not Used 03A Propulsion Discrete Interface Unit c-11 001 Flight Control Computer (701) 03B Autopilot Buffer Unit c-6 002 Flight Management Computer (702) 03C Tire Pressure Monitoring System c-8 003 Thrust Control Computer (703) 03D Airborne Vibration Monitor (737/757/767) c-9 004 Inertial Reference System (704) 005 Attitude and Heading Ref. System (705) 03E Center of Gravity Control Computer 03F Full Authority EEC-B c-7 006 Air Data System (706) 040 Cockpit Printer (740) c-11 007 Radio Altimeter (707) 041 Satellite Data Unit 008 Airborne Weather Radar (708) 042 009 Airborne DME (709) 043 c-5 00A FAC (A310) 044 c-10 00B Global Positioning System (743) 045 00C c-7 00D AIDS Data Management Unit 046 CTU 047 Digital Flight Data Recorder c-14 00E 048 00F 049 010 Airborne ILS Receiver (710) 04A Landing Gear Position Interface Unit 011 Airborne VOR Receiver (711) 04B Main Electrical System Controller c-9 012 Airborne ADF System (712) 04C Emergency Electrical System Controller 013 014 04D Fuel Qty. Indicating System (757/767) 04E Fuel Qty. Indicating System (747) c-10 015 016 Airborne VHF COM (716) 04F 050 VDR (750) c-14 017 DEFDARS-AIDS (717) 051 018 ATC Transponder (718) 052 019 Airborne HF/SSB System (719) 053 HF Data Unit c-5 01A Electronic Supervisory Control [1] 054 01B Digital Slat/Flap Computer (A310) 055 Multi-Mode Receiver (MMR) (755) 01C Engine Parameter Digitizer (Engine) 01D A/P & F/D Mode Control Panel (757/767) 056 GNSS Navigation Landing Unit (GNLU)(756) 057 Cockpit Voice Recorder (CVR) (757) c-16 01E Performance Data Computer (Boeing 737) 058 01F Fuel Quantity Totalizer 059 020 DFS System (720) 05A Fuel Quan. Indicating System (A320/A321) 021 05B Cargo Smoke Detection Unit (A320) 022 023 Ground Prox. Warning System (723) 05C Cabin Pressure Unit (A320) 05D Zone Controller (A320) c-10 024 ACARS (724) / CMU Mark 2 (758) 05E Cargo Heat (A320) 025 Electronic Flt. Instruments (725) 05F CIDS (A320) 026 Flight Warning Computer (726) 060 GNSS Navigation Unit (GNU) (760) c-16 027 Microwave Landing System (727) 061 High-Speed Data Unit (HSDU) c-17 028 062 029 ADDCS (729) and EICAS 063 02A Thrust Management Computer 064 02B Perf. Nav. Computer System (Boeing 737) 065 c-6 02C Digital Fuel Gauging System (A310) 066 c-5 02D EPR Indicator (Boeing 757) 067 c-6 02E Land Rollout CU/Landing C & LU 068 c-7 02F 030 031 Full Authority EEC-A Airborne Separation Assurance System Chronometer (731) 069 06A AMU (A320) 06B Battery Charge Limiter (A320) c-10 032 Pass. Entertainment Tape Reproducer (732) 06C Flt. Cont. Data Concentrator (A320) c-6 033 Propulsion Multiplexer (PMUX)(733) 06D Landing Gear Prox. Control (A320) 034 Fault Isolation & Detection System (734) 06E Brake Steering Unit (A320) 035 TCAS (735) 06F Bleed Air (A320) 036 Radio Management System (736) 070 c-10 037 038 Weight and Balance System (737) ADIRS (738) 071 072 039 MCDU (739) 073 c-5 [1] “Electronic Engine Control” and “Power Management Control” are two other names for equipment identified by “1A”. ARINC SPECIFICATION 429, PART 1 - Page 44 ATTACHMENT 1-2 EQUIPMENT CODES Equip ID (Hex) Equipment Type Equip ID (Hex) Equipment Type 074 075 076 077 079 07A 07B c-10 07C 07D 07E 07F 080 081 082 083 084 085 086 087 088 089 08A c-10 08B 08C 08D c-11 08E 08F 090 091 093 094 095 096 097 098 099 09A 09B 09C 09D 09E 09F 0A0 0A1 0A2 0A3 0A4 0A5 0A6 0A7 0A8 0A9 0AA c-11 0AB 0AC c-10 0AD c-11 0AE 0AF APU Engine Control Unit (A320) Engine Interface Unit (A320) FADEC Channel A (A320) FADEC Channel B (A320) Centralized Fault Data Interface Unit Fire Detection Unit (A320) Window Heat Computer (A320) Probes Heat Computer (A320) Avionics Cooling Computer (A320) Fuel Flow Indicator (B747) Surface Position Digitizer (B747-400) Vacuum System Controller FCC Controller (701) FMC Controller (702) Thrust Rating Controller (703) IRS Controller (704) Airborne WXR Controller (708) Airborne DME Controller (709) Generator Control Unit (A320) Air Supply Control & Test Unit (B747-400) Bus Control Unit (B747-400) ADIRS Air Data Module Yaw Damper Module (B747-400) Stabilizer Trim Module (B747-400) 0B0 Airborne ILS Controller (710) 0B1 Airborne VOR Controller (711) 0B2 Airborne ADF Controller (712) 0B3 0B4 0B5 0B6 VHF COM Controller (716) 0B7 0B8 ATC Transponder Controller (718) 0B9 HF/SSB System Controller (719) 0BA Power Supply Module (B747-400) c-11 0BB Flap Control Unit (B747-400) c-16 Flap Slat Electronics Unit (B767-400) 0BC Fuel System Interface Card (B747-400) 0BD Hydraulic Quantity Monitor Unit (B747-400) 0BE Hydraulic Interface Module (B747-400) c-11 0BF Window Heat Control Unit (B747-400) 0C0 0C1 0C2 PVS Control Unit c-11 0C3 GPWS Controller (723) c-10 0C4 A429W SDU Controller c-17 0C5 EFI Controller (725) 0C6 0C7 MLS Controller (727) 0C8 c-14 0C9 0CA Brake Temperature Monitor Unit (B747-400) 0CB Autostart (B747-400) 0CC Brake System Control Unit (B747-400) 0CD Pack Temperature Controller (B747-400) c-11 0CE EICAS/EFIC Interface Unit (B747-400) 0CF Para Visual Display Computer (B747-400) 0D0 Engine Instrument System (B737) 0D1 0D2 0D3 Thermal Monitoring Unit (General) c-14 0D4 0D5 TCAS Control Panel c-14 0D6 0D7 0D8 0D9 0DA Prox. Switch Electronics Unit (B747-400) 0DB APU Controller (B747-400) 0DC Zone Temperature Controller (B747-400) 0DD Cabin Pressure Controller (B747-400) c-11 0DE Windshear Computer (Sperry) 0DF Equipment Cooling Card (B747-400) 0E0 Crew Rest Temp. Controller (B747-400) 0E1 0E2 0E3 0E4 0E5 0E6 0E7 0E8 ARINC SPECIFICATION 429, PART 1 - Page 45 ATTACHMENT 1-2 EQUIPMENT CODES Equip ID (Hex) Equipment Type Equip ID (Hex) Equipment Type 0E9 0EA 0EB c-11 0EC 0ED 0EE 0EF 0F0 0F1 0F2 0F3 0F4 0F5 0F6 0F7 0F8 0F9 0FA 0FB c-11 0FC 0FD 0FE 0FF 100 101 102 103 104 105 106 107 c-16 108 109 10A 10B c-11 10C 10D 10E 10F 110 111 c-14 112 113 114 115 c-12 116 117 118 119 11A 11B 11C 11D c-17 11E 11F c-17 120 121 c-16 122 Misc. Environment Control (B747) Fuel Jettison Control Card (B747) Advance Cabin Entertainment Serv. Sys. Fuel System Controller (MD-11) Hydraulic System Controller (MD-11) Environmental System Controller (MD-11) Misc. System controller (MD-11) Anti-Skid System (MD-11) Cabin Pressure Control Sys. (MD-11) Air Condition Control System (MD-11) Pneumatic Control System (MD-11) Manifold Failure Detection System (MD-11) Electronic Engine Control (EEC) Channel A (B737-700) Elect Eng Control (EEC) Channel B (B737-700) Full Authority Engine Control A (GE) Full Authority Engine Control B (GE) APU Controller Data Loader Fire Detection Unit (MD-11) Auto Brake Unit (MD-11) Multiplexer PES (A-320) TACAN Adapter Unit (TAU) Stall Warning Card (B747-400) Fuel Unit Management System (A330/A340) TACAN Eng Interface Vibration Monitoring Unit (A330/A340) Engine Control Unit Channel A (A330/A340) Engine Control Unit Channel B (A330/A340) Centralized Maintenance Computer (A330/A340) Multi-Disk Drive Unit (A330/A340) Integrated Static Probe Multifunction Air Data Probe Ground Auxiliary Power Unit (A320/319/321) 123 Ground Power Control Unit (A330/A340) 124 Fuel Management Computer (A330/A340) 125 Center of Gravity Fuel Control Comp.(A330/A340) 126 Circuit breakers Monitoring Unit (A330/A340) c-12 127 Electrical Contractor Management Unit (A330/A340) 128 Hydraulic Electrical Generator Control Unit (A330/A340) 129 Hydraulic System Monitoring Unit (A330/A340) 12A Cargo Bay Conditioning Card (B747) 12B Predictive Windshear System Sensor c-11 12C Angle of Attack Sensor c-14 12D Logic Drive Control Computer (B747/B767) 12E Cargo Control Logic Unit (B767) 12F Cargo Electronics Interface Unit (B767) c-16 130 Load Management Unit (LMU) Airbus 131 132 133 134 135 136 Audio Management System c-11 137 138 139 13A Full Authority Engine Control (P&W) c-14 13B Audio Entertainment System (AES) Controller (Boeing) c-16 13C Boarding Music Machine (B777) 13D Passenger In Flight Info Unit (Airshow) c-14 13E Video Interface Unit (B777) 13F Camera Interface Unit (A340/B777) 140 Supersonic Air Data Computer c-16 141 Satellite RF Unit c-11 142 ADS-B Link Display Processor Unit (LPDU) 143 Vertical/Horizontal Gyro c-16 144 CDTI Display Unit c-17 145 146 147 148 149 14A Slide Slip Angle (SSA) c-17 14B 14C 14D 14E 14F 150 AIMS Gen. Pur. Bus #1 (B777) 151 AIMS Gen. Pur. Bus #2 (B777) 152 AIMS Digital Comm. Mgmt. (B777) 153 AIMS Gen. Pur. Bus #3 (B777) 154 Central Maintenance Computer (B-777) c-14 155 AIMS EFIS Control Panel (B777) 156 AIMS Display Unit (B777) 157 AIMS Cursor Control Device (B777) 158 AIMS General Purpose Bus #4 c-16 159 15A Flight Data Interface Unit (A330/A340) 15B Flight Control Unit (A330/A340) c-12 15C Flight Control Primary Computer (A330/A340) ARINC SPECIFICATION 429, PART 1 - Page 46 ATTACHMENT 1-2 EQUIPMENT CODES Equip ID (Hex) Equipment Type Equip ID (Hex) Equipment Type 15D Flight Control Secondary Computer (A330/A340) 19F Cade Environment System c-16 c-12 15E Flight Mgmt Guidance Env Comp (A330/A340) 1E2 ADS-B LDPU Controller c-17 15F 200 Versatile Integrated Avionics Unit (B717/MD-10) 160 Special Fuel Quan. Sys. (Boeing) 201 Electronic Spoiler Control Unit (B717) 161 202 Brake Control Unit (B717) 162 203 Pneumatic Overheat Detection Unit (B717) c-16 163 204 Proximity Switch Electronics Unit (B717) 164 205 APU Electronic Control Unit (B717) 165 206 Aircraft Interface Unit (MD-10) 166 207 Fuel Quantity Gauging Unit (MD-10) 167 Air Traffic Service Unit (Airbus) 168 Integ Standby Instr System (A340/330,A320/319/321) c-16 169 Data Link Control and Display Unit (A340/330) 16A Display Unit (A330/A340) 16B Display Management Computer (A330/A340) c-12 16C 16D Head-Up Display Computer (A330/A340) ECAM Control Panel (A330/A340) 241 High Power Amplifier c-11 16E Clock (A330/A340) c-14 16F 170 Cabin Interphone System (B777) Radio Tuning Panel (B777) c-17 171 Electronic Flight Bag 172 173 341 Satellite ACU c-11 174 175 176 177 178 179 17A Cabin Ventilation Controller (A330/A340) 17B Smoke Detection Control Unit (A330/A340) c-12 17C Proximity Sensor Control Unit (A330/A340) 17D 17E 17F 180 181 182 183 184 185 186 187 188 189 18A Audio Control Panel (A330/A340) 18B Cockpit Voice recorder (A330/A340) 18C Passenger Entertainment Sys Main MUX (A330/A340) c-11 18D 18E Passenger Entertainment Sys Audio Repro.(A330/A340) Pre-recorded Announcement Music Repro (A330/A340) 18F Video Control Unit (A330/A340) TABLE 1 - BCD DATA Eqpt Label ID (Hex) Parameter Name 0 0 1 0 0 2 Distance to Go 0 5 6 Distance to Go 0 6 0 Distance to Go 002 002 056 060 115 Time to Go Time to Go Time to Go Time to Station 0 0 3 0 0 2 Cross Track Distance 0 0 4 0 0 1 Runway Distance to Go 0 1 0 0 0 2 Present Position - Latitude 0 0 4 Present Position - Latitude 0 3 8 Present Position - Latitude 0 1 1 0 0 2 Present Position - Longitude 0 0 4 Present Position - Longitude 0 3 8 Present Position - Longitude 012 0 0 2 Ground Speed 0 0 4 Ground Speed 0 4 D Qty-LD SEL (LB) 0 0 5 Ground Speed 0 2 5 Ground Speed 0 3 8 Ground Speed 0 5 6 Ground Speed 0 6 0 Ground Speed 013 0 0 2 Track Angle - True 0 0 4 Track Angle - True 0 4 D Qty-Flt. Deck (LB) 0 3 8 Track Angle - True 0 1 4 0 0 4 Magnetic Heading 0 0 5 Magnetic Heading 0 3 8 Magnetic Heading 015 002 004 005 038 Wind Speed Wind Speed Wind Speed Wind Speed 0 1 6 0 0 4 Wind Direction - True 0 3 8 Wind Direction - True 017 0 1 0 Selected Runway Heading 0 4 D Total-Flt. Deck (LB) 0 5 5 Selected Runway Heading 0 A 0 Selected Runway Heading 0 B 0 Selected Runway Heading 0 2 0 0 2 0 Selected Vertical Speed 0 4 D Tnk-LD SEL (LB) 0 A 1 Selected Vertical Speed 021 0 0 2 Selected EPR 0 0 2 Selected N1 0 2 0 Selected EPR 0 2 0 Selected N1 0 A 1 Selected EPR ARINC SPECIFICATION 429, PART 1 - Page 47 ATTACHMENT 2 DATA STANDARDS Units Range (Scale) Sig Pos Bits Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Trans- port Delay (msec) 3 Notes & Cross Ref. to Tables and Attachments N.M. ±3999.9 5 0.1 100 200 6-25 N.M. ±3999.9 5 0.1 100 200 N.M. ±3999.9 5 0.1 100 200 Min 0-399.9 4 0.1 100 200 6-25 Min 0-399.9 4 0.1 100 200 Min 0-399.9 4 0.1 100 200 Min 0-399.9 4 0.1 50 50 N.M. 0-399.9 4 0.1 100 200 6-25 Feet 0-79900 3 100.0 100 200 Deg:Min 180N-180S 6 N 0.1 250 500 Deg:Min 180N-180S 6 N 0.1 250 500 Deg:Min 180N-180S 6 N 0.1 250 500 Section 2.1.2 Section 2.1.2 Deg:Min 180E-180W 6 E 0.1 250 500 Deg:Min 180E-180W 6 E 0.1 250 500 Deg:Min 180E-180W 6 E 0.1 250 500 Knots 0-7000 4 1.0 250 500 6-25 Knots 0-7000 4 1.0 250 500 Lbs. 0-79999 5 1.0 Knots 0-7000 4 1.0 250 500 Knots 0-7000 4 1.0 125 250 Knots 0-7000 4 1.0 250 500 Knots 0-7000 4 1.0 250 500 Knots 0-7000 4 1.0 250 500 Deg 0-359.9 4 0.1 250 500 6-25 Deg 0-359.9 4 0.1 250 500 Lbs. 0-79999 5 1.0 Deg 0-359.9 4 0.1 250 500 Deg 0-359.9 4 Deg 0-359.9 4 Deg 0-359.9 4 0.1 250 500 0.1 250 500 0.1 250 500 Knots 0-799 3 Knots 0-799 3 Knots 0-799 3 Knots 0-799 3 1.0 250 500 1.0 250 500 1.0 250 500 1.0 250 500 Deg 0-359 3 Deg 0-359 3 1.0 250 500 1.0 250 500 Deg 0-359.9 4 Lbs. 0-79999 5 Deg 0-359.9 4 Deg 0-359.9 4 Deg 0-359.9 4 0.1 167 333 1.0 0.1 0.1 167 333 0.1 167 333 Ft/Min ±6000 4 1.0 100 200 6-25 Lbs. 0-79999 5 1.0 Ft/Min ±6000 4 Up 1.0 100 200 EPR 0-3 4 RPM 0-3000 4 EPR 0-3 4 RPM 0-3000 4 EPR 0-3 3 0.001 100 200 1 100 200 0.001 100 200 1 100 200 0.001 100 200 ARINC SPECIFICATION 429, PART 1 - Page 48 TABLE 1 - BCD DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units Range (Scale) Sig Pos Bits Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Trans- port Delay (msec) 3 Notes & Cross Ref. to Tables and Attachments 0 A 1 Selected N1 RPM 0-3000 4 1 100 200 0 2 2 0 2 0 Selected Mach 0 4 D Qty-LD SEL (KG) 0 A 1 Selected Mach Mach 0-4 4 Kg 0-79999 5 Mach 0-4 4 0.001 100 200 1.0 0.001 100 200 0 2 3 0 2 0 Selected Heading Deg 0-359 3 1.0 100 200 6-25 0 4 D Qty-Flt Deck (KG) Kg 0-79999 5 1.0 0 A 1 Selected Heading Deg 0-359 3 1.0 100 200 0 2 4 0 1 1 Selected Course #1 Deg 0-359 3 1.0 167 333 6-25 0 2 0 Selected Course #1 Deg 0-359 3 1.0 167 333 0 A 1 Selected Course #1 Deg 0-359 3 1.0 167 333 0 B 1 Selected Course #1 Deg 0-359 3 1.0 167 333 0 2 5 0 2 0 Selected Altitude Feet 0-50000 5 1.0 100 200 6-25 0 A 1 Selected Altitude Feet 0-50000 5 1.0 100 200 0 2 6 0 0 3 Selected Airspeed Knots 30-450 3 1.0 100 200 6-25 0 2 0 Selected Airspeed Knots 30-450 3 1.0 100 200 0 A 1 Selected Airspeed Knots 30-450 3 1.0 100 200 0 2 7 0 0 2 TACAN Selected Course Deg 0 1 1 Selected Course #2 Deg 0 2 0 Selected Course #2 Deg 0 4 D Total-Flt Deck (KG) Kg 0 5 6 TACAN Selected Course Deg 0 6 0 TACAN Selected Course (BCD) Deg 0 A 1 Selected Course #2 Deg 0 B 1 Selected Course #2 Deg 0-359 3 0-359 3 0-359 3 0-79999 5 0-359 3 0-359 3 0-359 3 0-359 3 1.0 167 333 1.0 167 333 1.0 167 333 1.0 1.0 167 333 1.0 167 333 1.0 167 333 1.0 167 333 0 3 0 0 2 0 VHF COM Frequency See Chapter 3 100 200 6-45 0 2 4 VHF COM Frequency See Chapter 3 100 200 0 4 D TNK-LD SEL (KG) Kg 0-79999 5 1.0 0 B 6 VHF COM Frequency See Chapter 3 100 200 0 3 1 0 2 0 Beacon Transponder Code 0 B 8 Beacon Transponder Code See Chapter 3 See Chapter 3 100 200 6-46 100 200 0 3 2 0 1 2 ADF Frequency 0 2 0 ADF Frequency 0 B 2 ADF Frequency See Chapter 3 See Chapter 3 See Chapter 3 100 200 6-40 100 200 100 200 033 002 010 020 056 060 0B0 ILS Frequency ILS Frequency ILS Frequency ILS Frequency ILS Frequency ILS Frequency See Chapter 3 See Chapter 3 See Chapter 3 See Chapter 3 See Chapter 3 See Chapter 3 167 333 6-44 167 333 167 333 167 333 167 333 167 333 034 002 006 011 020 056 060 0B0 VOR/ILS Frequency Baro Correction (mb) #3 VOR/ILS Frequency VOR/ILS Frequency VOR/ILS Frequency VOR/ILS Frequency #1 VOR/ILS Frequency See Chapter 3 mb 745-1050 5 See Chapter 3 See Chapter 3 See Chapter 3 See Chapter 3 See Chapter 3 167 333 0.1 62.5 125 167 333 167 333 167 333 167 333 167 333 6-44-1 0 3 5 0 0 2 DME Frequency See Chapter 3 100 200 6-41 0 0 6 Baro Correction (ins of Hg) #3 ins Hg 22-31 5 0.001 62.5 125 0 0 9 DME Frequency See Chapter 3 100 200 0 2 0 DME Frequency See Chapter 3 100 200 TABLE 1 - BCD DATA Eqpt Label ID (Hex) Parameter Name 0 5 5 Paired DME Frequency 0 5 6 DME Frequency 0 6 0 DME Frequency 0 A 9 DME Frequency 036 0 0 2 MLS Frequency 0 2 0 MLS Frequency 0 5 5 MLS Channel Selection 0 5 6 MLS Frequency Channel 0 6 0 MLS Frequency Channel 0 C 7 MLS Frequency 0 3 7 0 2 0 HF COM Frequency 0 B 9 HF COM Frequency 041 0 0 2 Set Latitude 0 0 4 Set Latitude 0 2 0 Set Latitude 0 5 6 Set Latitude 0 6 0 Set Latitude 0 A 4 Set Latitude 042 0 0 2 Set Longitude 0 0 4 Set Longitude 0 2 0 Set Longitude 0 5 6 Set Longitude 0 6 0 Set Longitude 0 A 4 Set Longitude 043 0 0 2 Set Magnetic Heading 0 0 4 Set Magnetic Heading 0 2 0 Set Magnetic Heading 0 5 6 Set Magnetic Heading 0 6 0 Set Magnetic Heading 0 A 4 Set Magnetic Heading 0 4 4 0 0 4 True Heading 0 3 8 True Heading 0 4 5 0 0 3 Minimum Airspeed 0 4 6 0 3 3 Engine Serial No. (LSDs) 1 0 A Engine Serial No. (LSDs) 1 0 B Engine Serial No. (LSDs) 047 0 2 0 VHF Com Frequency 0 2 4 VHF Com Frequency 0 3 3 Engine Serial No. (MSDs) 1 0 A Engine Serial No. (MSDs) 1 0 B Engine Serial No. (MSDs) 0 B 6 VHF Com Frequency 0 5 2 0 3 7 Long. Zero Fuel CG 0 5 3 0 0 5 Track Angle-Magnetic 056 002 005 037 056 060 Estimated Time of Arrival Wind Direction - Magnetic Gross Weight (Kilograms) ETA (Active Waypoint) ETA (Active Waypoint) ARINC SPECIFICATION 429, PART 1 - Page 49 ATTACHMENT 2 DATA STANDARDS Units Range (Scale) Sig Pos Bits Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Trans- port Delay (msec) 3 Notes & Cross Ref. to Tables and Attachments MHz 108-135.9 4 See Chapter 3 See Chapter 3 See Chapter 3 0.05 100 200 100 200 100 200 See Chapter 3 See Chapter 3 500-600 3 See Chapter 3 See Chapter 3 See Chapter 3 100 200 100 200 1 100 200 100 200 100 200 See Chapter 3 See Chapter 3 100 200 6-42 100 200 Deg/Min 180N/180S 6 N 0.1 250 500 Deg/Min 180N/180S 6 N 0.1 250 500 Deg/Min 180N/180S 6 N 0.1 250 500 Deg/Min 180N/180S 6 N 0.1 250 500 Deg/Min 180N/180S 6 N 0.1 250 500 Deg/Min 180N/180S 6 N 0.1 250 500 Deg/Min 180E/180W 6 E 0.1 250 500 Deg/Min 180E/180W 6 E 0.1 250 500 Deg/Min 180E/180W 6 E 0.1 250 500 Deg/Min 180E/180W 6 E 0.1 250 500 Deg/Min 180E/180W 6 E 0.1 250 500 Deg/Min 180E/180W 6 E 0.1 250 500 Deg 0-359 3 Deg 0-359 3 Deg 0-359 3 Deg 0-359 3 Deg 0-359 3 Deg 0-359 3 1.0 250 500 1.0 250 500 1.0 250 500 1.0 250 500 1.0 250 500 1.0 250 500 Deg 0-359.9 4 Deg 0-359.9 4 0.1 250 500 0.1 250 500 Knots 0-259.9 4 0.1 62.5 125 500 1000 6-15 500 1000 6-15 500 1000 6-15 See Chap. 3 See Chap. 3 See Chap. 3 100 200 100 200 500 1000 6-16 500 1000 6-16 500 1000 6-17 100 200 % MAC 0-100.00 5 0.01 100 200 Deg 0-359 3 1.0 250 500 Hr:Min 0-23.59.9 5 Deg 0-359 3 100 kg 0-19999 5 Hr:Min 0-23.59.9 5 Hr:Min 0-23.59.9 5 0.1 250 500 1.0 250 500 1.0 100 200 0.1 250 500 0.1 250 500 ARINC SPECIFICATION 429, PART 1 - Page 50 TABLE 1 - BCD DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units Range (Scale) Sig Pos Bits Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Trans- port Delay (msec) 3 Notes & Cross Ref. to Tables and Attachments 0 6 0 0 2 5 S/G Hardware Part Number 4 6-36 0 3 7 Tire Loading (Left Body Main) % 0-299.9 4 0.1 100 200 0 6 1 0 2 5 S/G Software Config. Part No. 4 6-37 0 3 7 Tire Loading (Right Body Main) % 0-299.9 4 0.1 100 200 0 6 2 0 3 7 Tire Loading (Left Wing Main) % 0-299.9 4 0.1 100 200 0 6 3 0 3 7 Tire Loading (Right Wing Main) % 0-299.9 4 0.1 100 200 0 6 4 0 3 7 Tire Loading (Nose) % 0-299.9 4 0.1 100 200 0 6 5 0 0 3 Gross Weight 0 3 7 Gross Weight 100 lb. 0-12000 5 100 lb. 0-19999 5 1.0 100 200 1.0 100 200 0 6 6 0 0 2 Longitudinal Center of Gravity % MAC 0-100.00 5 0 3 7 Longitudinal Center of Gravity % MAC 0-100.00 5 0.01 500 0.01 100 1000 200 0 6 7 0 3 7 Lateral Center of Gravity % MAC 0-100.00 5 0.01 100 200 1 2 5 0 0 2 Universal Time Coordinate Hr-Min 0-23.59.9 4 0.1 100 200 6-25 0 0 B UTC Hr:Min 0-23:59.9 5 0.1 200 1200 0 3 1 Universal Time Coordinate Hr:Min 0-23.59.9 5 0.1 100 200 0 5 6 Universal Time Coordinate Hr-Min 0-23.59.9 4 0.1 100 200 0 6 0 Universal Time Coordinate (UTC) Hr-Min 0-23.59.9 4 0.1 100 200 1 3 5 0 5 A ACT 1 Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 3 6 0 5 A ACT 2 Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 3 7 0 5 A Center+Act1+Act2 FQ Display Kg/Lb 0-9999 4 100 100 200 1 4 0 0 5 A Actual Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 4 1 0 5 A Preselect Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 4 2 0 5 A Left Wing Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 4 3 0 5 A Center Wing Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 4 4 0 5 A Right Wing Fuel Quan. Display Kg/Lb 0-9999 4 100 100 200 1 5 5 0 2 7 MLS Selected GP Angle Deg 0-359.9 4 0.1 100 200 1 5 7 1 1 4 Trim Tank Probe Capacitance pf 0-400 4 1.0 1 6 3 0 3 7 Zero Fuel Weight (lb) Lbs. 0-19999 5 1.0 100 200 1 6 5 0 0 7 Radio Height Feet ±7999.9 5 0.1 25 200 6-25 1 7 0 0 2 5 Decision Height Selected (EFI) Feet ±7000 4 1.0 100 200 6-25 0 C 5 Decision Height Selected (EFI) Feet ±7000 4 1.0 100 200 6-25 200 002 004 056 060 Drift Angle Drift Angle Drift Angle Drift Angle Deg ±180 4 Deg ±180 4 Deg ±180 4 Deg ±180 4 0.1 100 200 0.1 100 200 0.1 100 200 0.1 100 200 TABLE 1 - BCD DATA ARINC SPECIFICATION 429, PART 1 - Page 51 ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 2 0 1 0 0 9 DME Distance 1 1 2 TACAN Distance 1 1 5 DME Distance Units N.M. N.M. N.M. Range (Scale) -1-399.99 0-399.99 0-399.99 Sig Pos Bits Sense 5 5 5 Resolution 0.01 0.01 0.01 Min Transit Interval (msec) 2 83.3 190 50 Max Transit Interval (msec) 2 167 210 50 Max Trans- port Delay (msec) 3 Notes & Cross Ref. to Tables and Attachments 6-1-1 2 0 5 0 0 2 HF COM Freq (New Format) 0 B 9 HF COM Freq (New Format) 2 0 7 0 2 5 Operational Software Parts 4 6-37 2 3 0 0 0 6 True Airspeed Knots 100-599 3 1.0 250 500 6-25 0 3 8 True Airspeed Knots 100-599 3 1.0 250 500 2 3 1 0 0 6 Total Air Temperature Deg C -060+099 3 0 3 8 Total Air Temperature Deg C -060+099 3 1 1 4 Inner 2 Tank Probe Capacitance pf 0-400 4 1.0 250 500 1.0 250 500 1.0 2 3 2 0 0 4 Altitude Rate Ft/Min ±20000 4 Up 10.0 31.3 62.5 6-25 0 0 5 Altitude Rate Ft/Min ±20000 4 Up 10.0 31.3 62.5 0 0 6 Altitude Rate Ft/Min ±20000 4 Up 10.0 31.3 62.5 1 1 4 Inner 4 Tank Probe Capacitance pf 0-400 4 1.0 2 3 3 0 0 6 Static Air Temperature Deg C -099 to +060 3 1.0 250 500 6-25 0 3 8 Static Air Temperature Deg C -099 to +060 3 1.0 250 500 1 1 4 Right Outer Probe Capacitance pf 0-400 4 1.0 2 3 4 0 0 6 Baro Correction (mb) #1 0 3 8 Baro Correction (mb) #1 mb 745-1050 5 mb 745-1050 5 0.1 62.5 125 0.1 62.5 125 2 3 5 0 0 6 Baro Correction (ins of Hg) #1 ins Hg 22-31 5 0.001 62.5 125 6-25 0 3 8 Baro Correction (ins of Hg) #1 ins Hg 22-31 5 0.001 62.5 125 6-25 2 3 6 0 0 6 Baro Correction (mb) #2 0 3 8 Baro Correction (mb) #2 mb 745-1050 5 mb 745-1050 5 0.1 62.5 125 0.1 62.5 125 2 3 7 0 0 6 Baro Correction (ins of Hg) #2 ins Hg 22-31 5 0 3 8 Baro Correction (ins of Hg) #2 ins Hg 22-31 5 0.001 62.5 125 0.001 62.5 125 2 4 3 0 3 7 Zero Fuel Weight (kg) Kg 0-19999 5 1.0 100 200 2 6 0 0 0 2 Date/Flight Leg N/A 500 1000 0 0 B Date dd:mo:yr dd:mm:yr 6 4 0 3 1 Date N/A 100 200 6-18 0 5 6 Date/Flight Leg N/A 500 1000 0 6 0 Date/Flight Leg N/A 500 1000 0 A 2 Date/Flight Leg N/A 500 1000 2 6 1 0 0 2 Flight Number N/A 0-9999 4 1.0 500 1000 6-9 0 A 2 Flight Number N/A 0-9999 4 1.0 500 1000 0 5 6 Flight Number N/A 0-9999 4 1.0 500 1000 0 6 0 Flight Number N/A 0-9999 4 1.0 500 1000 2 7 2 0 5 A Fuel Density Kg/cu.m. 0-9999 4 0.0001 100 200 ARINC 429 P2 2 7 3 0 5 A Sensor Values Left Wing Tank pF 0-100 3 100 200 2 7 4 0 5 A Sensor Values Center Wing Tank pF 0-100 3 0.1 100 200 2 7 5 0 5 A Sensor Values Right Wing Tank pF 0-100 3 0.1 100 200 3 4 5 0 0 2 NDB Effectivity 1000 3 5 0 1 1 4 Fuel Density kg/l 0-.999 4 0.01 ARINC 429 P2 ARINC SPECIFICATION 429, PART 1 - Page 52 TABLE 1 - BCD DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units Range (Scale) Sig Pos Bits Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Trans- port Delay (msec) 3 Notes & Cross Ref. to Tables and Attachments 3 5 1 1 1 4 Inner Tank 1 Probe Capacitance pf 0-400 3 0.1 ARINC 429 P2 3 5 2 1 1 4 Center, ACT &RCT Probe Capac. pf 0-400 3 0.1 ARINC 429 P2 3 5 3 1 1 4 Inner Tank 3 Probe Capacitance pf 0-400 3 0.1 ARINC 429 P2 TABLE 2 - BNR DATA Eqpt Label ID (Hex) Parameter Name 0 0 5 0 D 0 Engine Discrete 0 2 5 0 4 D Load SEL Control 0 3 4 0 2 5 VOR/ILS Frequency 0 3 5 0 2 5 DME Frequency 0 5 2 0 0 4 Body Pitch Acceleration 0 3 8 Body Pitch Acceleration 0 5 3 0 0 4 Body Roll Acceleration 0 3 8 Body Roll Acceleration 0 5 4 0 0 4 Body Yaw Acceleration 0 3 7 Zero Fuel Weight (Kg) 0 3 8 Body Yaw Acceleration 0 6 0 0 3 C Tire Pressure (Left Outer) 061 0 0 2 ACMS Information 0 0 B Pseudo Range 0 3 C Tire Pressure (Left Inner) 0 5 6 ACMS Information 0 6 0 ACMS Information 062 0 0 2 ACMS Information 0 0 B Pseudo Rang Fine 0 3 C Tire Pressure (Right Inner) 0 5 6 ACMS Information 0 6 0 ACMS Information 063 0 0 2 ACMS Information 0 0 B Range Rate 0 3 C Tire Pressure (Right Outer) 0 5 6 ACMS Information 0 6 0 ACMS Information 0 6 4 0 0 B Delta Range 0 3 C Tire Pressure (Nose) 0 6 5 0 0 B SV Position X 0 6 6 0 0 B SV Position X Fine 070 0 0 2 Reference Airspeed (Vref) 0 0 B SV Position X 0 2 9 AC Frequency (Engine) 0 3 7 Hard Landing Magnitude #1 0 5 6 Reference Airspeed (Vref) 0 6 0 Reference Airspeed (Vref) 0CC Brakes - Metered Hyd. Pres. L (Normal) 071 0 0 2 Take-Off Climb Airspeed (V2) 0 0 B SV Position Y Fine 0 2 9 AC Frequency (Engine) 0 3 3 VBV 0 3 7 Hard Landing Magnitude #2 0 C C Brakes-Metered Hyd.Pres.L (alt.) ARINC SPECIFICATION 429, PART 1 - Page 53 ATTACHMENT 2 DATA STANDARDS Units NA Deg/Sec2 Deg/Sec2 Deg/Sec2 Deg/Sec2 Deg/Sec2 Kg Deg/Sec2 PSIA Meters PSIA Range (Scale) Sig Bits Pos Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 Bit 11-Chan. A/ Bit 12-Chan. B 204700 11 100 125 250 125 250 ± 64 15 ± 64 15 0.002 0.002 50 Hz 117 Hz 50 Hz 117 Hz ± 64 15 ± 64 15 0.002 0.002 50 Hz 117 Hz 50 Hz 117 Hz ± 64 15 655360 15 ± 64 15 0.002 20 0.002 50 Hz 100 50 Hz 117 Hz 200 117 Hz 1024 10 1.0 50 250 6-29 ± 268435456 20 256 200 1200 1024 10 1.0 50 250 6-29 Meters 256 11 0.125 200 1200 PSIA 1024 10 1.0 50 250 6-29 M/S ± 4096 20 0.0039 200 1200 PSIA 1024 10 1.0 50 250 Meters PSIA Meters Meters Knots Meters Hz Lbs. Knots Knots PSIG Knots Meters Hz Deg Lbs. PSIG ± 4096 20 1024 10 ±67108864 20 64 14 512 11 ±67108864 20 512 11 12 512 11 512 11 4096 12 512 11 64 14 512 11 64 12 12 4096 12 0.0039 200 1200 1.0 50 250 64 200 1200 0.0039 200 1200 0.25 500 1000 1000 64 200 1200 0.25 100 200 - 100 200 0.25 500 1000 1000 0.25 500 1000 1000 1 50 100 #1 & 2 coded in SDI 0.25 500 1000 50 0.0039 200 1200 0.25 100 200 0.016 150 250 - 100 200 1 50 100 #1 & 2 coded in SDI ARINC SPECIFICATION 429, PART 1 - Page 54 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units 072 0 0 2 Rotation Speed (VR) Knots 0 0 B SV Position Z Meters 0 1 C Stator Vane Angle Deg/180 0 2 9 AC Voltage (Engine) Volts 0 2 F Stator Vane Angle Deg/180 0 3 3 Stator Vane Angle Deg 0 C C Brakes-Metered Hyd.Pres.R (normal) PSIG Range (Scale) 512 ±67108864 ±180 256 ±180 64 4096 Sig Bits Pos Sense Resolution 11 0.25 20 64 11 0.1 10 0.25 11 0.1 12 0.016 12 1 Min Transit Interval (msec) 2 500 200 100 100 100 150 50 Max Transit Interval (msec) 2 1000 1200 200 200 200 250 100 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 1000 Revised by Supp 11 See Note [4] #1 &2 coded in SDI 073 0 0 2 V1 (critical engine failure speed) 0 0 B SV Position Z Fine 0 1 C Oil Quantity 0 2 9 Oil Quantity 0 A 2 V2 (critical engine failure speed) 0 C C Brakes-Metered Hyd.Pres.R (alt.) 0 D 0 Engine Oil Quantity Knots Meters cc US Pint Knots PSIG US Pint 512 11 64 14 32768 8 128 9 512 11 4096 12 128 9 0.25 100 200 0.0039 200 1200 128 100 200 0.25 100 200 0.25 100 200 1 50 100 0.25 #1 & 2 coded in SDI SDI 1=L/SDI 2=R 074 0 0 2 Zero Fuel Weight 0 0 B UTC Measure Time 0 2 C Zero Fuel Weight 0 3 3 LP Compressor Bleed Pos. (3.0) 0 3 7 Zero Fuel Weight (lb) 0 5 6 Zero Fuel Weight 0 6 0 Zero Fuel Weight 1 1 4 Zero Fuel Weight Lbs. Seconds Lbs. Inches Lbs. Lbs. Lbs. Lbs. 1310720 15 10.0 20 1310720 15 4 10 1310720 15 1310720 15 1310720 15 1310720 15 40 500 9.536743µs 200 40 100 0.004 100 40 100 40 500 40 500 40 100 1000 1200 400 200 200 1000 1000 400 1000 1000 1000 See Note [5] 075 0 0 2 Gross Weight 0 0 3 Gross Weight 0 0 B Geodetic Altitude 0 2 9 AC Voltage (Alt. Sources) 0 2 C Gross Weight 0 3 7 Gross Weight 0 3 E Gross Weight 1 1 4 Aircraft Gross Weight Lbs. Lbs. Feet Volts Lbs. Lbs. Lbs. Lbs. 1310720 15 1310720 15 131072 17 256 10 1310720 15 1310720 15 1310720 15 1310720 15 40 100 200 40 100 200 1.0 500 1000 0.25 100 200 40 100 200 40 100 200 40 100 200 40 100 400 076 0 0 B GPS Height Above Ref.Ellipsoid 0 0 B GNSS Altitude (Msl) 0 2 9 AC Voltage (Bus Bar) 0 3 7 Longitudinal Center of Gravity 0 3 E Longitudinal Center of Gravity 114 Aircraft Longitudinal Center of Gravity Feet Feet Volts % MAC % Percent 131072 17 ±131072 20 256 10 163.84 14 164 14 163.84 14 1.0 25 50 0.125 200 1200 0.25 100 200 0.01 100 200 0.01 100 200 0.01 100 200 077 0 - - Lateral Center of Gravity 0 0 2 Target Airspeed 0 0 B GPS Hor/Vert Deviation 0 2 9 AC Load (Engine) 0 3 7 Lateral Center of Gravity 0 5 6 Target Airspeed 0 6 0 Target Airspeed 1 1 4 Zero Fuel Center of Gravity MLb-in Knots % F.S. % % MAC Knots Knots Percent 128 17 512 11 128 8 256 8 131.072 17 512 11 512 11 163.84 14 0.001 100 200 0.25 100 200 0.8 25 50 1.0 100 200 0.01 100 200 0.25 100 200 0.25 100 200 0.01 100 200 Revised by Supp 11 1 0 0 0 0 1 Selected Course #1 Deg/180 ±180 12 0.05 167 333 6-27 0 0 2 Selected Course #1 Deg/180 ±180 12 0.05 167 333 0 1 1 Selected Course #1 Deg/180 ±180 12 0.05 167 333 0 2 0 Sleected Course #1 Deg/180 ±180 12 0.05 167 333 0 2 9 AC Load (Alt. Source) % 128 8 1.0 100 200 0 5 6 Selected Course #1 Deg/180 ±180 12 0.05 167 333 0 6 0 Selected Course #1 Deg/180 ±180 12 0.05 167 333 0 3 7 Gross Weight (Kilogram) Kilograms 655360 15 20 100 200 0 A 1 Selected Course #1 Deg/180 ±180 12 0.05 167 333 0 B 1 Selected Course #1 Deg/180 ±180 12 0.05 167 333 0 B B Outboard Flaps - PDU Deg/180 ±180 12 0.05 20 100 1 0 1 0 0 2 Selected Heading Deg/180 ±180 12 0.05 31.3 62.5 TABLE 2 - BNR DATA Eqpt Label ID (Hex) Parameter Name 0 0 B HDOP 0 2 0 Selected Heading 0 2 5 Selected Heading 0 2 9 DC Current (TRU) 0 5 A FQIC 0 A 1 Selected Heading 0 B B Inboard Flaps - PDU 1 1 4 C/G Target 102 0 0 2 Selected Altitude 0 0 B VDOP 0 2 0 Selected Altitude 0 2 9 DC Current (Battery) 0 5 6 Selected Altitude 0 6 0 Selected Altitude 0 A 1 Selected Altitude 103 0 0 1 Selected Airspeed 0 0 2 Selected Airspeed 0 0 3 Selected Airspeed 0 0 B GNSS Track Angle 0 1 B Left/PDU Flap 0 2 0 Selected Airspeed 0 2 9 DC Voltage (TRU) 0 5 6 Selected Airspeed 0 6 0 Selected Airspeed 0 A 1 Selected Airspeed 0 B B Left Outboard Flap Position 104 0 0 1 Selected Vertical Speed 0 0 2 Selected Vertical Speed 0 1 B Right/PDU Flap 0 2 0 Selected Vertical Speed 0 2 9 DC Voltage (Battery) 0 2 B Selected Vertical Speed 0 5 6 Selected Vertical Speed 0 6 0 Selected Vertical Speed 0 A 1 Selected Vertical Speed 0 B B Right Outboard Flap Position 105 0 0 2 Selected Runway Heading 0 1 0 Selected Runway Heading 0 1 B Left/PDU Slat 0 2 0 Selected Runway Heading 0 2 9 Oil Temp. Input (IDG/CSD) 0 5 5 Selected Runway Heading 0 5 6 Selected Runway Heading 0 6 0 Selected Runway Heading 0 A 1 Selected Runway Heading 0 B 0 Selected Runway Heading 0 B B Left Inboard Flap Position 106 0 0 2 Selected Mach 0 1 B Right/PDU Slat 0 2 0 Selected Mach 0 2 9 Oil Temp. Input (IDG/CSD) 0 5 6 Selected Mach 0 6 0 Selected Mach 0 A 1 Selected Mach 0 B B Right Inboard Flap Position 1 0 7 0 0 2 Selected Cruise Altitude 0 1 B Flap/Slat Lever 0 B B Flap Lever Position-median value ARINC SPECIFICATION 429, PART 1 - Page 55 ATTACHMENT 2 DATA STANDARDS Units N/A Deg/180 Deg/180 Amperes Lbs Deg/180 Deg/180 % Feet N/A Feet Amperes Feet Feet Feet Knots Knots Knots Deg Deg/180 Knots Volts Knots Knots Knots Deg/180 Ft/Min Ft/Min Deg/180 Ft/Min Volts Ft/Min Ft/Min Ft/Min Ft/Min Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg C Deg Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Mach Deg/180 Mach Deg C Mach Mach Mach Deg/180 Feet Deg/180 Deg/180 Range (Scale) 1024 ±180 ±180 256 4-65532 ±180 ±180 164 Sig Bits Pos Sense Resolution 15 0.031 12 0.05 12 0.05 8 1.0 14 4 12 0.05 12 0.05 8 0.01 Min Transit Interval (msec) 2 200 31.3 125 100 900 31.3 20 100 Max Transit Interval (msec) 2 1200 62.5 250 200 1100 62.5 100 200 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 65536 16 1.0 100 200 6-27 1024 15 0.031 200 1200 65536 16 1.0 100 200 256 8 1.0 100 200 65536 16 1.0 100 200 65536 16 1.0 100 200 65536 16 1.0 100 200 512 11 0.25 100 200 6-27 512 11 0.25 100 200 512 11 0.25 100 200 ±108 15 0.0055 200 1200 ±180 18 0.000687 100 200 512 11 0.25 100 200 128 9 0.25 100 200 512 11 0.25 100 200 512 11 0.25 100 200 512 11 0.25 100 200 ±180 12 0.05 20 100 16384 10 UP 16 100 200 6-27 16384 10 UP 16 100 200 ±180 18 0.000687 100 200 16384 10 UP 16 100 200 128 9 0.25 100 200 16384 14 UP 1 100 200 16384 10 UP 16 100 200 16384 10 UP 16 100 200 16384 10 UP 16 100 200 ±180 12 0.05 20 100 ±180 11 ±180 11 ±180 18 ±180 11 2048 12 ±180 11 ±180 11 ±180 11 ±180 11 ±180 11 ±180 12 0.1 167 333 0.1 167 333 0.000687 100 200 0.1 167 333 0.5 100 200 0.1 0.1 167 333 0.1 167 333 0.1 167 333 0.1 167 333 0.05 20 100 4096 12 1 31.3 200 6-27 ±180 18 0.000687 100 200 4096 12 0.5 100 200 2048 12 0.5 100 200 4096 12 1 31.3 200 4096 12 1 31.3 200 4096 12 1 31.3 62.5 ±180 12 0.05 20 100 65536 16 UP 1 100 200 ±180 18 0.000687 100 200 ±180 18 0.000687 100 200 ARINC SPECIFICATION 429, PART 1 - Page 56 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 0 3 7 Long. Zero Fuel Ctr of Gravity 0 5 6 Selected Cruise Altitude 0 6 0 Selected Cruise Altitude Units % MAC Feet Feet Range (Scale) 163.84 65536 65536 Sig Bits Pos Sense Resolution 14 0.01 16 UP 1 16 UP 1 Min Transit Interval (msec) 2 100 100 100 Max Transit Interval (msec) 2 200 200 200 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 110 0 0 1 Selected Course #2 0 0 2 Selected Course #2 0 0 B GNSS Latitude 0 1 0 Selected Course #2 0 1 1 Selected Course #2 0 2 0 Selected Course #2 0 A 1 Selected Course #2 0 B 1 Selected Course #2 0 B B Flap Lever Position - Center Deg/180 Deg/180 Deg Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 ±180 12 ±180 12 ±180 20 ±180 12 ±180 12 ±180 12 ±180 12 ±180 12 180 18 0.05 167 0.05 167 0.000172 200 0.05 167 0.05 167 0.05 167 0.05 167 0.05 167 0.000687 80 333 333 1200 333 333 333 333 333 160 1 1 1 0 0 B GNSS Longitude Deg ±180 20 0.000172 200 1200 112 0 0 2 Runway Length 0 0 B GNSS Ground Speed 0 A 1 Selected EPR 0 A 1 Selected N1 0 B B Flap Lever Position - Left Feet Knots RPM Deg/180 20480 11 4096 15 4 12 4096 12 ±180 18 10 250 0.125 200 0.001 100 1 100 0.000687 80 500 1200 200 200 160 114 0 0 2 Desired Track 0 2 9 Brake Temp. (Left Inner L/G) 0 2 F Ambient Pressure 0 3 F Pamb Sensor 0 5 6 Desired Track 0 6 0 Desired Track 0 B B Flap Lever Position - Right 0 C C Wheel Torque Output 1 0 A Selected Ambient Static Pressure 1 0 B Selected Ambient Static Pressure 1 3 A Ambient Pressure Deg/180 Deg C PSIA PSIA Deg/180 Deg/180 Deg/180 Lb./Ft. PSIA PSIA PSIA ±180 12 2048 11 32 14 32 14 ±180 12 ±180 12 ±180 18 16384 12 1.5-20.0 11 1.5-20.0 11 32 14 0.05 100 200 1 100 200 0.002 100 200 0.002 100 200 0.05 100 200 0.05 100 200 0.000687 80 160 4 50 100 0.016 100 500 0.016 100 500 0.002 100 200 6-27 No. 5 to 8 in SDI 115 0 0 2 Waypoint Bearing 0 2 9 Brake Temp. (Left Outer L/G) 0 2 F Fuel Temperature 0 3 F Fuel Temperature 0 5 6 Waypoint Bearing 0 6 0 Waypoint Bearing 0 B C Fuel Temperature 0 C C Wheel Torque Output Deg/180 Deg C Deg C Deg C Deg/180 Deg/180 Deg C Lb./Ft. ±180 12 2048 11 512 11 512 11 ±180 12 ±180 12 256 8 16384 12 0.05 31.3 62.5 1 100 200 0.25 100 200 0.25 100 200 0.05 31.3 62.5 0.05 31.3 62.5 1 500 1000 4 50 100 No. 1 to 4 in SDI – 6-26 116 0 0 2 Cross Track Distance N.M. 0 0 B Horizontal GLS Deviation Rectilinear Feet 0 2 9 Brake Temp. (Right Inner L/G) Deg C 0 5 5 Horizontal GLS Deviation Rectilinear Feet 0 5 6 Cross Track Deviation N.M. 0 6 0 Cross Track Deviation N.M. 0 C C Wheel Torque Output Lb./Ft. 128 15 24000 18 2048 11 24000 18 128 15 128 15 16384 12 0.004 31.3 62.5 0.00915 100 1 100 200 0.00915 100 0.004 31.3 62.5 0.004 31.3 62.5 4 50 100 6-27 No. 9 to 12 in SDI – 6-26 117 0 0 2 Vertical Deviation 0 0 B Vertical GLS Deviation Rectilinear 0 2 9 Brake Temp. (Right Outer L/G) 0 5 5 Vertical GLS Deviation Rectilinear 0 5 6 Vertical Deviation 0 6 0 Vertical Deviation 0 C C Wheel Torque Output Feet Feet Deg C Feet Feet Feet Lb./Ft. 2048 11 1024 14 2048 11 1024 14 2048 11 2048 11 16384 12 1.0 31.3 62.5 0.0625 100 1 100 200 0.0625 100 1.0 31.3 62.5 1.0 31.3 62.5 4 50 100 6-27 No. 13 to 16 in SDI – 6-26 120 0 0 2 Range to Altitude 0 0 B GNSS Latitude Fine 0 5 6 Range to Altitude 0 6 0 Range to Altitude N.M. Deg N.M. N.M. 512 15 0.000172 11 512 15 512 15 0.016 25 8.38-E-8 200 0.016 25 0.016 25 50 1200 50 50 TABLE 2 - BNR DATA Eqpt Label ID (Hex) Parameter Name 121 0 0 2 Horizontal Command Signal 0 0 B GNSS Longitude Fine 0 2 5 Pitch Limit 0 5 6 Horizontal Command Signal 0 6 0 Horizontal Command Signal 1 2 2 0 0 2 Vertical Command Signal 0 5 6 Vertical Command Signal 0 6 0 Vertical Command Signal 1 2 3 0 0 2 Throttle Command 1 2 4 0 A 5 Client Device for GNSS Receiver 1 E 2 Horizontal Alarm Limit 1 2 6 0 0 2 Vertical Deviation (wide) 0 5 6 Vertical Deviation 0 6 0 Vertical Deviation 127 0 0 2 Selected Landing Altitude 0 1 B Slat Angle 0 3 3 P14 1 0 A Fan Discharge Static Pressure 1 0 B Fan Discharge Static Pressure 1 E 2 Vertical Alarm Limit 130 0 0 B Aut Horiz Integ Limit 0 1 A Fan Inlet Total Temperature 0 1 C Fan Inlet Total Temperature 0 2 F Fan Inlet Total Temperature 0 3 5 Intruder Range 0 3 F Fan Inlet Total Temperature 1 0 A Selected Total Air Temperature 1 0 B Selected Total Air Temperature 1 3 A Inlet Temperature 131 132 0 1 A Fan Inlet Total Pressure 0 1 C Fan Inlet Total Pressure 0 2 D Fan Inlet Total Pressure 0 2 F Fan Inlet Total Pressure 0 3 3 Fan Inlet Total Pressure 0 3 5 Intruder Altitude 1 3 A Inlet Pressure 0 1 A Exhaust Gas Total Pressure 0 1 C Exhaust Gas Total Pressure 0 3 3 Exhaust Gas Total Pressure 0 3 5 Intruder Bearing 133 0 0 B Aut Vert Integ Limit 0 1 A Thrust Lever Angle 0 2 F Thrust Lever Angle 0 3 F Thrust Lever Angle 1 0 A Selected Throttle Lever Angle 1 0 B Selected Throttle Lever Angle 1 3 4 0 1 C Power Lever Angle 1 0 A Throttle Lever Angle 1 0 B Throttle Lever Angle ARINC SPECIFICATION 429, PART 1 - Page 57 ATTACHMENT 2 DATA STANDARDS Units Deg/180 Degrees Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/Sec Meters Meters Feet Feet Feet Feet Deg/180 PSIA PSIA PSIA Meters N.M. Deg C Deg C Deg C Deg C Deg C Deg C Deg C PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSIA Feet Deg/180 Deg/180 Deg/180 Deg Deg Deg/180 Deg Deg Range (Scale) ±180 0.000172 ±180 ±180 ±180 Sig Bits Pos Sense Resolution 14 0.01 11 8.38-E-8 o 14 0.01 14 0.01 14 0.01 Min Transit Interval (msec) 2 50 200 125 50 50 Max Transit Interval (msec) 2 100 1200 250 100 100 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 ±180 12 ±180 12 ±180 12 0.05 500 100 0.05 500 100 0.05 500 100 256 18 0.001 50 100 8192 13 1 200 6-49 0-8190 13 1 800 1200 32768 15 above sel alt 1.0 32768 15 above sel alt 1.0 32768 15 above sel alt 1.0 31.3 62.5 31.3 62.5 31.3 62.5 65536 16 UP 1 100 200 ±180 12 0.05 100 200 6-11 32 14 0.002 100 200 1.5 - 30.0 11 0.016 100 500 1.5 - 30.0 11 0.016 100 500 0-255 8 1 800 1200 6-50 16 17 128 11 128 11 128 11 128 11 -80 to 90 10 -80 to 90 10 128 11 1.2E-4 200 1200 0.06 100 200 0.06 100 200 0.06 100 200 500 0.06 100 200 0.125 100 500 0.125 100 500 0.0625 100 200 6-21 and ARINC 735 32 13 32 13 32 13 32 13 32 13 32 13 32 13 32 13 32 14 0.004 100 200 0.004 100 200 0.004 100 200 0.004 100 200 0.004 100 200 500 0.004 100 200 0.004 100 200 0.004 100 200 0.002 100 250 500 6-22 and ARINC 735 6-23 and ARINC 735 32,768 18 ±180 12 ±180 12 ±180 12 90 11 90 11 0.125 200 1200 0.05 100 250 0.05 25 50 0.05 25 50 0.088 31.3 100 0.088 31.3 100 ±180 12 ±128 11 ±128 11 0.05 100 200 0.088 500 1000 0.088 500 1000 ARINC SPECIFICATION 429, PART 1 - Page 58 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 1 3 A Throttle Lever Angle Units Deg/180 Range (Scale) ±180 Sig Bits Pos Sense Resolution 12 0.05 Min Transit Interval (msec) 2 25 Max Transit Interval (msec) 2 50 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 1 3 5 0 1 C Engine Vibration #1 0 2 9 Engine Fan Vibration in/sec % FS 8 12 128 7 0.002 100 200 1 100 200 1 3 6 0 0 B Vertical Figure of Merit 0 1 C Engine Vibration #2 Feet in/sec 32,768 18 8 12 0.125 200 1200 0.002 100 200 1 3 7 0 1 B Flap Angle Deg/180 ±180 12 0.05 100 200 6-11 0 2 A Flap Angle Deg/180 ±180 12 0.05 100 200 6-11 0 2 F Thrust Reverser Position Feedback % 128 12 0.03 100 200 0 3 F Thrust Reverser Position Feedback % 128 12 0.03 100 200 1 0 A Selected Thrust Reverser Position % -5 to 105 11 0.063 62.5 250 1 0 B Selected Thrust Reverser Position % -5 to 105 11 0.063 62.5 250 1 4 0 Flap Angle Deg 180 12 0.05 62.5 200 6-11 1 4 0 0 0 1 Flight Director - Roll Deg/180 ±180 12 0.05 50 100 6-27 0 0 B UTC Fine Seconds 1 20 0.953674µs 200 1200 0 2 5 Flight Director - Roll Deg/180 ±180 10 0.02 125 250 1 4 1 0 0 1 Flight Director - Pitch 0 0 B UTC Fine Fractions 0 2 5 Flight Director - Pitch Deg/180 Seconds Deg/180 ±180 12 0.9536743µs 10 ±180 10 0.05 50 0.931225ns 200 0.02 125 100 1200 250 1 4 2 0 0 2 Flight Director - Fast/Slow Knots 32 12 0.008 31.3 62.5 6-27 0 0 3 Flight Director - Fast/Slow Knots 32 12 0.008 31.3 62.5 0 2 5 Flight Director - Fast/Slow Knots 32 8 0.125 125 250 1 4 3 0 0 1 Flight Director - Yaw 0 4 1 HPA Command Word 2 4 1 HPA Response Word Deg/180 ±180 12 0.05 50 100 See ARINC 741 See ARINC 741 1 4 4 0 2 B Altitude Error Feet 0 4 1 ACU/BSU Control Word 3 4 1 ACU/BSU Response Word Above 8192 14 Cmd 1.0 25 50 Alt See ARINC 741 See ARINC 741 1 4 5 0 0 2 TACAN Control See Sec. 3.1.4 180 220 6-30 1 4 6 1 1 2 TACAN Control See Sec. 3.1.4 180 220 1 4 7 X X X TACAN Control Word 100 200 1 5 0 0 0 2 Universal Time Coordinate 6-12 0 0 B UTC Hr:Min:S ±23:59:59 17 1.0sec 200 1200 0 3 1 Universal Time Coordinate 100 200 6-12 0 5 6 Universal Time Coordinate 6-12 0 6 0 Universal Time Coordinate 6-12 151 002 027 055 056 060 Localizer Bearing (True) MLS Azimuth Deviation MLS AZ Deviation Localizer Bearing (True) Localizer Bearing (True) Deg/180 mV Deg/180 Deg/180 ±180 11 ± 2400 15 ±180 11 ±180 11 0.1 167 333 0.0732 0.1 167 333 0.1 167 333 1 5 2 0 2 7 MLS Elevation Deviation 0 3 8 Cabin Pressure mB 0 4 1 Open Loop Steering 0 5 5 MLS GP Deviation mV 0 A D Cabin Pressure mB 2048 16 ± 2400 15 2048 18 0.03125 62.5 125 0.0732 0.008 20 200 See ARINC 741 ARINC SPECIFICATION 429, PART 1 - Page 59 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 153 0 0 2 Maximum Altitude 0 4 1 Closed Loop Steering 0 5 5 MLS Selected Azimuth Units Feet Deg Range (Scale) 65536 0-359 Sig Bits Pos Sense Resolution 16 Above S.L. 1 9 1 Min Transit Interval (msec) 2 500 Max Transit Interval (msec) 2 1000 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 100 See ARINC 741 154 002 027 055 056 060 Runway Heading (True) MLS Auxiliary Data MLS Max Selectable GP Runway Heading (True) Runway Heading (True) N.M. Deg N.M. N.M. 512 16 ± 51.1 9 512 16 512 16 0.008 83.3 167 1 0.008 83.3 167 0.008 83.3 167 1 5 5 0 5 5 MLS Selected Glide Path Deg ± 51.1 9 0.01 162 0 1 2 ADF Bearing 0 2 5 ADF brg left/right 0 2 9 Crew Oxygen Pressure 0 5 5 MLS Basic Data Word 5 1 4 0 Density Altitude Deg/180 Deg/180 PSI N/A Feet ±180 12 ±180 12 4096 12 N/A N/A 1131072 16 0.05 31.3 62.5 0.05 125 250 1 100 200 N/A 2 250 500 SDI-01=left/SDI10=right 164 0 0 2 Minimum Descent Altitude (MDA) 0 0 3 Target Height 0 0 7 Radio Height 0 2 5 Radio Height 0 3 B Radio Height 0 5 5 MLS ABS GP Angle Feet Feet Feet Feet VDC Deg 8192 16 8192 16 8192 16 8192 12 32 11 ± 41 15 0.125 500 0.125 500 0.125 25 2.0 125 0.015 150 0.00125 1000 1000 50 250 250 6-13/6-27 Per ARINC 522A 1 6 5 0 0 B Vertical Velocity 0 5 5 MLS ABS Azimuth Angle Feet/Min Deg ± 32768 15 ± 82 16 1.0 200 0.00125 1200 1 6 6 0 0 7 RALT Check Point Dev 0 0 B North/South Velocity Feet Knots 512 10 ± 4096 15 0.5 * * 0.125 200 167 002 EPU Estimate Position Uncertainty (ANP) Actual Navigation Perf. N.M. 0-128 16 0.00195 171 002 Required Navigation Performance (RNP) 0A5 Vertical Alarm Limit (VAL) and SBAS System Identifier X X X Manu. Specific Status Word N.M. Meters 0-128 16 256 8 0.001953 1 200 See Attachment 10 173 0 1 0 Localizer Deviation 0 2 5 Localizer Deviation 0 2 9 Hydraulic Quantity 0 3 B Localizer Deviation 0 5 5 Localizer Deviation 0 B D Hydraulic Quantity 0 D 0 Hydraulic Oil Quantity DDM DDM % Dots DDM % US Pint 0.4 12 0.4 10 128 7 4 11 ± 0.4 12 128 7 128 9 0.0001 33.3 66.6 0.0004 125 250 1 100 200 0.002 150 250 0.0001 1 500 1000 0.25 6-6/6-27 SDI 1= A/SDI 2= B 174 0 0 3 Delayed Flap Approach Speed (DFA) Knots 0 0 B East/West Velocity Knots 0 1 0 Glideslope Deviation DDM 0 2 9 Hydraulic Pressure PSI 0 3 B Glideslope Deviation Dots 0 5 5 Glide Slope Deviation DDM 0 D 0 Hydraulic Oil Pressure PSI 512 11 ± 4096 15 0.8 12 4096 12 4 11 ± 0.8 12 4096 12 0.25 100 200 0.125 200 1200 0.0002 33.3 66.6 1 100 200 0.0002 150 250 0.0002 1.0 6-6/6-27 6-6/6-27 SDI 1= A/SDI 2= B 1 7 5 0 0 3 Economical Speed 0 2 9 EGT (APU) 0 3 3 Hydraulic Pump Case Drain Temp Knots Deg C Deg C 1024 14 2048 11 256 12 0.06 62.5 125 1 100 200 0.06 100 200 1 7 6 0 0 3 Economical Mach 0 2 9 RPM (APU) Mach % RPM 4096 13 256 9 0.5 62.5 125 0.5 100 200 ARINC SPECIFICATION 429, PART 1 - Page 60 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units 0 3 8 Left Static Pressure Uncorrected, mb mb 0 5 A Fuel Temperature - Set to Zero Deg. C 0 A D Static Pressure Left, Uncorrected, mb mb 114 Left Outer Tank Fuel Temp & Advisory Warning Deg Range (Scale) 2048 512 2048 ± 512 Sig Bits Pos Sense Resolution 18 0.008 11 0.25 18 0.008 Min Transit Interval (msec) 2 20 100 20 Max Transit Interval (msec) 2 200 200 200 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 11 0.25 177 0 0 3 Economical Flight Level 0 2 9 Oil Quantity (APU) 038 Right Static Pressure, Uncorrected, mb 0 5 5 Distance to LTP/FTP 0 5 A Fuel Temp. Left Wing Tank 0AD Static Pressure Right, Uncorrected, mb 114 Inner Tank 1 Fuel Temp & Advisory Warning Feet US Pint mb Nmiles Deg C mb Deg C 131072 17 128 9 2048 18 ± 512 16 512 11 2048 18 ± 512 11 1.0 31.3 62.5 0.25 100 200 0.008 20 200 0.007812 0.25 100 200 0.008 20 200 0.25 200 114 Inner Tank 2 Fuel Temp & Advisory Warning Deg C ± 512 11 0.25 201 0 5 A Fuel Temp. Right Wing Tank 114 Inner Tank 3 Fuel Temp & Advisory Warning 1 4 0 Mach Maximum Operation (Mmo) 1 4 2 Projected Future Latitude Deg C Deg C Mach Deg 512 11 ± 512 11 4.096 12 ± 180 20 0.25 100 200 0.25 0.001 62.5 125 0.000172 150 400 202 0 0 2 Energy Management (clean) 0 0 9 DME Distance 0 5 A Fuel Temperature - Set to Zero 114 Inner Tank 4 Fuel Temp & Advisory Warning 1 4 0 Mach Rate 1 4 2 Projected Future Latitude Fine N.M. N.M. Deg C Deg C M/minute Deg 512 15 512 16 512 11 ± 512 11 4.096 12 0.000172 11 0.016 100 200 0.008 83.3 167 0.25 100 200 0.025 0.001 62.5 125 2.E-32 150 400 6-7/6-27 203 0 0 2 Energy Management Speed Brakes 0 0 6 Altitude (1013.25 mb) 0 1 8 Altitude 0 3 5 Own A/C Altitude 0 3 8 Altitude (1013.25 mb) 0 5 A Fuel Tank #6 Temperature 1 0 A Ambient Static Pressure 1 0 B Ambient Static Pressure 114 Trim Tank Fuel Temp & Advisory Warning 1 4 0 Altitude N.M. Feet Feet Feet Feet Deg C PSIA PSIA Deg C Feet 512 15 131072 17 131072 17 131072 17 131072 17 512 11 1.5 to 20.0 11 1.5 to 20.0 11 ± 512 11 131072 17 0.016 1.0 1.0 1.0 1.0 0.25 0.016 0.016 0.25 1 100 200 31.3 62.5 20 40 20 500 31.3 62.5 100 200 500 1000 500 1000 31.25 62.5 6-24/6-27 204 0 0 2 Utility Airspeed 0 0 6 Baro Corrected Altitude #1 0 3 8 Baro Corrected Altitude #1 0 5 6 Baro Altitude 0 5 A Fuel Tank #7 Temperature 0 6 0 Baro Altitude 114 Right Outer Tank Fuel Temp & Advisory Warning 1 4 0 Baro Corrected Altitude Knots Feet Feet Knots Deg C Knots Deg C Feet 512 11 131072 17 131072 17 512 11 512 11 512 11 ± 512 11 131072 17 0.25 500 1000 50 1.0 31.3 62.5 1.0 31.3 62.5 0.25 500 1000 50 0.25 100 200 0.25 500 1000 50 0.25 1 31.25 62.5 2 0 5 0 0 6 Mach Mach 4.096 16 0.0000625 62.5 125 6-27 0 1 A Mach Mach 4.096 16 0.0000625 62.5 125 6-27 0 3 8 Mach Mach 4.096 16 0.0000625 62.5 125 6-27 0 5 A Fuel Tank #8 Temperature Deg C 512 11 0.25 100 200 1 0 A Mach Number Mach 1 11 0.002 100 500 1 0 B Mach Number Mach 1 11 0.002 100 500 1 4 0 Mach Mach 4.096 16 0.00000625 62.5 125 TABLE 2 - BNR DATA Eqpt Label ID (Hex) Parameter Name 206 0 0 6 Computed Airspeed 0 1 8 Altitude (Variable Resolution) 0 3 8 Computed Airspeed 0 C C Taxi Speed 1 4 0 Computed Airspeed (CAS) 207 0 0 6 Maximum Allowable Airspeed 0 0 A Maximum Allowable Airspeed 0 3 8 Maximum Allowable Airspeed 140 Airspeed Maximum Operating (VMO) 2 1 0 0 0 6 True Airspeed 0 3 8 True Airspeed 1 4 0 True Airspeed 211 0 0 2 Total Air Temperature 0 0 3 Total Air Temperature 0 0 6 Total Air Temperature 0 1 A Total Air Temperature 0 3 8 Total Air Temperature 0 A D Total Air Temperature Indicated 1 0 A Total Fan Inlet Temperature 1 0 B Total Fan Inlet Temperature 1 4 0 Total Air Temperature (TAT) 1 4 2 Projected Future Longitude 212 0 0 4 Altitude Rate 0 0 5 Altitude Rate 0 0 6 Altitude Rate 0 3 8 Altitude Rate 0 3 B Altitude Rate 1 4 0 Altitude Rate 1 4 2 Projected Future Longitude Fine 213 0 0 2 Static Air Temperature 0 0 6 Static Air Temperature 0 3 8 Static Air Temperature 0 8 D Fuel Used 1 4 0 Static Air Temperature (SAT) 1 4 2 Vertical Time Interval ARINC SPECIFICATION 429, PART 1 - Page 61 ATTACHMENT 2 DATA STANDARDS Units Knots Feet Knots Knots Knots Knots Knots Knots Knots Knots Knots Knots Deg C Deg C Deg C Deg C Deg C Deg C Deg C Deg C Deg C Deg Ft/Min Ft/Min Ft/Min Ft/Min Ft/Min Ft/Min Deg Deg C Deg C Deg C Lbs. Deg C Minute Range (Scale) 1024 Variable 1024 512 1024 Sig Bits Pos Sense Resolution 14 0.0625 15 Variable 14 0.0625 11 0.25 14 0.0625 Min Transit Interval (msec) 2 62.5 31.3 62.5 50 62.5 Max Transit Interval (msec) 2 125 62.5 125 100 125 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 6-27 6-20 1024 12 512 11 1024 12 1024 12 0.25 62.5 125 0.25 100 200 0.25 62.5 125 0.25 62.56 125 2048 15 0.0625 62.5 125 6-27 2048 15 0.0625 62.5 125 2048 15 0.0625 62.5 125 512 11 0.25 250 500 6-27 512 11 0.25 250 500 512 11 0.25 250 500 512 11 0.25 250 500 512 11 0.25 250 500 512 12 0.125 250 500 -80 to 90 10 0.125 500 1000 -80 to 90 10 0.125 500 1000 512 12 0.125 250 500 ± 180 20 0.000172 250 500 32768 11 16 31.3 62.5 6-27 32768 11 16 31.3 62.5 32768 11 16 31.3 62.5 32768 11 16 31.3 62.5 32768 11 16 150 250 32768 11 16 31.25 62.5 0.000172 11 2E-32 Cir 150 400 512 11 0.25 250 500 6-27 512 11 0.25 250 500 512 11 0.25 250 500 262144 18 1 75 125 512 11 0.25 250 500 265 min 10 0.25 min 500 2000 215 0 0 6 Impacted Pressure 0 1 A Impact Pressure 0 2 9 N1 Actual (EEC) 0 2 9 EPR Actual (EEC) 0 3 8 Impacted Pressure, Uncorrected, mb 0 A D Impacted Pressure, Uncorrected, mb 1 4 0 Impact Pressure Subsonic mb mb % RPM mb mb mb 512 14 512 14 256 14 4 12 512 14 512 16 512 14 0.03125 62.5 125 0.03125 62.5 125 0.015 50 100 0.001 50 100 0.03125 62.5 125 0.008 20 40 0.03125 62.5 125 217 002 006 029 029 038 140 Geometric Vertical Rate Static Pressure, Corrected (In.Hg.) N1 Limit (EEC) EPR Limit (EEC) Static Pressure, Average, Corrected (In. Hg.) Static Pressure Corrected (In. Hg.) Ft/Min in. Hg % RPM in. Hg in. Hg 2 2 0 0 0 6 Baro Corrected Altitude #2 Feet 0 3 8 Baro Corrected Altitude #2 Feet 1 4 0 Baro Corrected Altitude #2 Feet 20000 11 64 16 256 14 4 12 64 16 64 16 131072 17 131072 17 131072 17 16 0.001 62.5 125 0.015 100 200 0.001 100 200 0.001 62.5 125 0.001 62.5 125 1.0 31.3 62.5 1.0 31.3 62.5 1 31.25 62.5 ARINC SPECIFICATION 429, PART 1 - Page 62 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units 221 0 0 6 Indicated Angle of Attack (Avg) 0 3 8 Indicated Angle of Attack (Average) 0 A D Indicated Angle of Attack 1 2 C Indicated Angle of Attack (Avg.) 1 4 0 Angle of Attack Indicated Average Deg/180 Deg/180 Deg/180 Deg/180 Deg Range (Scale) ±180 ±180 ±180 ±180 ±180 Sig Bits Pos Sense Resolution 12 0.05 12 0.05 14 0.01 12 0.05 12 0.05 Min Transit Interval (msec) 2 31.3 31.3 31.3 31.3 31.25 Max Transit Interval (msec) 2 62.5 62.5 200 62.5 62.5 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 222 0 0 6 Indicated Angle of Attack (#1 Left) 0 1 1 VOR Omnibearing 1 1 2 TACAN Bearing 1 1 5 Bearing 1 2 C Indicated Angle of Attack (#1 Left) 1 4 0 Angle of Attack, Indicated #1 Left Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg ±180 12 ±180 12 ±180 12 ±180 11 ±180 12 ±180 12 0.05 31.3 62.5 0.05 50 100 0.05 180 220 0.1 50 50 0.05 31.3 62.5 0.05 31.5 62.5 2 2 3 0 0 6 Indicated Angle of Attack (#1 Right) Deg/180 1 2 C Indicated Angle of Attack (#1 Right) Deg/180 1 4 0 Angle of Attack, Indicated #1 Right Deg ±180 12 ±180 12 ±180 12 0.05 31.3 62.5 0.05 31.3 62.5 0.05 31.5 62.5 2 2 4 0 0 6 Indicated Angle of Attack (#2 Left) 1 2 C Indicated Angle of Attack (#2 Left) 1 4 0 Angle of Attack, Indicated #2 Left Deg/180 Deg/180 Deg ±180 12 ±180 12 ±180 12 0.05 31.3 62.5 0.05 31.3 62.5 0.05 31.5 62.5 225 0 0 2 Minimum Maneuvering Airspeed Knots 0 0 6 Indicated Angle of Attack (#2 Right) Deg/180 0 2 B Compensated Altitude Rate Ft/Min 056 060 12C 140 Minimum Maneuvering Air Speed Minimum Maneuvering Air Speed Indicated Angle of Attack (#2 Right) Angle of Attack, Indicated #2 Right Knots Knots Deg/180 Deg 512 ±180 32768 512 512 ±180 ±180 11 0.25 12 0.05 11 Increas -ing alt 16.0 11 0.25 11 0.25 12 0.05 12 0.05 500 1000 50 31.3 62.5 31.3 62.5 500 1000 500 1000 31.3 62.5 31.5 62.5 2 2 7 0 3 D AVM Command 0 7 E BITE Command Word 6-28 See ARINC 604 2 3 1 0 A D Total Air Temperature Deg C 512 12 0.125 20 200 2 3 3 0 0 2 ACMS Information 6-31 0 5 6 ACMS Information 0 6 0 ACMS Information 2 3 4 0 0 2 ACMS Information 6-31 0 5 6 ACMS Information 0 6 0 ACMS Information 2 3 5 0 0 2 ACMS Information 6-31 0 5 6 ACMS Information 0 6 0 ACMS Information 2 3 6 0 0 2 ACMS Information 6-31 0 5 6 ACMS Information 0 6 0 ACMS Information 237 0 0 2 ACMS Information 0 0 B Horizontal Uncertainty Level 0 5 6 ACMS Information 0 6 0 ACMS Information N.M. 16 17 0.000122 1200 See ARINC 743A 241 0 0 2 Min. Airspeed for Flap Extension 0 0 6 Corrected Angle of Attack 0 3 8 Corrected Angle of Attack 0 4 D FQIS System Data 0 5 6 Min. Airspeed for Flap Extension 0 6 0 Min. Airspeed for Flap Extension 1 4 0 Angle of Attack, Corrected Knots Deg/180 Deg/180 Knots Knots Deg 512 11 ±180 12 ±180 12 512 11 512 11 ±180 12 0.25 500 1000 50 0.05 31.3 62.5 0.05 31.3 62.5 500 1024 6-35 0.25 500 1000 0.25 500 1000 0.05 31.5 62.5 ARINC SPECIFICATION 429, PART 1 - Page 63 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 242 0 0 6 Total Pressure 0 1 A Total Pressure 0 3 8 Total Pressure 0 3 B Speed Deviation 0 A D Total Pressure, Uncorrected, mb 1 4 0 Total Pressure Units mb mb mb Dots mb mb Range (Scale) 2048 2048 2048 4 2048 2048 Sig Bits Pos Sense Resolution 16 0.03125 16 0.03125 16 0.03125 11 0.002 18 0.008 16 0.03125 Min Transit Interval (msec) 2 62.5 62.5 62.5 150 20 62.5 Max Transit Interval (msec) 2 125 125 125 250 200 125 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 2 4 3 X X X Simulator to Avcs Control Word 33 100 See ARINC Rpt 610 244 0 1 C Fuel Flow (Engine Direct) 0 3 3 Fuel Flow (Wf) 0 3 B Mach Error 0 8 D Fuel Flow Rate 1 0 A Fuel Mass Flow 1 0 B Fuel Mass Flow 1 4 0 Angle of Attack, Normalized Lbs/hr pph Mach PPH MSEC MSEC Ratio 32768 8 32768 16 0.064 11 32768 16 256 15 256 15 2 11 128.0 100 200 0.5 150 250 0.00003 150 250 0.5 75 125 0.008 31.3 100 0.008 31.3 100 0.001 62.5 125 245 0 0 2 Minimum Airspeed 0 0 3 Minimum Airspeed 0 0 A Minimum Airspeed 0 2 9 N3 (Engine) 0 3 8 Avg. Static Pres. mb uncorrected 0 3 B EPR Error 0AD Average Static Pressure mb Uncorrected 0 5 6 Minimum Airspeed 0 6 0 Minimum Airspeed 1 4 0 Static Pressure, Uncorrected Knots Knots Knots % RPM mb mb Knots Knots mb 256 12 256 12 512 13 256 14 2048 16 4 12 2048 16 256 12 256 12 2048 16 0.0625 62.5 125 0.0625 62.5 125 0.0625 62.5 125 0.015 50 100 0.03125 62.5 125 0.001 150 250 0.03125 62.5 125 0.0625 62.5 125 0.0625 62.5 125 0.03125 62.5 125 246 247 002 006 01C 029 038 03B 002 00B 01F 02C 03B 04D 056 05A 060 0EB 114 140 Control Maximum Speed (VCMAX) Average Static Pressure N1 (Engine Direct) N1 (Engine Direct) Avg Static Pres mb Corrected Angle of Attack Error Control Min. Speed (VCMIN) Horizontal Figure of Merit Total Fuel Total Fuel Speed Error Total Fuel Control Minimum Speed (Vcmin) Total Fuel Control Minimum Speed (Vcmin) Fuel to Remain Fuel on Board Airspeed Minimum Vmc Knots mb RPM % RPM mb Deg/180 Knots N.M. Lbs. Lbs. Knots Lbs. Knots Lbs. Knots Lbs. Lbs. Knots 512 11 2048 16 4096 12 256 14 2048 16 ±180 14 512 11 16 18 655360 14 655360 14 256 12 655360 14 512 11 655360 14 512 11 1638400 14 655320 13 512 11 0.25 50 100 50 0.03 62.5 125 1.0 100 200 0.015 50 100 0.03125 62.5 125 0.01 150 250 0.25 50 100 50 6.1 E-5 200 1200 40 500 1000 40 500 1000 0.06 150 250 40 500 1000 0.25 50 100 40 100 200 0.25 50 100 100 100 125 40 0.25 62.5 125 250 0 0 2 Continuous N1 Limit 0 2 B Maximum Continuous EPR Limit 0 2 C Preselected Fuel Quantity 0 5 A Preselected Fuel Quantity 0 3 8 Indicated Side Slip Angle 0 A D Indicated Side Slip Angle or AOS 1 1 4 Preselected Fuel Quantity % RPM Lbs. Lbs. Deg/180 Deg/180 Lbs. 256 14 4 12 655360 14 655360 14 ±180 12 ±180 14 655320 13 0.015 50 200 200 0.001 100 200 40 100 400 40 100 200 0.05 31.3 62.5 0.01 31.3 200 40 2 5 1 0 0 1 Distance to Go N.M. 4096 15 0.125 100 200 0 0 2 Distance to Go N.M. 4096 15 0.125 100 200 0 0 6 Baro Corrected Altitude #3 Feet 131072 17 1.0 31.3 62.5 0 1 A Flight Leg Counter 75 175 6-19 0 3 8 Baro Corrected Altitude #3 Feet 131072 17 1.0 31.3 62.5 2 5 2 0 0 1 Time to Go 0 0 2 Time to Go Min. 512 9 1.0 100 200 Min. 512 9 1.0 100 200 ARINC SPECIFICATION 429, PART 1 - Page 64 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 0 0 6 Baro Corrected Altitude #4 0 1 A EPR Idle 0 2 F EPR Idle Reference 0 3 8 Baro Corrected Altitude #4 0 3 F EPR Idle Reference 0 E B Time Until Jettison Complete Units Feet Feet Minutes Range (Scale) 131072 4 4 131072 4 64 Sig Bits Pos Sense Resolution 17 1.0 12 0.001 12 0.001 17 1.0 12 0.001 6 1 Min Transit Interval (msec) 2 31.3 100 100 31.3 100 500 Max Transit Interval (msec) 2 62.5 200 200 62.5 200 1000 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 2 5 3 0 0 2 Go-Around N1 Limit 0 1 E Go-Around EPR Limit 0 3 8 Corrected Side Slip Angle % RPM Deg/180 256 14 4 12 ±180 12 0.015 50 200 200 0.001 100 200 0.05 31.3 62.5 254 0 0 2 Cruise N1 Limit 0 1 E Cruise EPR Limit 0 4 D Actual Fuel Quan (test) 1 3 A N1 Cruise 1 4 0 Altitude Rate % RPM Lbs % N1 Nom Ft/Min 256 14 4 12 262144 15 256 14 131072 13 0.015 50 200 200 0.001 100 200 8 500 1000 0.015 100 200 16 31.25 62.5 255 0 0 2 Climb N1 Limit 0 1 E Climb EPR Limit 0 2 F Maximum Climb EPR Rating 0 3 F Maximum Climb EPR Rating 0 4 D Fuel Quantity (gal) 0 8 E Spoiler Position 1 3 A N1 Climb 1 4 0 Impact Pressure % RPM N/A N/A Gallons Deg/180 % N1 Nom mb 256 14 4 12 4 12 4 12 32768 15 +180 11 256 14 4096 17 0.015 50 0.001 100 0.001 100 0.001 100 1.0 500 0.1 50 0.015 100 0.03125 62.5 200 200 200 200 200 1000 100 200 125 256 0 0 2 Time For Climb 0 0 A V Stick Shaker 0 2 C Fuel Quantity (Tanks) #1 0 5 6 Time for Climb 0 5 A Fuel Quantity-Left Outer Cell 0 6 0 Time for Climb 1 1 4 Left Outer Tank Fuel Quantity 1 4 0 Equivalent Airspeed Min. Knots Lbs. Min. Lbs. Min. Lbs. Knots 512 9 512 11 131072 15 512 9 131072 15 512 9 131072 15 1024 14 1 100 200 0.25 100 200 4 500 1000 1 100 200 4 100 200 1 100 200 4 0.0625 62.5 125 Zero for A-321 2 5 7 0 0 2 Time For Descent Min. 0 2 C Fuel Quantity (Tanks) #2 Lbs. 0 5 6 Time for Descent Min. 0 5 A Fuel Quantity Left W/T Tank Lbs. 0 6 0 Time for Descent Min. 1 1 4 Fuel Quantity (Tanks) #2 Lbs. 1 4 0 Total Pressure (High Range) mb 512 9 131072 15 512 9 131072 15 512 9 131072 15 4096 17 1 100 4 500 1 100 4 100 1 100 4 500 0.03125 62.5 200 1000 200 200 200 1000 125 260 0 2 C Fuel Quantity (Tanks) #3 0 5 A Fuel Quantity Center Tank 0 3 3 T5 1 0 A LP Turbine Discharge Temp 1 0 B LP Turbine Discharge Temperature 1 1 4 Collector Cell 1 and 2 Fuel Quantity Lbs. Lbs. Deg C Deg C Deg C Lbs. 131072 15 131072 15 1024 12 -55 to 850 11 -55 to 850 11 131072 15 4 500 1000 4 100 200 0.25 150 250 0.50 100 500 0.50 100 500 4 See Note [5] 2 6 1 0 2 C Fuel Quantity (Tanks) #4 Lbs. 131072 15 4 500 1000 0 3 3 P49 PSIA 128 14 0.008 150 250 0 5 A Fuel Qty Right I/C or W/T Tank Lbs. 131072 15 4 100 200 1 0 A LP Turbine Inlet Pressure PSIA 2-120 11 0.125 100 500 1 0 B LP Turbine Inlet Pressure PSIA 2-120 11 0.125 100 500 1 1 4 Fuel on Board at Engine Start Lbs. 131072 15 4 1 4 4 Range Ring Radius NM 512 15 1/64 800 1200 6-52 2 6 2 0 0 2 Documentary Data 500 1000 6-14 0 0 A Predicitive Airspeed Variation Knots 256 10 0.25 100 200 0 1 C LP Compressor Exist Pres. (PT3) PSIA 64 13 0.008 100 200 0 2 C Fuel Quantity (Tanks) #5 Lbs. 131072 15 4 500 1000 0 3 3 LP Compressor Exist Pressure PSIA 64 14 0.004 150 250 0 4 D T/U Cap-L Tank 1-4 PF 655.35 16 0.01 TBD TBD ARINC SPECIFICATION 429, PART 1 - Page 65 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 0 5 A Fuel Quantity-Right Outer Cell 1 0 A HP Compressor Inlet Total Pres. 1 0 B HP Compressor Inlet Total Pres. 1 1 4 Center Tank Fuel Quantity 1 4 4 Display Range Units Lbs. PSIA PSIA Lbs. NM Range (Scale) 131072 2-50 2-50 131072 512 Sig Bits Pos Sense Resolution 15 4 11 0.032 11 0.032 15 4 14 1/32 Min Transit Interval (msec) 2 100 100 100 800 Max Transit Interval (msec) 2 200 500 500 1200 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 6-51 263 0 0 2 Min. Airspeed for Flap Retraction 0 0 A Min. Airspeed for Flap Retraction 0 1 C LP Compressor Exit Temperature 0 2 C Fuel Quantity (Tanks) #6 0 3 3 LP Compressor Exit Temperature 0 4 D T/U Cap-L Tank 5-8 0 5 6 Min. Airspeed for Flap Retraction 0 6 0 Min. Airspeed for Flap Retraction 10A Selected Compressor Inlet Temperature (Total) 10B Selected Compressor Inlet Temp (Total) 1 1 4 Collector Cell 3 and 4 Fuel Quantity Knots Knots Lbs Deg C PF Knots Knots Deg C Deg C Lbs. 512 11 512 11 256 12 131072 15 256 12 655.35 16 512 11 512 11 -55 to 160 11 -55 to 160 11 131072 15 0.25 500 1000 50 0.25 100 200 0.06 100 200 4 500 1000 0.063 150 250 0.01 TBD TBD 0.25 500 1000 0.25 500 1000 0.125 100 500 0.125 100 500 4 264 0 0 2 Time To Touchdown 0 0 A Min. Airspeed for Slats Retraction 0 1 C HP Compressor Exit Pressure 0 2 C Fuel Quantity (Tanks) #7 0 2 F Burner Pressure 0 4 D T/U Cap-L Tank 9-12 0 3 3 HP Compressor Exit Pressure 0 3 F Burner Pressure 0 5 6 Time to Touchdown 0 6 0 Time to Touchdown 1 0 A Selected Compressor Dischg Pres. 1 0 B Selected Compressor Dischg Pres. 1 3 A Burner Pressure Min. Knots Lbs. PSIA PF PSIA PSIA Min. Min. PSIA PSIA PSIA 2048 11 512 11 512 14 131072 15 512 14 655.35 16 512 14 512 14 2048 11 2048 11 5-600 11 5-600 11 512 14 1 0.25 0.03 4 0.03 0.01 0.03 0.03 1 1 1.00 1.00 0.031 100 200 145 100 200 100 200 500 1000 100 200 TBD TBD 150 250 100 200 100 200 100 200 62.5 250 62.5 250 100 200 265 0 0 2 Min. Buffet Airspeed 0 0 4 Integrated Vertical Acceleration 0 0 A Maneuvering Airspeed 0 1 C HP Compressor Exit Temp (TT4.5) 0 2 C Fuel Quantity (Tanks) #8 0 3 3 HP Compressor Exit Temperature 0 3 8 Integrated Vertical Acceleration 0 4 D T/U Cap-L Tank 13-14 0 5 6 Min. Buffet Airspeed 0 6 0 Min. Buffet Airspeed 1 0 A Selected Compressor Dischg Temp 1 0 B Selected Compressor Dischg Temp 1 1 4 Inner Tank 3 Fuel Quantity Knots Ft/Sec Knots Lbs. Deg C Ft/Sec PF Knots Knots Deg C Deg C Lbs. 512 11 0.25 50 100 50 ±256 20 UP 0.000244 20 512 11 0.25 100 200 1024 12 0.25 100 200 131072 15 4 500 1000 1024 12 0.25 150 250 ±256 20 UP 0.000244 20 655.35 16 0.01 TBD TBD 512 11 0.25 50 100 512 11 0.25 50 100 -55 to 650 11 0.50 100 500 -55 to 650 11 0.50 100 500 131072 15 4 2 6 6 0 4 D T/U Cap-C Tank 1-4 PF 1 1 4 Inner Tank 2 Fuel Quantity Lbs. 655.35 16 131072 15 0.01 TBD TBD 4 267 0 0 2 Maximum Maneuver Airspeed 0 0 A Predictive Max. Maneuver Speed 0 2 B Throttle Position Command 0 4 D T/U Cap-C Tank 5-8 0 3 3 Spare T/C 0 5 6 Max. Maneuver Airspeed 0 6 0 Max. Maneuver Airspeed 1 0 A HP Compressor Inlet Temp. (total) 1 0 B HP Compressor Inlet Temperature 1 1 4 Inner Tank 4 Fuel Quantity Knots Knots Deg/180 PF Deg C Knots Knots Deg C Deg C Lbs. 512 11 512 11 ±180 12 655.35 16 256 12 512 11 512 11 -55 to 160 11 -55 to 160 11 131072 15 0.25 500 1000 50 0.25 100 200 0.05 50 100 0.01 TBD TBD 0.063 150 250 0.25 500 1000 0.25 500 1000 0.125 500 1000 0.125 500 1000 4 2 7 0 0 4 D T/U Cap-C Tank 9 PF 1 1 5 Stored TACAN Control Word 655.35 16 0.01 TBD TBD 25 50 See ARINC 429P2 ARINC SPECIFICATION 429, PART 1 - Page 66 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name Units Range (Scale) Sig Bits Pos Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 2 7 1 0 4 D T/U Cap-A Tank 1-4 PF 655.35 16 0.01 TBD TBD 2 7 2 0 4 D T/U Cap Tank 5-8 PF 655.35 16 0.01 TBD TBD 2 7 3 0 4 D T/U Cap-A Tank 9-11 PF 655.35 16 0.01 TBD TBD 2 7 4 0 4 D T/U Cap-R Tank 1-4 PF 655.35 16 0.01 TBD TBD 2 7 5 0 4 D T/U Cap-R Tank 5-8 PF 655.35 16 0.01 TBD TBD 2 7 6 0 0 1 FCC to Simulator Control Word 0 0 2 FMC to Simulator Control Word 0 0 3 TCC to Simulator Control Word 0 4 D T/U Cap-R Tank 9-12 PF 655.35 16 50 150 33 100 50 150 0.01 TBD TBD Used only in simulator Used only in simulator Used only in simulator 2 7 7 0 4 D T/U Cap-R Tank 13-14 PF 655.35 16 0.01 TBD TBD 3 0 0 1 0 A ECU Internal Temperature 1 0 B ECU Internal Temperature Deg C Deg C -55 to 125 11 -55 to 125 11 0.125 500 1000 0.125 500 1000 3 0 1 1 0 A Demanded Fuel Metering Valve Pos % 1 0 B Demanded Fuel Metering Valve Pos % 100 11 100 11 0.063 62.5 250 0.063 62.5 250 3 0 2 1 0 A Demanded Variable Stator Vane Pos % 1 0 B Demanded Variable Stator Vane Pos % 100 11 100 11 0.063 100 500 0.063 100 500 3 0 3 1 0 A Demanded Variable Bleed Valve Pos % 1 0 B Demanded Variable Bleed Valve Pos % 100 11 100 11 0.063 100 500 0.063 100 500 3 0 4 1 0 A Demanded HPT Clearance Valve Pos % 1 0 B Demanded HPT Clearance Valve Pos % 100 11 100 11 0.063 250 1000 0.063 250 1000 3 0 5 1 0 A Demanded LPT Clearance Valve Pos % 1 0 B Demanded LPT Clearance Valve Pos % 100 11 100 11 0.063 250 1000 0.063 250 1000 3 1 0 0 0 2 Present Position - Latitude Deg/180 0-180N/ 0-180S 20 0.000172 100 200 6-27 0 0 4 Present Position - Latitude Deg/180 0-180N/ 0-180S 20 0.000172 100 200 0 2 9 Aileron Position Deg/180 ±180 11 0.088 50 100 0 3 8 Present Position - Latitude Deg/180 0-180N/ 0-180S 20 0.000172 100 200 0 4 D Comp Cap-Tank PF 327.67 15 0.01 TBD TBD 0 5 6 Present Position Latitude Deg/180 0-180N/ 0-180S 20 0.000172 100 200 0 6 0 Present Position Latitude Deg/180 0-180N/ 0-180S 20 0.000172 100 200 1 1 4 Right Outer Tank Fuel Quantity Lbs. 131068 15 4 3 1 1 0 0 2 Present Position - Longitude 0 0 4 Present Position - Longitude 0 2 9 Aileron Trim 0 3 8 Present Position - Longitude 0 3 B Control Wheel Roll Force Deg/180 Deg/180 Deg/180 Deg/180 Lbs. 0-180E/ 0-180W 20 0-180E/ 0-180W 20 ±180 11 0-180E/ 0-180W 20 64 10 0.000172 100 200 0.000172 100 200 0.088 50 100 0.000172 100 200 0.0625 150 250 ARINC SPECIFICATION 429, PART 1 - Page 67 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 0 5 6 Present Position Longitude 0 6 0 Present Position Longitude 1 1 4 Trim Tank Fuel Quantity Units Deg/180 Deg/180 Lbs. Range (Scale) 0-180E/ 0-180W 0-180E/ 0-180W 131072 Sig Bits Pos Sense Resolution Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 20 0.000172 100 200 20 0.000172 100 200 15 4 312 0 0 2 Ground Speed 0 0 4 Ground Speed 0 0 5 Ground Speed 0 2 9 Rudder Position 0 3 8 Ground Speed 0 5 6 Ground Speed 0 5 A Fuel Quantity ACT 1 0 6 0 Ground Speed 114 Additional Center Tank (Act 1) Fuel Quantity Knots Knots Knots Deg/180 Knots Knots Lbs. Knots Lbs. 4096 15 4096 15 4096 15 ±180 11 4096 15 4096 15 131072 15 4096 15 131072 15 0.125 25 50 0.125 25 50 0.125 25 50 0.088 50 100 0.125 25 50 0.125 25 50 4 100 200 0.125 25 50 4 313 0 0 2 Track Angle - True 0 0 4 Track Angle - True 0 2 5 Track Angle - True 0 2 9 Rudder Trim 0 3 8 Track Angle - True 0 5 6 Track Angle - True 0 5 A Fuel Quantity ACT 2 0 6 0 Track Angle - True 114 Additional Center Tank (Act 2) Fuel Quantity Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Lbs. Deg/180 Lbs. ±180 12 ±180 15 ±180 10 ±180 11 ±180 15 ±180 12 131072 15 ±180 12 131072 15 0.05 25 50 0.0055 25 50 0.2 125 250 0.088 50 100 0.0055 25 50 0.05 25 50 4 100 200 0.05 25 50 4 3 1 4 0 0 2 Stabilizer Pos Indication (B747-400) Deg/180 0 0 4 True Heading 0 2 5 True Heading 0 2 9 Elevator Position 0 3 8 True Heading 0 3 B Control Wheel Pitch Force 114 Rear Center tank (RCT) Fuel Quantity Deg/180 Deg/180 Deg/180 Deg/180 Lbs. Lbs. ±180 12 TE Down 0.05 25 50 50 ±180 15 0.0055 25 50 ±180 10 0.2 125 250 ±180 11 0.088 50 100 ±180 15 0.0055 25 50 64 10 0.0625 150 250 131072 15 4 3 1 5 0 0 1 Stabilizer Position 0 0 2 Wind Speed 0 0 4 Wind Speed 0 0 5 Wind Speed 0 2 9 Stabilizer Position 0 3 8 Wind Speed 0 5 6 Wind Speed 0 6 0 Wind Speed 0 A 1 Stabilizer Position Deg/180 Knots Knots Knots Deg/180 Knots Knots Knots Deg/180 ±180 12 TE Down 0.05 25 50 256 8 1.0 50 100 256 8 1.0 50 100 256 8 1.0 50 100 ±180 11 TE Down 0.088 50 100 256 8 1.0 50 100 256 8 1.0 50 100 256 8 1.0 50 100 ±180 12 TE Down 0.05 25 50 3 1 6 0 0 2 Wind Direction (True) 0 0 4 Wind Angle 0 2 9 Oil Temperature (Engine) 0 3 8 Wind Angle 0 5 6 Wind Direction (True) Deg/180 Deg/180 Deg C Deg/180 Deg/180 CW +180 12 from 0.05 25 50 50 north ±180 8 0.7 50 100 2048 12 0.5 100 200 ±180 8 0.7 50 100 CW +180 12 from 0.05 25 50 50 north ARINC SPECIFICATION 429, PART 1 - Page 68 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 0 6 0 Wind Direction (True) 1 0 A Engine Oil Temperature 1 0 B Engine Oil Temperature 0 D 0 Engine Oil Temperature Units Deg/180 Deg C Deg C Deg C Range (Scale) +180 -55 to 170 -55 to 170 2048 Sig Bits Pos Sense Resolution CW 12 from 0.05 north 11 1.00 11 1.00 12 0.5 Min Transit Interval (msec) 2 25 250 250 Max Transit Interval (msec) 2 50 1000 1000 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 50 SDI 1=L SDI 2 =R 317 0 0 2 Track Angle - Magnetic 0 0 4 Track Angle - Magnetic 0 0 5 Track Angle - Magnetic 0 2 5 Track Angle - Magnetic 0 2 9 Oil Pressure (Engine) 0 3 8 Track Angle - Magnetic 0 5 6 Track Angle Magnetic 0 6 0 Track Angle Magnetic 0 D 0 Engine Oil Pressure Deg/180 Deg/180 Deg/180 Deg/180 PSI Deg/180 Deg/180 Deg/180 PSI ±180 12 ±180 15 ±180 15 ±180 10 4096 12 ±180 15 ±180 12 ±180 12 4096 14 0.05 25 50 0.0055 25 50 0.0055 25 50 0.2 125 250 1 50 100 0.0055 25 50 0.05 25 50 0.05 25 50 0.25 SDI 1 = L/SDI 2 = R 320 0 0 4 Magnetic Heading 0 0 5 Magnetic Heading 0 2 5 Magnetic Heading 0 3 5 Own A/C Magnetic Heading 0 3 8 Magnetic Heading 0 4 D Density-Tank Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Lb/Gal ±180 15 ±180 15 ±180 10 ±180 15 ±180 15 8.191 13 0.0055 0.0055 0.2 0.0055 0.0055 0.001 25 25 125 25 25 TBD 50 50 250 500 50 TBD See ARINC 735 321 0 0 2 Drift Angle 0 0 4 Drift Angle 0 0 5 Drift Angle 0 3 8 Drift Angle 0 5 6 Drift Angle 0 6 0 Drift Angle 1 0 A Exhaust Gas Temperature (Total) 1 0 B Exhaust Gas Temperature (Total) Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg C Deg C ±180 12 ±180 11 ±180 11 ±180 12 ±180 12 ±180 12 -55 to 1100 11 -55 to 1100 11 0.05 25 50 0.09 25 50 0.09 25 50 0.05 25 50 0.05 25 50 0.05 25 50 1.00 500 1000 1.00 500 1000 322 0 0 2 Flight Path Angle 0 0 4 Flight Path Angle 0 0 5 Flight Path Angle 0 3 8 Flight Path Angle 0 5 6 Flight Path Angle 0 6 0 Flight Path Angle 1 0 A Total Compressor Discharge Temp 1 0 B Total Compressor Discharge Temp Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg C Deg C +180 12 ±180 12 ±180 12 ±180 12 +180 12 +180 12 -55 to 650 11 -55 to 650 11 0.05 25 50 0.05 25 50 0.05 25 50 0.05 25 50 0.05 25 50 0.05 25 50 0.50 500 1000 0.50 500 1000 3 2 3 0 0 2 Geometric Altitude Feet 50000 17 1 0 0 4 Flight Path Acceleration g 4 12 0.001 10 20 6-27 0 0 5 Flight Path Acceleration g 4 12 0.001 10 20 0 3 8 Flight Path Acceleration g 4 12 0.001 10 20 0 5 6 Geometric Altitude Feet 50000 17 1 0 6 0 Geometric Altitude Feet 50000 17 1 1 0 A Variable Stator Vane Position % -5 to 105 11 0.063 500 1000 1 0 B Variable Stator Vane Position % -5 to 105 11 0.063 500 1000 324 004 005 025 038 Pitch Angle Pitch Angle Pitch Angle Pitch Angle 0 4 D Tank VSO Quantity 0 5 A Effective Pitch Angle 1 0 A Selected Fuel Metering Valve Pos 1 0 B Selected Fuel Metering Valve Pos Deg/180 Deg/180 Deg/180 Deg/180 Gal. Deg./180 % % ±180 14 ±180 14 ±180 10 ±180 14 32768 15 ±180 14 -5 to 105 11 -5 to 105 11 0.01 0.01 0.2 0.01 1.0 0.01 0.063 0.063 10 10 125 10 TBD 20 20 250 20 TBD 62.5 250 62.5 250 See Att. 6 for SDI encoding ARINC SPECIFICATION 429, PART 1 - Page 69 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 1 1 4 Effective Pitch Angle Units Deg Range (Scale) ±180 Sig Bits Pos Sense Resolution 13 0.02 Min Transit Interval (msec) 2 Max Transit Interval (msec) 2 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 325 0 0 4 Roll Angle 0 0 5 Roll Angle 0 1 A Engine Control Trim Feedback 0 2 5 Roll Angle 0 2 F Stator Vane Feedback 0 3 8 Roll Angle 0 3 F Stator Vane Feedback 0 5 A Effective Roll Angle 1 0 A Selected Variable Stator Vane Pos 1 0 B Selected Variable Stator Vane Pos 1 1 4 Effective Roll Angle Deg/180 Deg/180 Deg/180 Inches Deg/180 Inches Deg/180 % % Deg ±180 14 ±180 14 ±180 10 4 12 ±180 14 4 12 ±180 14 -5 to 105 11 -5 to 105 11 ±180 13 0.01 10 20 0.01 10 20 0.2 125 250 0.001 100 200 0.01 10 20 0.001 100 200 0.01 0.063 62.5 250 0.063 62.5 250 0.02 326 0 0 4 Body Pitch Rate 0 0 5 Body Pitch Rate 0 3 8 Body Pitch Rate 0 4 D Uplift Quantity 1 0 A Compressor Discharge Static Press 1 0 B Compressor Discharge Static Press Deg/Sec Deg/Sec Deg/Sec Lbs PSIA PSIA 128 13 128 13 128 13 1638400 14 5-600 11 5-600 11 0.015 0.015 0.015 100 1.00 1.00 10 10 10 TBD 500 500 20 20 20 TBD 1000 1000 327 0 0 4 Body Roll Rate 0 0 5 Body Roll Rate 0 3 8 Body Roll Rate 0 4 D Uplift Density 1 0 A Fuel Metering Valve Position 1 0 B Fuel Metering Valve Position Deg/Sec Deg/Sec Deg/Sec Lbs/Gal % % 128 13 128 13 128 13 8.181 13 -5 to 105 11 -5 to 105 11 0.015 0.015 0.015 0.001 0.063 0.063 10 10 10 TBD 500 500 20 20 20 TBD 1000 1000 330 0 0 4 Body Yaw Rate Deg/Sec 0 0 5 Body Yaw Rate Deg/Sec 0 2 F HC/TC Cooling Valve Pos. Feedback % 0 3 8 Body Yaw Rate Deg/Sec 0 3 F HC/TC Cooling Valve Pos. Feedback % 10A Selected HPT Clearance Valve Position % 1 0 B Selected HPT Clearance Valve Pos % 128 13 0.015 10 20 128 13 0.015 10 20 128 12 OPEN 0.03 100 200 128 13 0.015 10 20 128 12 OPEN 0.03 100 200 -5 to 105 11 0.063 250 1000 -5 to 105 11 0.063 250 1000 3 3 1 0 0 4 Body Longitudinal Acceleration g 0 0 5 Body Longitudinal Acceleration g 0 2 F LTC Cooling Valve Pos. Feedback % 0 3 8 Body Longitudinal Acceleration g 0 3 F LTC Cooling Valve Pos. Feedback % 1 0 A Selected LPT Clearance Valve Pos % 1 0 B Selected LPT Clearance Valve % 4 12 0.001 10 20 4 12 0.001 10 20 128 12 OPEN 0.03 100 200 4 12 0.001 10 20 128 12 OPEN 0.03 100 200 -5 to 105 11 0.063 250 1000 -5 to 105 11 0.063 250 1000 332 0 0 4 Body Lateral Acceleration g 0 0 5 Body Lateral Acceleration g 0 2 F A/O Heat Xchr Valve Pos. Feedback % 0 3 8 Body Lateral Acceleration g 0 3 F A/O Heat Xchr Valve Pos. Feedback % 4 12 0.001 10 20 4 12 0.001 10 20 128 12 OPEN 0.03 100 200 4 12 0.001 10 20 128 12 OPEN 0.03 100 200 333 004 005 02F 038 03F Body Normal Acceleration Body Normal Acceleration Acceleration Fuel Flow Limit Body Normal Acceleration Acceleration Fuel Flow Limit g g Lb/Hr g Lb/Hr 4 12 4 12 32768 12 4 12 32768 12 0.001 10 20 0.001 10 20 8 100 200 0.001 10 20 8 100 200 334 0 0 4 Platform Heading 0 0 5 Platform Heading 0 2 F Fuel Flow Command Deg/180 Deg/180 Lb/Hr ±180 11 ±180 11 32768 12 0.09 20 40 0.09 20 40 8 100 200 ARINC SPECIFICATION 429, PART 1 - Page 70 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 0 3 8 Platform Heading 0 3 F Fuel Flow Command Units Deg/180 Lb/Hr Range (Scale) ±180 32768 Sig Bits Pos Sense Resolution 11 0.09 12 8 Min Transit Interval (msec) 2 20 100 Max Transit Interval (msec) 2 40 200 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 335 0 0 2 Track Angle Rate 0 0 4 Track Angle Rate 0 0 5 Track Angle Rate 0 2 F 2.5 BLD Actuator Position 0 3 8 Track Angle Rate 0 3 F 2.5 BLD Actuator Position 0 5 6 Track Angle Rate 0 6 0 Track Angle Rate 1 0 A Selected Variable Bleed Valve Pos 1 0 B Selected Variable Bleed Valve Pos Deg/Sec Deg/Sec Deg/Sec % Deg/Sec % Deg/Sec Deg/Sec % % 32 11 32 11 32 11 128 12 32 11 128 12 32 11 32 11 -5 to 105 11 -5 to 105 11 0.015 10 20 0.015 10 20 0.015 10 20 0.031 100 200 0.015 10 20 0.031 100 200 0.015 10 20 0.015 10 20 0.063 100 500 0.063 100 500 336 0 0 2 Max Climb Angle 0 0 4 Inertial Pitch Rate 0 0 5 Inertial Pitch Rate 0 1 A Engine Torque 0 2 F N2 Corrected to Sta 2.5 0 3 8 Inertial Pitch Rate 0 3 F N2 Corrected to Sta 2.5 1 0 A Variable Bleed Valve Position 1 0 B Variable Bleed Valve Position Deg Deg/Sec Deg/Sec % % Deg/Sec % % % 32 15 Climb 0.001 100 200 128 13 0.015 10 20 128 13 0.015 10 20 256 12 0.063 100 200 128 12 0.031 100 200 128 13 0.015 10 20 128 12 0.031 100 200 -5 to 105 11 0.063 500 1000 -5 to 105 11 0.063 500 1000 337 0 0 2 EPR - Required For Level Flight 0 0 2 N1 - Required For Level Flight 0 0 4 Inertial Roll Rate 0 0 5 Inertial Roll Rate 0 1 A Engine Rating 0 3 8 Inertial Roll Rate 1 0 A HPT Clearance Valve Position 1 0 B HPT Clearance Valve Position Ratio % RPM Deg/Sec Deg/Sec % Deg/Sec % % ±4 12 ±256 15 128 13 128 13 0-256 12 128 13 -5 to 105 11 -5 to 105 11 0.001 100 200 0.015 0.015 10 20 0.015 10 20 0.063 100 200 0.015 10 20 0.063 500 1000 0.063 500 1000 Engine Types: P&W Engine Types: GE 340 0 0 3 EPR Actual 0 0 4 Inertial Yaw Rate 0 0 4 Track Angle Grid 0 0 5 Inertial Yaw Rate 0 1 A EPR Actual 0 2 9 EPR Actual (Engine Direct) 0 2 D EPR Actual 0 2 F EPR Actual 0 3 3 EPR Actual 0 3 F EPR Actual 1 3 A N1 Take Off 1 4 0 Pressure Ratio (Pt/Ps) Deg/Sec Deg Deg/Sec % N1Nom Ratio 4 12 128 13 ± 180 15 128 13 4 12 4 12 4 12 4 12 4 12 4 12 256 14 16 14 0.001 100 200 0.015 10 20 0.0055 20 110 0.015 10 20 0.001 100 200 0.001 50 100 0.001 100 200 0.001 25 50 0.001 100 200 0.001 25 50 0.015 25 50 0.001 62.5 125 341 0 0 2 Target N1 0 0 3 N1 Command 0 0 3 EPR Command 0 0 4 Grid Heading 0 1 A N1 Command 0 1 A EPR Command 0 2 9 N1 Command (Engine) 0 2 9 EPR Command (Engine) 0 2 F N1 Command 0 2 F EPR Command 0 3 8 Grid Heading 0 3 F EPR Command 0 4 D I/O S/W REV 1&2 1 0 A Command Fan Speed % RPM % RPM Deg % RPM % RPM % RPM Deg % 256 14 256 14 4 12 ± 180 15 256 14 4 12 256 14 4 12 256 14 4 12 ± 180 15 4 12 (1) 16 117.5 13 0.015 0.015 0.001 0.0055 0.015 0.001 0.015 0.001 0.015 0.001 0.0055 0.001 N/A 0.032 100 100 100 20 100 100 50 50 25 25 20 100 TBD 31.3 200 200 200 110 200 200 100 100 50 50 110 200 TBD 100 TABLE 2 - BNR DATA Eqpt Label ID (Hex) Parameter Name 1 0 B Command Fan Speed 1 3 A N1 Reference 1 4 0 Pressure Ratio (Ps/Pso) ARINC SPECIFICATION 429, PART 1 - Page 71 ATTACHMENT 2 DATA STANDARDS Units % % N1Nom Ratio Range (Scale) 117.5 256 4 Sig Bits Pos Sense Resolution 13 0.032 14 0.015 12 0.001 Min Transit Interval (msec) 2 31.3 25 62.5 Max Transit Interval (msec) 2 100 50 125 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 342 0 0 2 N1 Bug Drive 0 0 3 N1 Limit 0 0 3 EPR Limit 0 1 A N1 Maximum 0 1 A EPR Maximum 0 2 9 N1 Limit (TCC) 0 2 9 EPR Limit (TOC) 0 2 F Maximum Available EPR 0 3 B EPR Limit 0 3 B N1 Limit 0 3 F Maximum Available EPR 0 4 D S/W REV-Tank 1 0 A Max Allowed Fan Speed 1 0 B Max Allowed Fan Speed 1 4 0 Air Density Ratio % RPM % RPM % RPM % RPM % RPM % % Ratio 256 14 256 14 4 12 256 14 4 12 256 14 4 12 4 12 4 12 256 14 4 12 (1) 16 117.5 13 117.5 13 4 12 0.015 0.015 0.001 0.015 0.001 0.015 0.001 0.001 0.001 0.015 0.001 N/A 0.032 0.032 0.001 100 100 100 100 100 100 100 100 150 150 100 TBD 100 100 250 200 200 200 200 200 200 200 200 250 250 200 TBD 500 500 500 343 0 0 3 N1 Derate 0 0 3 EPR Rate 0 1 A N1 Demand 1 0 A N1 Command vs. TLA 1 0 B N1 Command vs. TLA % RPM % RPM % % 256 14 4 12 256 12 117.5 13 117.5 13 0.015 100 200 0.001 100 200 0.063 20 50 0.032 31.3 100 0.032 31.3 100 344 0 1 A N2 0 1 C N2 0 2 9 N2 0 2 F N2 0 3 3 N2 0 3 F N2 1 0 A Selected Actual Core Speed 1 0 B Selected Actual Core Speed 1 3 A N2 Speed 0 D 0 N2 % RPM % RPM % RPM % RPM % RPM % RPM % % % RPM % RPM 256 14 256 14 256 14 256 14 256 14 256 14 128 12 128 12 256 14 256 13 0.015 50 100 0.015 50 100 0.015 50 100 0.015 25 50 0.015 50 200 0.015 25 50 0.063 31.3 100 0.063 31.3 100 0.015 25 50 0.03 SDI 1 = L/SDI 2 = R 345 0 1 A Exhaust Gas Temperature 0 1 C Exhaust Gas Temperature 0 2 9 Exhaust Gas Temperature 0 2 F Exhaust Gas Temperature 0 3 3 Exhaust Gas Temperature 0 3 F Exhaust Gas Temperature 1 0 A Selected Exhaust Gas Temp (Total) 1 0 B Selected Exhaust Gas Temp (Total) 1 3 A EGT Trimmed 0 D 0 EGT Deg C Deg C Deg C Deg C Deg C Deg C Deg C Deg C Deg C Deg C 2048 12 2048 12 2048 12 2048 12 2048 12 2048 12 -55 to 1100 11 -55 to 1100 11 2048 12 2048 12 0.5 100 200 0.5 100 200 0.5 50 100 0.5 25 50 0.5 100 200 0.5 25 50 1.00 62.5 250 1.00 62.5 250 0.5 25 50 0.5 SDI 1 = L/SDI 2 = R 346 0 0 3 N1 Actual 0 1 A N1 Actual 0 2 F N1 Actual 0 3 3 N1 Actual 0 3 F N1 Actual 0 4 D Cable Cap-Hi-Z 1 0 A Selected Actual Fan Speed 1 0 B Selected Actual Fan Speed 1 3 A N1 Speed Actual 0 D 0 N1 % RPM % RPM % RPM % RPM % RPM PF % % % N1Nom % RPM 256 14 256 14 256 14 256 14 256 14 65535 15 128 12 128 12 256 14 256 13 0.015 100 200 0.015 100 200 0.015 25 50 0.015 50 200 0.015 25 50 2.0 100 200 0.063 31.3 100 0.063 31.3 100 0.015 25 50 0.03 SDI 1 = L/SDI 2 = R 3 4 7 0 2 9 Fuel Flow (Engine) 1 0 A LPT Clearance Valve Position Lbs/Hr % 32768 12 -5 to 105 11 8 50 100 0.063 500 1000 ARINC SPECIFICATION 429, PART 1 - Page 72 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS Eqpt Label ID (Hex) Parameter Name 1 0 B LPT Clearance Valve Position 1 3 A Fuel Flow 0 D 0 Fuel Flow Units % Lbs/Hr Lbs/Hr Range (Scale) -5 to 105 32768 32768 Sig Bits Pos Sense Resolution 11 0.063 14 2 12 8 Min Transit Interval (msec) 2 500 50 Max Transit Interval (msec) 2 1000 100 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 SDI 1 = L/SDI 2 = R 3 5 2 1 4 0 Maintenance Flight Controller Flights 524, 287 19 1 3 5 3 0 D 0 Vibration Scalar 5.12 8 0.02 SDI 1 = L/SDI 2 = R 3 5 4 0 3 D N1 Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A Bit 12-Chan. B 3 5 5 0 3 D N2 Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A Bit 12-Chan. B 3 5 6 0 3 D N2 Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A Bit 12-Chan. B 3 5 7 0 3 D BB Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A Bit 12-Chan. B 360 002 004 005 038 Flight Information Potential Vertical Speed Potential Vertical Speed Potential Vertical Speed 0 3 D N1 Rotor Imbalance Angle 0 5 6 Flight Information 0 6 0 Flight Information 1 0 A Throttle Rate of Change 1 0 B Throttle Rate of Change 1 4 2 RAIM Status Word Ft/Min Ft/Min Ft/Min Deg. Deg/Sec Deg/Sec N.M. 32768 15 32768 15 32768 15 ±180 9 ±16 9/9 ±16 9/9 16 13 1.0 10 20 1.0 25 50 1.0 10 20 1.0 1.00 31.3 100 1.00 31.3 100 0.00195 6-33 Bit 11-Chan. A Bit 12-Chan. B 6-33 6-33 See Notes [6] & [7] See Notes [6] & [7] 361 0 0 4 Altitude (Inertial) 0 0 5 Altitude (Inertial) 0 3 8 Altitude (Inertial) 03D LPT Rotor Imbalance Angle (737 only) 1 0 A Derivative of Thrust vs. N1 1 0 B Derivative of Thrust vs. N1 Feet Feet Feet Deg. DFN/%N1 DFN/%N1 131072 20 131072 18 131072 20 ±180 9 2000 11 2000 11 0.125 20 40 0.5 20 40 0.125 20 40 1.0 2.0 62.5 250 2.0 62.5 250 Bit 11-Chan. A Bit 12-Chan. B See Note [6] See Note [6] 362 0 0 4 Along Track Horizontal Acceleration g 0 3 8 Along Track Horizontal Acceleration g 1 0 A Derivative of N1 vs. TLA % N1/Deg 1 0 B Derivative of N1 vs. TLA % N1/Deg 1 1 5 Range Rate Knots 4 12 4 12 12 11 12 11 ±8192 13 0.001 10 20 0.001 10 20 0.008 62.5 250 0.008 62.5 250 1.0 50 50 See Note [6] See Note [6] 3 6 3 0 0 4 Cross Track Acceleration g 0 3 8 Cross Track Acceleration g 1 0 A Corrected Thrust LBF 1 0 B Corrected Thrust LBF 4 12 4 12 64000 11 64000 11 0.001 10 20 0.001 10 20 64.0 62.5 250 64.0 62.5 250 See Note [6] See Note [6] 364 0 0 4 Vertical Acceleration 0 0 5 Vertical Acceleration 1 3 A N1 APR Rating 0 3 8 Vertical Acceleration g g % N1Nom g 4 12 4 12 256 14 4 12 0.001 10 20 0.001 10 20 0.015 100 200 0.001 10 20 365 0 0 4 Inertial Vertical Velocity (EFI) 0 0 5 Inertial Vertical Velocity (EFI) 1 3 A N1 Max Reverse 0 3 8 Inertial Vertical Velocity (EFI) Ft/Min Ft/Min % N1Nom Ft/Min 32768 15 32768 15 256 14 32768 15 1.0 20 40 1.0 20 40 0.015 100 200 1.0 20 40 TABLE 2 - BNR DATA Eqpt Label ID (Hex) Parameter Name 3 6 6 0 0 4 North-South Velocity 1 3 A IGV Position 0 3 8 North-South Velocity ARINC SPECIFICATION 429, PART 1 - Page 73 ATTACHMENT 2 DATA STANDARDS Units Knots Deg/180 Knots Range (Scale) 4096 ±180 4096 Sig Bits Pos Sense Resolution 15 0.125 12 0.05 15 0.125 Min Transit Interval (msec) 2 50 100 50 Max Transit Interval (msec) 2 100 200 100 Max Transport Delay (msec) Notes & Cross Ref. to Tables and Attachments 3 6-2-1 3 6 7 0 0 4 East-West Velocity 1 3 A IGV Request 0 3 8 East-West Velocity Knots Deg/180 Knots 4096 15 ±180 12 4096 15 0.125 100 200 0.05 100 200 0.125 100 200 370 004 g 9 005 g 9 0 0 B GNSS Height WGS-84 (HAE) Feet 0 2 5 Decision Height Selected (EFI) Feet 0 C 5 Decision Height Selected (EFI) Feet 8 13 UP 0.001 100 200 110 8 13 UP 0.001 100 200 110 ± 131.072 20 0.125 1200 8192 16 0.125 100 200 16384 17 0.125 100 200 3 7 1 X X X Gen Aviation Equip. Identifier 3 7 2 0 0 5 Wind Direction-Magnetic 1 0 A Actual Fan Speed 1 0 B Actual Fan Speed Deg/180 % % ±180 9 128 12 128 12 0.35 50 100 0.063 500 1000 0.063 500 1000 3 7 3 0 0 5 North-South Velocity-Magnetic 1 0 A Actual Core Speed 1 0 B Actual Core Speed Knots % % 4096 15 128 12 128 12 0.125 100 200 0.063 500 1000 0.063 500 1000 3 7 4 0 0 5 East-West Velocity-Magnetic 1 0 A Left Thrust Reverser Position 1 0 B Left Thrust Reverser Position Knots % % 4096 15 -5+105 11 -5+105 11 0.125 100 200 0.063 500 1000 0.063 500 1000 375 0 0 4 Along Heading Acceleration Gs 0 0 5 Along Heading Acceleration g 0 3 3 Spare DC1 VDC 0 3 8 Along Heading Acceleration Gs 1 0 A Right Thrust Reverser Position % 1 0 B Right Thrust Reverser Position % X X X GPS Differential Correction, Word A 4 18 4 12 16 12 4 18 -5 to 105 11 -5 to 105 11 1.53E-5 50 0.001 10 0.004 150 1.53E-5 50 0.063 500 0.063 500 110 20 250 110 1000 1000 See ARINC 743A 376 0 0 4 Cross Heading Acceleration Gs 0 0 5 Cross Heading Acceleration g 0 3 3 Spare DC2 VDC 0 3 8 Cross Heading Acceleration Gs X X X GPS Differential Correction, Word B 4 18 4 12 16 12 4 18 1.53E-5 50 110 0.001 10 20 0.004 150 250 1.53E-5 50 110 See ARINC 743A ARINC SPECIFICATION 429, PART 1 - Page 74 TABLE 2 - BNR DATA ATTACHMENT 2 DATA STANDARDS [1] The number entered into the Range Column for each parameter that is not angular in nature is the nearest whole binary number greater than the parameter range required. As explained in the Commentary following Section 2.1.6 of this document, the weight of the most significant bit of the twos complement fractional notation binary word will be one half this value, and the actual maximum value of the parameter capable of being encoded will be the number in the range column less one least significant bit value. The numbers entered in the RANGE column for angular parameters are the actual degree ranges required. The way in which these parameters are encoded is also explained in the Commentary following Section 2.1.6. [2] c-4 Transmit intervals and the number of parameters to be transmitted are prime factors in bus loading. The interval for transmission of parameters should fall between the minimum and maximum specified intervals and nominally should be near the center of the range at equal intervals between transmissions. When heavy bus loading dictates a shift from the center of the range, the shift should be toward the maximum transmit interval. When words with like labels and with different SDI codes are transmitted, each of those words is considered c-5 a unique item of information. The guidance given in this document for transmit intervals should be applied to those words as if each word were identified by a different label. [3] Maximum transport delay is the worst case total delay between an input function and the output response. COMMENTARY Since the nature of the data varies, the definition of transport delay will differ depending on the application. In the case of a sampling system, a c-4 sample is complete when the 32-bit word constituting the output data is complete. In the case of a system involving filtering, transport delay is the phase slope of the transfer function across the frequency band of interest. There can be situations in which it is necessary to define which portions of an equipment are included in the transport delay term. Such definitions should appear in individual equipment Characteristics when needed. [4] c-7 The values shown in parentheses are the preferred data standards for stator vane angle. However, a considerable portion of existing equipment use the other (nonparenthesized) values. Users should verify the data standards of the equipment they are or will be using. [5] These labels can provide data in a degraded accuracy mode. See Section 2.1.5.1 and 2.1.5.2. [6] Optionally transmitted. [7] Binary packed word consisting of: c-12 Word 1 = Bits 11-19 (Range = 16) Word 2 = Bits 20-28 (Range = 16) ARINC SPECIFICATION 429, PART 1 - Page 75 ATTACHMENT 3 VOLTAGE LEVELS A XMTR B G A RCVR B G +13 +11 +10 +9 +6.5 c-4 +2.5 V AB +0.5 -0.5 -2.5 -10 -9 -11 HI NULL LO XMTR OUTPUT STATES -6.5 c-4 -13 HI NULL LO RCVR INPUT STATES AC VOLTS ARINC SPECIFICATION 429, PART 1 - Page 76 ATTACHMENT 4 INPUT/OUTPUT CIRCUIT STANDARDS TRANSMITTING UNIT +Eo /2 Rs /2 c-4 Eo -Eo /2 Rs /2 OUTPUT ** ** CAPABILITY ** TOTAL SYSTEM ** ** OTHER DEVICES UTILIZATION DEVICE C H R I C G R H C I R G OUTPUT (SYSTEM) CAPABILITY c-4 Total System *Resistance Total System *Capacitance System Capacitance Unbalance 400 to 8,000 ohms 1,000 to 30,000 pF Not defined but unbalance due to aircraft interwiring should be held to a minimum UTILIZATION DEVICE STANDARDS RI > 12,000 ohms CI < 50 pF RH or RG > 12,000 ohms CH and CG < 50 pF The total differential input impedance of the receiver should be limited to the values specified in Section 2.2.4.2. c-16 This drawing describes total system characteristics rather than individual component parameters. NOTES: * Includes aircraft interwiring ** Shields to be grounded in aircraft at both ends of all “breaks.” ARINC SPECIFICATION 429, PART 1 - Page 77 ATTACHMENT 5 INTERNATIONAL STANDARDS ORGANIZATION CODE #5 The ISO Alphabet No. 5 seven-unit code set is reproduced in the table below with the BCD subset outlined in column 3: STANDARD CODE BIT 7 BIT 6 BIT 5 BIT BIT BIT 4 3 2 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 BIT Column 1 0 1 2 3 4 5 6 7 Row 0 0 0 0 0 NUL DLE SP 0 @ P ` p 0 0 0 1 1 SOH DC1 ! 1 A Q a q 0 0 1 0 2 STX DC2 " 2 B R b r 0 0 1 1 3 ETX DC3 # 3 C S c s 0 1 0 0 4 EOT DC4 $ 4 D T d t 0 1 0 1 5 ENQ NAK % 5 E U e u 0 1 1 0 6 ACK SYN & 6 F V f v 0 1 1 1 7 BEL ETB ′ 7 G W g w 1 0 0 0 8 BS CAN ( 8 H X h x 1 0 0 1 9 HT EM ) 9 I Y i y 1 0 1 0 10 LF SUB * : J Z j z 1 0 1 1 11 VT ESC + ; K [ k { 1 1 0 0 12 FF FS ´ < L \ l ⎜ 1 1 0 1 13 CR GS - = M ] m } 1 1 1 0 14 SO RS • > N ∧ n ~ 1 1 1 1 15 SI US / ? O ⎯ o DEL NOTE: b8 is used as a parity bit. ARINC SPECIFICATION 429, PART 1 - Page 78 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES 6.1. General Word Formats TABLE 6-1 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DATA PAD DISCRETES SDI LABEL [5] [4] MSB [3] [2] LSB [1] Generalized BCD Word Format TABLE 6-1-1 P SSM BCD CH #2 BCD CH #2 BCD CH #3 BCD CH #4 BCD CH #5 SDI 8 7 6 5 4 3 2 1 421842184218421842 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 00 1 0 0 0 0 0 0 1 Example 2 5 7 8 6 DME DISTANCE (201) BCD Word Format Example (No Discretes) TABLE 6-2 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DATA PAD DISCRETES SDI LABEL [5] [4] MSB [3] [2] LSB [1] Generalized BNR Word Format TABLE 6-2-1 31 30 29 11 87 6 5 4 3 2 1 P SSM PAD SDI LABEL 1/2 1/4 1/8 1/16 1/32 1/64 1/128 etc 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 000 001 1 0 1 1 1 1 Example: 512 Knots (i.e., 1/8 x 4096 where 4096 is entry in range column of Table 2, Att. 2) N-S VELOCITY (366) BNR Word Format Example (No Discretes) TABLE 6-3 P SSM “STX” UNIT WORD COUNT LABEL (01) ADDRESS (357) 32 31 30 29 23 22 17 16 BNR EQUIV. 9 8 1 Alpha Numeric (ISO Alphabet No. 5) Message – Initial Word Format P SSM “STX” SPARES WORD COUNT LABEL (01) (Zeroes) (356) 32 31 30 29 23 22 17 16 BNR EQUIV. 9 8 1 Alpha Numeric (ISO Alphabet No. 5) Maintenance Data –Initial Word Format c-4 P SSM “DATA CH #3” DATA CH #2 DATA CH #1 LABEL (00) (356, 357) 32 31 30 29 P 23 22 L 16 15 A 98 1 Alpha Numeric (ISO Alphabet No. 5) Data – Intermediate Word Format P SSM “DATA CH #3” DATA CH #2 DATA CH #1 LABEL (10) (356, 357) 32 31 30 29 (BNR ZEROES) 23 22 A 16 15 H 98 1 Alpha Numeric (ISO Alphabet No. 5) Data – Final Word Format (Taken together, the following example shows encoding of the word ALPHA into three successive data words) ARINC SPECIFICATION 429, PART 1 - Page 79 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-4 P SSM (00) 32 31 30 29 MSB DISCRETES [2] SDI LABEL (See Below) LSB 11 10 9 8 1 LABEL USAGE SUBGROUP 155 – 161 270 – 276 350 – 354 Maintenance Discretes Maintenance Discrete Word Format TABLE 6-5 P SSM ACKNOWLEDGEMENT (01) (FORMAT NOT DEFINED) 32 31 30 29 WORD COUNT LABEL (355) 17 16 BNR EQUIV. 98 1 Acknowledgement Word – Initial Word Format TABLE 6-5-1 P SSM (00) 32 31 30 29 ACKNOWLEDGEMENT (FORMAT NOT DEFINED) LABEL (355) 98 1 Acknowledgement Word – Intermediate Word Format TABLE 6-5-2 P SSM (10) 32 31 30 29 ACKNOWLEDGEMENT (FORMAT NOT DEFINED) LABEL (355) 98 1 Acknowledgement Word – Final Word Format TABLE 6-6 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DATA PADS * SDI LABEL [5] [4] [3] [1] (173/174) * Bit No. 11 takes on the binary state “one” to annunciate that the ILS receiver is in the “tune inhibit” condition. ILS Localizer/Glideslope Deviation Word TABLE 6-7 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DATA FIELD ** * SDI LABEL [5] [4] [1] (202) * Bit No. 11 is assigned to a memory on/off annunciation function (see Section 4.7 of ARINC 709) ** Bit No. 12 is set to “1” when data is for a foreground station in frequency scanning mode. 0 1 0 0 0 0 01 DME Distance Word TABLE 6-8 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM A R DATE Day Month FLIGHT LEG PAD SDI [3] [1] LABEL (260) I x10 x1 x10 x1 T 218421184218421 Y0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 Example 2 3 0 8 5 0 6 2 Date/Flight Leg Word c-4 c-6 ARINC SPECIFICATION 429, PART 1 - Page 80 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-9 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM FLIGHT NUMBER A R x1000 x100 x10 x1 PAD SDI I 8421842184218421 LABEL (261) T 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 01 0 00 1 10 1 Y Example 0 1 1 7 1 6 2 Flight Number Word TABLE 6-10 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P [5] SSM [4] MSB DATA LSB PAD [3] SDI [6] [1] LABEL (222) [6] Marker Beacon Output Discrete Bits Discrete Bit 400 Hz 11 1300 Hz 12 3000 Hz 13 Bit State Discrete Grounded Discrete Open 1 0 1 0 1 0 VOR Omnibearing TABLE 6-11 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM [5] [4] MSB DATA LSB PAD LEVER POSITION SDI [1] LABEL (127/137) Lever Bit 11 12 13 14 15 c-4 Position 1 (Cruise) 10000 Position 2 01000 Position 3 00100 Position 4 00010 Position 5 (Landing) 00001 Slat/Flap Angle Word TABLE 6-12 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM [5] [4] HOURS 0-24 MINUTES 0-60 SECONDS 0-60 * SDI LABEL (150) c-16 *Bit 11 of label 150 should be encoded with a “1” when the GNSS system clock is being used as the source of time. Otherwise, bit 11 should be encoded as “0”. UTC Binary Word TABLE 6-13 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM SDI LABEL [5] [4] c-4 DATA PAD FTI [1] (164) 00 1 01 1 10 Note: When Bit 11 (Functional Test Inhibit) is a “1”, a functional test should not be performed. 4 6 1 Radio Height Word ARINC SPECIFICATION 429, PART 1 - Page 81 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-14 32 31 30 29 28 27 26 25 24 23 22 21 20 1 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DOCUMENTARY DATA PAD SDI LABEL 4 2 1 42 1 4 2 1 4 2 1 4 2 1 4 2 1 (262) [5] [4] Code 1 Code 2 Code 3 Code 4 Code 5 Code 6 [1] 0 1 0 0 1 1 0 1 Documentary Data Word [1] Source/Destination Identifier (SDI) Field The purpose of the SDI field is explained in Section 2.1.4 of this document, as are also the limitations on its use. When the SDI function is not required, this field may be occupied by binary zero or valid data pad bits. [2] Discretes As discussed in Section 2.3.1.2 of this document, unused bits in a word may be assigned to discrete functions, one bit per variable. Bit #11 of the word should be the first to be so assigned, followed by bit #12 and so on, in ascending numerical order, until the data field is reached. In the absence of discretes, unused bit positions should be occupied by binary zero or valid data pad bits. [3] Pad All bit positions not used for data or discrete should be filled with binary zero or valid data pad bits. Section 2.1.2 of this document refers. [4] Sign/Status Matrix (SSM) Section 2.1.5 of this document describes the functions of the sign/status matrix and the ways in which the bits constituting it are encoded. [5] Parity Bit This bit is encoded to render word parity odd. Section 2.3.4 of this document refers. ARINC SPECIFICATION 429, PART 1 - Page 82 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-15 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD 3rd Digit 2nd Digit LSD PAD SDI LABEL (046) 10000001100100100100000001100100 Example 6 4 9 6 4 0 Engine Serial Number (3LDs) TABLE 6-16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD MSD 5th Digit 4th Digit PAD SDI LABEL (047) 00000000000011001000000011100100 Example 0 3 2 7 4 0 Engine Serial Number (3 MSDs) c-17 TABLE 6-17 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM SPARE MSD LSD SDI LABEL (377) 10000000000001000011010011111111 1 0 D 7 7 3 Equipment Identifier Word (Example provided for 10D code) ARINC SPECIFICATION 429, PART 1 - Page 83 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-18 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DATE SDI LABEL A Day Month Year (260 031) R x10 x1 x10 x1 x10 x1 Chronometer I 2 184211842184218421 Output Only T00 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 Y Example 2 3 0 8 8 5 0 6 2 TABLE 6-19 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 P SSM D PRIMARY COUNTER 0-4096 FLIGHT LEGS 4096-65535 PAD SDI (00) LEGS MSB LSB MSB LSB 87654321 LABEL (251 01A) Electronic Supervisory Control Flight Leg Counter TABLE 6-20 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM ALTITUDE SEE SDI LABEL (00) MSB LSB BELOW (206 018) Transponder Bits 13 12 11 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 Range 65536 65536 65536 51200 81920 51200 Bits Used 15 14 13 12 14 10 App. Resolution 4 8 16 25 10 100 Altitude (Variable Reduction) ARINC SPECIFICATION 429, PART 1 - Page 84 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TCAS INTRUDER RANGE WORD TABLE 6-21 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 P SSM INTRUDER RANGE INTRUDER INTRUDER SDI [5] [3] [4] SENSE LVL[2] NUMBER [1] 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0010100 0 00 MSB LSB MSB LSB MSB LSB LSB 5.25 NM 2 5 0 5 43 LABEL (130) 1 10 3 21 10 MSB 1 Note 1: Maximum number of intruders is 31. Note 2: Intruder Sensitivity Level Status Bits 18 17 16 000 001 010 011 100 101 110 111 Meaning Not Reported SL = 1 SL = 2 SL = 3 SL = 4 SL = 5 SL = 6 SL = 7 Note 3: Maximum range is 127-15/16 nautical miles. Note 4: Intruder range may be reported in the form of horizontal range when intruder is available. Note 5: Sign Status Matrix (SSM) [BNR] Bits 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Data Normal Operation ARINC SPECIFICATION 429, PART 1 - Page 85 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TCAS INTRUDER ALTITUDE WORD TABLE 6-22 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM RELATIVE ALTITUDE I.V.S. FUTURE INTRUDER SDI LABEL [5] [4] [3] [2] SPARE NUMBER [1] (131) 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 00 0 0 1 01 0 0 1 0 0 1 1 0 1 0 S MSB LSB MSB LSB LSB MSB 2500 FT LEVEL 5 1 3 1 Note 1: Maximum number of intruders is 31. Note 2: Sense of Intruders VERTICAL RATE (Z SINT) Bits 21 20 00 01 10 11 Meaning No Vertical Rate (Level Flight) Climbing Descending No Data Note 3: Binary, Two’s Complement Range = ± 12700 Ft. Note 4: The No Computed Data Report of the SSM field applies to relative altitude (Bits 29-22) only. See Note 5. Note 5: Sign Status Matrix (SSM) [BNR] Bits 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Data Normal Operation ARINC SPECIFICATION 429, PART 1 - Page 86 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-23 TCAS INTRUDER BEARING WORD 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 P SSM [5] [4] BEARING [3] DISPLAY MATRIX INTRUDER NUMBER SDI [2] [1] 11100000000000000000010001 S MSB LSB MSB LSB MSB LSB 0 NO THREAT 1 LSB 2 654321 LABEL (132) 011010 MSB 3 1 Note 1: Maximum number of intruders is 31. Note 2: Display Matrix Bits 18 17 16 000 001 010 011 100 101 110 111 Meaning No Threat Traffic Advisory Resolution Advisory Proximate Traffic Not Used Not Used Not Used Not Used Note 3: Binary, Fractional Binary; Range = -180 to +180 Degrees Note 4: The No Computed Data report in the SSM field applies to bearing information (Bits 29-19) only. See Note 5. Note 5: Sign Status Matrix (SSM) [BNR] Bits 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Data Normal Operation ARINC SPECIFICATION 429, PART 1 - Page 87 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-24 TRANSPONDER ALTITUDE/TCAS OWN AIRCRAFT ALTITUDE 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM S ALTITUDE ALT PAD LABEL [2] [1] (203) 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 00 1 1 0 0 0 0 0 1 MSB LSB LSB MSB 21059 1 3 0 2 S = Sign Bit see Section 2.1.5.2 of this Document. Note 1: Altitude Resolution Bits 11 0 1 Ft 1 100 Ft Meaning Note 2: Sign Status Matrix (SSM) [BNR] Bits 31 30 00 01 10 11 Meaning Failure Warning No Computed Data Functional Data Normal Operation ARINC SPECIFICATION 429, PART 1 - Page 88 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES Table 6-25 BCD DATA ENCODING EXAMPLES Bit No. 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 SSM DATA FIELD [1] SDI LABEL PARAMETER (Label) MSC LSC 4218421842184218421 1 2 4 1 2 4 12 Distance To Go (001) 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 +2750.4 NM Time To Go (002) 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 P P P P 0 0 0 1 0 0 0 0 0 0 +145.3 Min. Cross Track Distance (003) 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 P P P P 0 0 1 1 0 0 0 0 0 0 225.6 NM Ground Speed (012) 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 P P P P 0 0 0 1 0 1 0 0 0 0 650 Knots Track Angle (True) (013) 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 P P P P 0 0 1 1 0 1 0 0 0 0 165.5 Deg. Selected Vertical Speed (020) 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 P P P P 0 0 0 0 0 0 1 0 0 0 -2200 Ft/Min Selected EPR (021) 0 0 0 0 1 0 0 0 0 0 0 1 0 1 P P P P P P P P 0 0 1 0 0 0 1 0 0 0 2.05 Selected N1 (021) 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 P P P P 0 0 1 0 0 0 1 0 0 0 2750 RPM Selected Mach (022) 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 P P P P 0 0 0 1 0 0 1 0 0 0 0.850 Mach Selected Heading (023) 1 0 0 0 0 1 0 1 1 1 0 1 1 1 P P P P P P P P 0 0 1 1 0 0 1 0 0 0 177 Deg. Selected Course (024) 1 0 0 0 1 0 0 1 0 1 0 1 0 0 P P P P P P P P 0 0 0 1 0 1 0 0 0 154 Deg. Selected Altitude (025) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 41000 Ft. Selected Airspeed (026) 0 0 0 1 0 0 0 0 1 0 0 0 1 1 P P P P P P P P 0 0 0 1 1 0 1 0 0 0 423 Knots Universal Time Constant (125) 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1545.5 Hr. Radio Height (165) 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 2450.5 Ft. Decision Height Selected (170) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 P P P P P P P P 0 0 0 0 0 1 1 1 1 0 200 Ft. DME Distance (201) 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 257.86 NM True Airspeed (230) 0 0 0 1 0 1 0 1 1 0 0 1 0 1 P P P P P P P P 0 0 0 0 0 1 1 0 0 1 565 Knots Total Air Temp. (231) 0 1 1 0 0 0 0 0 1 0 0 1 0 1 P P P P P P P P 0 0 1 0 0 1 1 0 0 1 -025 Deg. C [2] Altitude Rate (232) 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 -15250 Ft/Min Static Air Temp. (233) 1 0 0 0 0 0 0 0 0 1 0 0 1 1 P P P P P P P P 0 0 1 1 0 1 1 0 0 1 +013 Deg. C [2] Baroset (ins Hg) (235) 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 P P P P 0 0 1 0 1 1 1 0 0 1 29.92 ins Hg NOTES: [1] “P” denotes pad “zero” or valid data, see Section 2.1.2. Note possible use of pad bits for discrete functions per Section 2.3.1.2. [2] Because of the actual maximum value of the most significant character of these quantities exceeds 7, it cannot be encoded in the most significant character position of the BCD word. For this reason, each quantity has been given an “artificial” MSC of zero and its actual MSC encoded in the next most significant character position of the word. ARINC SPECIFICATION 429, PART 1 - Page 89 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE Table 6-25-1 BCD ENCODING OF LATITUDE AND LONGITUDE Bit No. 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DATA FIELD PARAMETER (Label) SSM MSC LABEL LSC 18421842184218421842112412412 Present Position (Lat.) N 75 Deg 59.9' (010) 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 Present Position (Long) c-4 W 169 Deg 25.8' (011) 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 (See Commentary following Section 2.1.2 of this document for further information.) ARINC SPECIFICATION 429, PART 1 - Page 90 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-26 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit Nos. LSB MSB Wheel Nos. 747 DC-10 SPARES DATA LABEL REF. ARINC OCT. SYSTEM FAULT WHEEL LABEL WHEEL FAULT THRESHOLD LOW DIFF. LOW SPAR E SPAR E PARITY BNR BCD 16 32 64 128 256 512 1 2 4 8 1 1 10 2 2 10 13 3 10 14 4 10 3 5 10 4 6 10 15 7 10 16 8 10 5 9 10 9 10 10 6 10 7 10 8 10 10 10 11 10 12 10 BITS 10 9 LO (061) 1 2 747 NOSE (064) NL NR 00 01 RO (063) 13 14 00 01 3 4 00 01 15 16 10 11 LI (060) 5 6 RI (062) 10 11 9 10 00 01 7 8 00 01 11 12 10 11 10 11 0 0 1 0 1 1 0 0 1 0 115 0 1 1 0 1 1 0 0 1 0 115 0 0 1 1 1 1 0 0 1 0 117 0 1 1 1 1 1 0 0 1 0 117 1 0 1 0 1 1 0 0 1 0 115 1 1 1 0 1 1 0 0 1 0 115 1 0 1 1 1 1 0 0 1 0 117 1 1 1 1 1 1 0 0 1 0 117 0 0 0 0 1 1 0 0 1 0 114 0 0 0 1 1 1 0 0 1 0 116 0 1 0 0 1 1 0 0 1 0 114 1 0 0 0 1 1 0 0 1 0 114 1 1 0 0 1 1 0 0 1 0 114 0 1 0 1 1 1 0 0 1 0 116 1 0 0 1 1 1 0 0 1 0 116 1 1 0 1 1 1 0 0 1 0 116 LO (061) 1 2 DC-10 NOSE (064) NL NR 00 RO (063) 3 4 00 01 5 6 00 01 7 8 10 11 LI (060) RI (062) 10 11 9 10 00 00 01 01 ARINC SPECIFICATION 429, PART 1 - Page 91 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-26-1 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit Nos. LSB MSB Wheel Nos. 747 DC-10 SPARES DATA LABEL REF. ARINC OCT. WHEEL LABEL SYSTEM BRAKE FAULT HOT WAR M DIFF.TEMP. PREDIC T PARITY BNR BCD 16 32 64 128 256 512 1 2 4 8 1 1 10 2 2 10 13 3 10 14 4 10 3 5 10 4 6 10 15 7 10 16 8 10 5 9 10 9 10 10 6 10 7 10 8 10 10 10 11 10 12 10 0 0 1 0 1 1 0 0 0 0 115 0 1 1 0 1 1 0 0 1 0 115 0 0 1 1 1 1 0 0 1 0 117 0 1 1 1 1 1 0 0 1 0 117 1 0 1 0 1 1 0 0 1 0 115 1 1 1 0 1 1 0 0 1 0 115 1 0 1 1 1 1 0 0 1 0 117 1 1 1 1 1 1 0 0 1 0 117 0 0 0 0 1 1 0 0 1 0 114 0 0 0 1 1 1 0 0 1 0 116 0 1 0 0 1 1 0 0 1 0 114 1 0 0 0 1 1 0 0 1 0 114 1 1 0 0 1 1 0 0 1 0 114 0 1 0 1 1 1 0 0 1 0 116 1 0 0 1 1 1 0 0 1 0 116 1 1 0 1 1 1 0 0 1 0 116 BITS 10 9 747 LO (115) 1 2 RO (117) 13 14 00 01 3 4 10 11 LI (114) 5 6 00 01 15 16 RI (116) 10 11 9 10 00 01 7 8 00 01 11 12 10 11 10 11 DC-10 LO (115) 1 2 RO (117) 3 4 00 01 5 6 00 01 7 8 10 11 LI (114) RI (116) 10 11 9 10 00 00 01 01 ARINC SPECIFICATION 429, PART 1 - Page 92 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES Table 6-27 BNR DATA ENCODING EXAMPLES Bit No. 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 PARAMETER (Label) P SSM DATA FIELD [1] SDI LABEL 1241 2 412 Selected Course (100) 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 P P P P P P 0 0 0 0 0 0 0 0 1 0 0 Deg. [3] Selected Heading (101) 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 P P P P P P 0 0 1 0 0 0 0 0 1 0 150 Deg. [3] Selected Altitude 41000 Ft. (102) 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 P P 0 0 0 1 0 0 0 0 1 0 Selected Airspeed 423.0 Knots Selected Vertical Speed -2200 Ft/Min [2] (103) 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 P P P P P P P 0 0 1 1 0 0 0 0 1 0 (104) 1 1 1 1 1 1 0 1 1 1 0 1 1 0 P P P P P P P P 0 0 0 0 1 0 0 0 1 0 Selected Mach 800 m Mach (106) 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 P P P P P P 0 0 0 1 1 0 0 0 1 0 Desired Track 275 Deg. [3] (114) 0 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 P P P P P P 0 0 0 0 1 1 0 0 1 0 Cross Track Distance 51.0 NM (116) 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 P P P 0 0 0 1 1 1 0 0 1 0 Vertical Deviation 600 Ft. (117) 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 P P P P P P P 0 0 1 1 1 1 0 0 1 0 Flight Director Roll +30 Deg. (140) 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 P P P P P P 0 0 0 0 0 0 0 1 1 0 Flight Director Pitch -10 Deg. [2] (141) 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 P P P P P P 0 0 1 0 0 0 0 1 1 0 Fast/Slow +15 Knots (142) 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 P P P P P P 0 0 0 1 0 0 0 1 1 0 UTC (18:57:20) (150) 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 Radio Height 2450 Ft. (164) 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 P 0 0 0 0 0 1 0 1 1 1 0 Localizer Deviation +0.021 DDM Glide Slope Deviation -0.125 DDM [2] (173) 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 P P P P P P 0 0 1 1 0 1 1 1 1 0 (174) 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 P P P P P P 0 0 0 0 1 1 1 1 1 0 DME Distance 257.86 NM Altitude (29.92) 45000 Ft. Mach 0.8325 Mach Computed Airspeed 425 Knots True Airspeed 565 Knots Static Air Temp +13 Deg. C Total Air Temp -25 Deg. C [2] Altitude Rate -15250 Ft/Min [2] Present Pos. Lat. N 81.5 Deg (202) 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 P 0 0 0 0 1 0 0 0 0 0 1 (203) 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 P 0 0 1 1 0 0 0 0 0 1 (205) 0 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 P P 0 0 1 0 1 0 0 0 0 1 (206) 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 P P P P 0 0 0 1 1 0 0 0 0 1 (210) 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 P P P 0 0 0 0 0 1 0 0 0 1 (213) 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 P P P P P P P 0 0 1 1 0 1 0 0 0 1 (211) 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 P P P P P P P 0 0 1 0 0 1 0 0 0 1 (212) 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 P P P P P P P 0 0 0 1 0 1 0 0 0 1 (310) 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 Present Pos. Long. W 100.25 Ground Speed 650 Knots (311) 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 (312) 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 P P P 0 0 0 1 0 1 0 0 1 1 Flight Path Accel +2.50 g (323) 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 P P P P 0 0 1 1 0 0 1 0 1 1 NOTES: [1] “P” denotes pad “zero” or valid data, see Section 2.1.2. Note possible use of pad bits for discrete functions per Section 2.3.1.2. [2] Negative values are encoded as the two’s complements of positive values and the negative sign is annunciated in the sign/status matrix. [3] Angles in the range 0 to 180o are encoded as positive numbers. Angles in the range 180o to 360o are subtracted from 360o and the resulting number encoded as a negative value per note 2. Arc minutes and seconds are encoded as decimal degrees. ARINC SPECIFICATION 429, PART 1 - Page 93 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-28 AVM Command Word – Label 227 03D 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P Command/Control Bits AVM Hex (Equipment) ID = 03D Hex PADS SDI Label (227) 000000111101 11101001 Bits 10 9 00 01 10 11 Meaning Engine 4 (or All Call) {not used on 757} Engine 1 (or Engine 1 and 2) Engine 2 Engine 3 (or Engine 3 and 4) Bits Parameter 31 30 29 28 27 26 25 0 0 0 0 0 0 0 Not Used 0 0 0 0 0 0 1 Unit Self Test 0 0 0 0 0 1 0 Use Accelerometer A** 0 0 0 0 0 1 1 Use Accelerometer B** 0 0 0 0 1 0 0 PAD 0 0 0 0 1 0 1 Erase Fault History 0 0 0 0 1 1 0 Erase Flight History* 0 0 0 0 1 1 1 Read Fault History 0 0 0 1 0 0 0 Read Flight History* 0 0 1 0 0 1 0 Reserved* * 737 Only ** 757 Only ARINC SPECIFICATION 429, PART 1 - Page 94 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES ACMS INFORMATION TABLE 6-29 Label 061 002 ORIGIN AND DESTINATION 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM ORIGIN CHAR #3 ORIGIN CHAR #2 ORIGIN CHAR #1 OCTAL LABEL 061 Label 062 002 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DESTINATION CHAR #1 ISO #5 CHAR “SPACE” ORIGIN CHAR #4 OCTAL LABEL 062 Label 063 002 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM DESTINATION CHAR #4 DESTINATION CHAR #3 DESTINATION CHAR #2 OCTAL LABEL 063 NOTE: All characters are expressed in ISO #5 format, as defined in ARINC Specification 429. ARINC SPECIFICATION 429, PART 1 - Page 95 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-30 TACAN Control - Label 145 002 RANGE 126 RESOLUTION 1.0 RATE 5Hz ± 10% Bit No. 1 2 3 4 5 6 7 8 9-10 11-13 14 15 16 17-20 21-24 25 26 27-28 29 30-31 32 Description 0 11 1 0 04 1 0 15 SDI Pad Zero VOR/TAC Select (TAC=1, VOR=0) TACAN Select (TAC 1=1, TAC 2=0) Pad Zero BCD Units Chan Cont (LSB=17) Hex Tens Chan Cont (LSB=24) Pad Zero X/Y Mode (X=1, Y=0) Mode Cont (see Table A) Pad Zero SSM (see Table B) Parity (Odd) Table A – Mode Control Bits 27 28 00 01 10 11 Description REC A/A REC T/R A/A T/R Table B – SSM Bits 30 31 00 01 10 11 Description Valid Functional Test No Computed Data Not Used ARINC SPECIFICATION 429, PART 1 - Page 96 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES ACMS INFORMATION FLIGHT NUMBER TABLE 6-31 Label 233 EQ ID 002 MSB LSB MSB LSB 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO CHAR #2 PAD ZERO CHAR #1 OCTAL LABEL SDI 233 Label 234 EQ ID 002 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO CHAR #4 PAD ZERO CHAR #3 OCTAL LABEL SDI 234 Label 235 EQ ID 002 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO CHAR #6 PAD ZERO CHAR #5 OCTAL LABEL SDI 235 Label 236 EQ ID 002 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO CHAR #8 PAD ZERO CHAR #7 OCTAL LABEL SDI 236 Sign Matrix for BNR Bit 31 30 Meaning c-16 0 0 Failure Warning 0 1 No Computed data 1 0 Functional Test 1 1 Normal Operation ……………………………………………………………………………………………………………………………….. TABLE 6-32 Label 233 EQ ID 018 MSB LSB MSB LSB 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO Label 234 EQ ID 018 CHAR #2 PAD ZERO CHAR #1 OCTAL LABEL SDI 233 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO Label 235 EQ ID 018 CHAR #4 PAD ZERO CHAR #3 OCTAL LABEL SDI 234 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO Label 236 EQ ID 018 CHAR #6 PAD ZERO CHAR #5 OCTAL LABEL SDI 235 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM PAD ZERO CHAR #8 PAD ZERO CHAR #7 NOTE: The following information is provided in order to clarify the confusion that existed in the Industry in regards to definition of the SSM for Label 233-236. It is expected that Flight ID will be sourced from FMC EQ ID of 002. Alternative implementation may include Mode “S” XPDR EQ ID 018. In this case the user cautioned that the SSM will be BCD format. See ARINC Characteristic 718A, “Mark 4 Air Traffic Control Transponder (ATCRB/MODE S)”, Attachment 3A for more detailed information. OCTAL LABEL SDI 236 Sign Matrix for BCD Bit 31 30 00 01 10 11 Meaning Valid No Computed data Functional Test Failure Warning ARINC SPECIFICATION 429, PART 1 - Page 97 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-33 Label 360-002 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 “STX” P01 0000010 INITIAL WORD PAD ZERO BINARY WORD COUNT 00000111 OCTAL LABEL 360 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P00 FLIGHT NUMBER CHAR #3 FLIGHT NUMBER CHAR #2 FLIGHT NUMBER CHAR #1 OCTAL LABEL 360 INTERMEDIATE WORD (SECOND) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P00 FLIGHT NUMBER CHAR #6 INTERMEDIATE WORD (THIRD) FLIGHT NUMBER CHAR #5 FLIGHT NUMBER CHAR #4 OCTAL LABEL 360 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P00 ORIGIN CHAR #1 FLIGHT NUMBER CHAR #8 FLIGHT NUMBER CHAR #7 OCTAL LABEL 360 INTERMEDIATE WORD (FOURTH) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P00 ORIGIN CHAR #4 INTERMEDIATE WORD (FIFTH) ORIGIN CHAR #3 ORIGIN CHAR #2 OCTAL LABEL 360 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P00 DESTINATION CHAR #3 DESTINATION CHAR #2 DESTINATION CHAR #1 OCTAL LABEL 360 INTERMEDIATE WORD (SIXTH) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P00 PAD ZEROS PAD ZEROS DESTINATION CHAR #4 OCTAL LABEL 360 INTERMEDIATE WORD (SEVENTH) NOTE: All characters are expressed in ISO #5 format, as defined in Attachment 5. ARINC SPECIFICATION 429, PART 1 - Page 98 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-34 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P 0 SUBSYSTEM SAL SUBSYSTEM ID MSB (LABEL 172) ARINC SPECIFICATION 429, PART 1 - Page 99 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-35 FQIS System Data - Label 241 04D LABEL: EQPT ID: PARAMETER NAME: UNITS: RANGE (SCALE): SIGNIFICANT DIGITS: RESOLUTION: MIN TRANS INTERVAL (msec): MAX TRANS INTERVAL (msec): SOURCE DESTINATION IDENTIFIER: 241 04D FQIS System Data (See Below) (See Below) (See Below) (See Below) 500 1024 01 – LEFT MAIN TANK 10 – RIGHT MAIN TANK 11 – CENTER TANK Label 241 is transmitted approximately once per second. The data encoding depends on the sequence which it is transmitted. Label 241 transmitting sequence, as defined below, starts with the left main tank data followed by the right main tank and then the center tank. Once all the tank data has been transmitted (63 words of data), the sequence will repeat with word number 1, left main tank, and so on. To determine the data that is transmitted at any specific time requires knowing where in the following sequence the word is taken. LABEL 241 WORD SEQUENCE Word 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Signal LEFT MAIN TANK NO. 1 LEFT MAIN TANK NO. 2 LEFT MAIN TANK NO. 3 LEFT MAIN TANK NO. 4 LEFT MAIN TANK NO. 5 LEFT MAIN TANK NO. 6 LEFT MAIN TANK NO. 7 LEFT MAIN TANK NO. 8 LEFT MAIN TANK NO. 9 LEFT MAIN TANK NO. 10 LEFT MAIN TANK NO. 11 LEFT MAIN TANK NO. 12 LEFT MAIN TANK NO. 13 LEFT MAIN TANK NO. 14 LEFT MAIN BITE CAP. NO. 1 LEFT MAIN COMPENSATOR LOAD SELECT 10,000 LOAD SELECT 1,000 LOAD SELECT 100 NO DATA TRANSMITTED DURING THIS WORD LEFT MAIN FUEL DENSITY RIGHT MAIN TANK NO. 1 RIGHT MAIN TANK NO. 2 RIGHT MAIN TANK NO. 3 RIGHT MAIN TANK NO. 4 RIGHT MAIN TANK NO. 5 RIGHT MAIN TANK NO. 6 RIGHT MAIN TANK NO. 7 RIGHT MAIN TANK NO. 8 RIGHT MAIN TANK NO. 9 RIGHT MAIN TANK NO. 10 RIGHT MAIN TANK NO. 11 RIGHT MAIN TANK NO. 12 RIGHT MAIN TANK NO. 13 RIGHT MAIN TANK NO. 14 RIGHT MAIN COMPENSATOR RIGHT MAIN BITE CAP. NO. 2 LOAD SELECT 10,000 LOAD SELECT 1,000 LOAD SELECT 100 NO DATA TRANSMITTED DURING THIS WORD RIGHT MAIN DENSITY CENTER TANK NO. 1 CENTER TANK NO. 2 CENTER TANK NO. 3 CENTER TANK NO. 4 Units pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF Lb Lb Lb Lb/Gal pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF Lb Lb Lb Lb/Gal pF pF pF pF Range 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 0-90000 0-9000 0-900 8.000 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 319.922 0-90000 0-9000 0-900 8.000 319.922 319.922 319.922 319.922 Sig. Dig. Res Data 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 1 10000 BCD 1 1000 BCD 1 100 BCD 12 .000977 BNR (1) 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 1 10000 BCD 1 1000 BCD 1 100 BCD 12 .000977 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR 12 .078125 BNR ARINC SPECIFICATION 429, PART 1 - Page 100 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-35 (cont’d) LABEL 241 WORD SEQUENCE (cont’d) Word 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 Signal CENTER TANK NO. 5 CENTER TANK NO. 6 CENTER TANK NO. 7 CENTER TANK NO. 8 CENTER TANK NO. 9 CENTER COMPENSATOR CENTER BITE CAP. NO. 3 NO DATA TRANSMITTED DURING THIS WORD NO DATA TRANSMITTED DURING THIS WORD NO DATA TRANSMITTED DURING THIS WORD NO DATA TRANSMITTED DURING THIS WORD NO DATA TRANSMITTED DURING THIS WORD LOAD SELECT 10,000 LOAD SELECT 1,000 LOAD SELECT 100 NO DATA TRANSMITTED DURING THIS WORD CENTER TANK DENSITY Units pF pF pF pF pF pF pF Range 319.922 319.922 319.922 319.922 319.922 319.922 319.922 Lb Lb Lb Lb/Gal 0-90000 0-9000 0-900 8.000 Sig. Dig. Res Data 12 .078125 12 .078125 12 .078125 12 .078125 12 .078125 12 .078125 12 .078125 1 10000 1 1000 1 100 12 .000977 BNR BNR BNR BNR BNR BNR BNR BCD BCD BCD BNR NOTES: (1) Add 4 Lb/Gal adjustment to density data, i.e., 0000 = 4.0 Lb/Gal, FFF = 8.0 Lb/Gal. FQIS (EQ ID 04D) SDI Encoding for Labels 012, 013, 020, 022, 023, 030, 255, 310, 320, 324, 342, 346, 354 Bits 9 10 00 11 10 01 Data Aux Center Left Right FQIS (EQ ID 04D) SDI Encoding for Labels 156, 157, 160 Bits 9 10 00 10 01 11 Data #1 #2 #3 #4 ARINC SPECIFICATION 429, PART 1 - Page 101 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-36 S/G HARDWARE PART NO. – Label 060 025 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM BCD CHARACTER *** RESERVED SDI OCTAL LABEL 060 Bit No. Function Bit Status 1 0 10 SDI (Indicates Sequence ID)* 11 12 RESERVED (Own P/N) RESERVED (Position ID)** Own P/N Other P/N 13 RESERVED (Position ID)** * Refer to Table 1 below ** Refer to Table 2 below *** Unused Characters (Digits) are Pad Zero Table 1 Bits 10 9 01 10 11 Sequence ID First Three Digits Next Four Digits Last Three Digits Table 2 Bits 13 12 0 0 1 0 1 1 0 1 Position ID Left Center As Left Center As Right Right ARINC SPECIFICATION 429, PART 1 - Page 102 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-37 S/G SOFTWARE PART NO. – Label 061 025 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM BCD CHARACTER *** RESERVED SDI OCTAL LABEL 061 Bit No. Function Bit Status 1 0 10 SDI (Indicates Sequence ID)* 11 12 RESERVED (Own P/N) RESERVED (Position ID)** Own P/N Other P/N 13 RESERVED (Position ID)** * Refer to Table 1 below ** Refer to Table 2 below *** Unused Characters (Digits) are Pad Zero Table 1 Bits 10 9 01 10 11 Sequence ID First Three Digits Next Four Digits Last Three Digits Table 2 Bits 13 12 00 10 11 01 Position ID Left Center As Left Center As Right Right ARINC SPECIFICATION 429, PART 1 - Page 103 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-37 OP. SOFTWARE PART NO. – Label 207 025 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM BCD CHARACTER *** RESERVED SDI OCTAL LABEL 207 Bit No Function Bit Status 1 0 10 SDI (Indicates Sequence ID)* 11 12 RESERVED (Own P/N) RESERVED (Position ID)** Own P/N Other P/N 13 RESERVED (Position ID)** * Refer to Table 1 below ** Refer to Table 2 below *** Unused Characters (Digits) are Pad Zero Table 1 Bits 10 9 01 10 11 Sequence ID First Three Digits Next Four Digits Last Three Digits Table 2 Bits 13 12 00 10 11 01 Position ID Left Center As Left Center As Right Right ARINC SPECIFICATION 429, PART 1 - Page 104 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-38 Tank Unit Data – Label 241 160 Word Number SDI DESCRIPTION 1 1 Tank Unit #1 2 1 Tank Unit #2 3 1 Tank Unit #3 4 1 Tank Unit #4 5 1 Tank Unit #5 6 1 Tank Unit #6 7 1 Tank Unit #7 8 1 Tank Unit #8 9 1 Tank Unit #9 10 1 Tank Unit #10 11 1 Tank Unit #11 12 1 Tank Unit #12 13 1 Tank Unit #13 14 1 Tank Unit #14 15 1 BITE Capacitor 16 1 Compensator 17 1 Load Select 18 1 Load Select 19 1 Load Select 20 1 Undefined 21 1 Fuel Density 22 2 Tank Unit #1 23 2 Tank Unit #2 24 2 Tank Unit #3 25 2 Tank Unit #4 26 2 Tank Unit #5 27 2 Tank Unit #6 28 2 Tank Unit #7 29 2 Tank Unit #8 30 2 Tank Unit #9 31 2 Tank Unit #10 32 2 Tank Unit #11 33 2 Tank Unit #12 34 2 Tank Unit #13 35 2 Tank Unit #14 36 2 Compensator 37 2 BITE Capacitor #2 38 2 Load Select 39 2 Load Select 40 2 Load Select 41 2 Undefined 42 2 Fuel Density 43 3 Tank Unit #1 44 3 Tank Unit #2 45 3 Tank Unit #3 46 3 Tank Unit #4 47 3 Tank Unit #5 48 3 Tank Unit #6 49 3 Tank Unit #7 50 3 Tank Unit #8 51 3 Tank Unit #9 52 3 Compensator 53 3 BITE Capacitor #3 54 3 Undefined 55 3 Undefined 56 3 Undefined 57 3 Undefined 58 3 Undefined 59 3 Load Select 60 3 Load select 61 3 Load Select 62 3 Undefined 63 3 Fuel Density UNITS pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF Lbs. Lbs. Lbs. Lbs/Gal pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF pF Lbs Lbs Lbs Lbs/Gal pF pF pF pF pF pF pF pF pF pF pF Lbs Lbs Lbs Lbs/Gal ARINC SPECIFICATION 429, PART 1 - Page 105 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLE TABLE 6-38-1 Tank Unit Data – Label 241 160 (cont’d) RAW DATA TABLE All Data Entries are 12-bit Center Justified Words Table Organization: Words 1-20 raw data for left tank Word 1 = Tank Unit #1 Word 2 = Tank Unit #2 Word 3 = Tank Unit #3 Word 4 = Tank Unit #4 Word 5 = Tank Unit #5 Word 6 = Tank Unit #6 Word 7 = Tank Unit #7 Word 8 = Tank Unit #8 Word 9 = Tank Unit #9 Word 10 = Tank Unit #10 Word 11 = Tank Unit #11 Word 12 = Tank Unit #12 Word 13 = (Spare) Word 14 = (Spare) Word 15 = BITE Capacitor #1 Word 16 = Compensator Word 17 = Load Select 10,000 Digit Word 18 = Load Select 1,000 Digit Word 19 = Load Select 100 Digit Word 20 = None Word 21-40 raw data for right tank Word 21 = Tank Unit #1 Word 22 = Tank Unit #2 Word 23 = Tank Unit #3 Word 24 = Tank Unit #4 Word 25 = Tank Unit #5 Word 26 = Tank Unit #6 Word 27 = Tank Unit #7 Word 28 = Tank Unit #8 Word 29 = Tank Unit #9 Word 30 = Tank Unit #10 Word 31 = Tank Unit #11 Word 32 = Tank Unit #12 Word 33 = (Spare) Word 34 = (Spare) Word 35 = Compensator Word 36 = BITE Capacitor #2 Word 37 = Load Select 10,000 Digit Word 38 = Load Select 1,000 Digit Word 39 = Load Select 100 Digit Word 40 = None Words 41-60 raw data for Center Tank Word 41 = Tank Unit #1 Word 42 = Tank Unit #2 Word 43 = Tank Unit #3 Word 44 = Tank Unit #4 Word 45 = Tank Unit #5 Word 46 = Tank Unit #6 Word 47 = Tank Unit #7 Word 48 = Tank Unit #8 Word 49 = Tank Unit #9 Word 50 = Compensator Word 51 = BITE Capacitor #3 Word 52 = (Spare) Word 53 = (Spare) Word 54 = (Spare) Word 55 = (Spare) Word 56 = (Spare) Word 57 = Load Select 10,000 Digit Word 58 = Load Select 1,000 Digit Word 59 = Load Select 100 Digit Word 60 = None ARINC SPECIFICATION 429, PART 1 - Page 106 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-39 c-17 Note: Bit examples for 24- bit ICAO address labels 24/216 have been moved to Part 2 of ARINC 429. ARINC SPECIFICATION 429, PART 1 - Page 107 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-40 RADIO SYSTEMS MANAGEMENT WORD FORMATS ADF PARITY (odd) SIGN/STATUS MATRIX 0.5 kHz SPAR E ANT BFO RESERVED (SDI) Function Bit No. 32 Example 1 Notes 31 30 00 1000 kHz (1) 29 28 27 00 1 100 kHz (0) 10 kHz (5) 1 kHz (7) 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 0 0 0 0 0101 01 11 1 0 0 [1] [2] LABEL ADF Frequency (032) 11 10 9 8 7 6 5 6 4 2 1 0 0 0 010 110 00 [2] 2 30 [1] When bit no. 14 is “zero,” the radio should tune to the whole kilohertz frequency encoded in the word. When bit no. 14 is “one,”the radio should tune 0.5 kHz above this frequency. [2] Bit Zero One 11 BFO off BFO on 12 ADF Mode ANT Mode TABLE 6-41 DME PARITY (odd) SIGN/STATUS MATRIX 0.00/0.05 MHz IDENT DISPLAY MLS FREQ. ILS FREQ. c-4 Function 10 MHz 1 MHz 0.1 MHz DME SDI Mode Bit No. 32 Example 1 Notes [1] [5] 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 00 00 1 0101 0110 1 0 1 0 0 000 00 [2] [7] [3] [4] [1] [2] [3] . [4] . [5] c-16 c-10 [6] [7] c-4 Directed Frequency #1, 115.65 MHz, VOR Bit 18 is used only for VOR & ILS frequencies and is limited to .00 or .05 Bits 15 & 14 codes: VOR (0,0), ILS (0,1) or MLS (1,0), (1,1) is spare Refer to table in Section 4.1.2 of ARINC Characteristic 709 for mode codes Although not encoded in the tuning word all VOR & ILS frequencies have 1 as hundreds digit. Although not encoded in the tuning word all MLS frequencies have 5 as the thousand digit and 0 as the hundred digit. Add 5031 MHz to the coded value to obtain the MLS frequency. (Original note deleted) Bit 16 when equal to “one” specifies that a displayable BCD output is to be provided for that station, and when bit 17 is a “one,” an ident output is to be generated for that station. LABEL DME Frequency (035) 876 543 21 101 110 00 5 30 ARINC SPECIFICATION 429, PART 1 - Page 108 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-42 RADIO SYSTEMS MANAGEMENT WORD FORMATS HF COM Word #1 Function 10 MHz (2) 1 MHz (3) 0.1 MHz (5) 0.01 MHz (7) 0.001 MHz (9) LABEL HF COM Frequency (037) USB/LSB MODE SSM/AM MODE WORD IDENT. PARITY (Odd) SIGN/STATUS MATRIX Bit No. Example Notes 32 31 30 29 28 0 00 10 27 26 25 24 23 22 21 20 19 18 17 16 0 0 1 1 0101 0111 15 14 13 12 1001 11 10 9 0 00 [1] [2] 876 543 2 1 111 110 0 0 7 3 0 [1] Bit no. 11 should be set to “zero” for LSB operation and “one” for USB operation. [2] Bit no. 10 should be set to “zero” for AM operation and “one” for SSB operation. TABLE 6-42-1 HF COM Word #2 Function 0.1 kHz (5) NOT USED c-4 LABEL HF COM Frequency (037) RESERVED WORD IDENT. PARITY (odd) SIGN/STATUS MATRIX Bit No. Example 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 00 0101 000000000000000 0 1 111 110 00 [1] 7 3 0 [1] Bit No. 10 is reserved for CW mode select. The CW mode is selected when bit number 10 is a “one”. When the second word is transmitted, it should immediately follow the first HF word. WORD IDENT. PARITY (odd) SIGN/STATUS MATRIX TABLE 6-43 HF COM Word #1 Function ALTERNATE FORM 10MHz (2) 1 MHz (3) 0.1 MHz (5) 0.01MHz (7) 0.001MHz (9) SDI LABEL HF COM Frequency (205) Bit No. Example 32 31 30 0 00 29 28 10 27 26 25 24 23 22 21 20 0011 0101 19 18 17 16 0111 15 14 13 12 11 1001 0 10 9 8 7 6 5 4 3 2 1 0 1 101 000 01 5 0 2 ARINC SPECIFICATION 429, PART 1 - Page 109 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES WORD IDENT. PARITY (odd) SIGN/STATUS MATRIX TABLE 6-43-1 HF COM Word #2 Function 0.1 kHz (5) NOT USED SDI LABEL HF COM Frequency (205) Bit No. Example 32 31 30 29 28 27 26 0 00 0100 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 000 0 0 00 00 000 0 0 1 0 0 101 000 0 1 5 0 2 RADIO SYSTEMS MANAGEMENT WORD FORMATS TABLE 6-44 ILS c- 5 Function 10 MHz (0) 1 MHz (9) 0.1 MHz (3) 0.01 MHz (0) PARITY (odd) SIGN/STATUS MATRIX c- 3 Bit No. Example 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1 00 000 1001 0011 0000 0 0 SPAR E IL S CAT. 12 11 00 RES. (SDI) LABEL Frequency (033) 10 9 8 7 6 5 4 3 2 1 0 0 110 110 00 3 30 BIT POSITION 12 11 c- 5 CATEGORY NOT 0 0 ILS CAT I 0 1 ILS CAT II 1 0 ILS CAT III 1 1 TABLE 6-44-1 VOR/ILS ILS MODE PARITY (odd) SIGN/STATUS MATRIX Function 10 MHz (0) 1 MHz (9) 0.1 MHz (3) 0.01 MHz (0) SPARE RES. (SDI) LABEL VOR/ILS Frequency (034) Bit No. 32 Example 1 31 30 00 29 28 27 000 26 25 24 23 1001 22 21 20 19 0011 18 17 16 15 0000 14 13 12 11 0 00 0 [1] 10 9 00 8 76 5 4 3 2 1 001 1 1 0 00 4 3 0 c- 2 [1] Bit number 14 should be set to “zero” for VOR frequencies and “one” for ILS frequencies by the tuning information sources. ARINC SPECIFICATION 429, PART 1 - Page 110 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-45 VHF/COM Function 10 MHz (2) 1 MHz (8) 0.1 MHz (5) 0.01 MHz (3) 0.001 MHz RES (0) (SDI) LABEL VHF COM Frequency (030) PARITY (odd) SIGN/STATUS MATRIX Bit No. Example 32 31 30 29 28 27 26 25 24 23 1 0 0 010 1000 22 21 20 19 0101 18 17 16 15 0011 TABLE 6-46 RADIO SYSTEMS MANAGEMENT WORD FORMATS ATC TRANSPONDER Function 0-7 (3) A4 A2 A1 Pilot Selected Mode A Reply Code 0-7 0-7 (6) (2) B4 B2 B1 C4 C2 C1 0-7 (0) D4 D2 D1 14 13 12 11 0000 10 9 8 7 6 5 4 3 2 1 0 0 000 110 00 0 3 0 RES. (SDI) LABEL Beacon Transponder Code (031) Hijack Mode Control Function ALT. DATA SOURCE SEL. Ident (SPI) CONTROL FUNCTION ALT. REP. ON/OFF PARITY (odd) SIGN/STATUS MATRIX Bit No. Example Notes 32 31 30 29 28 27 1 00 0 1 1 26 25 24 11 0 23 22 21 0 10 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 100 110 00 [2] [1] [2] [1] 1 30 [1] Bit Zero One c-17 11 Altitude Report On Altitude Reporting Off 13 Ident. (SPI) OFF Ident. ON 14 Use #1 Alt. Data Source Use #2 Alt. Data Source Control Panel Function Function DABS ON/ ASAS OFF Reset Aural Warning Signal 16 15 12 0 01 0 10 LABEL_Beacon Transponder Code (031) New Bit Assignment Bit 17 Meaning 0 Transponder IS NOT operating in the Hijack Mode 1 Transponder IS operating in the Hijack Mode ARINC SPECIFICATION 429, PART 1 - Page 111 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-47 TACAN Control – Label 146 112 RANGE 126 RESOLUTION 1.0 RATE 5Hz ±10% Bit No. 1 2 3 4 5 6 7 8 9-10 11 12 13 14 15 16 17-20 21-24 25 26 27-28 29 30-31 32 Description 0 1 1 1 0 4 0 1 1 6 0 SDI Distance Memory (DIST MEM=1) Bearing Memory (BRG MEM=1) Pad Zero VOR/TAC Select (TAC=1, VOR=0) TACAN Select (TAC 1=1, TAC 2=0) Pad Zero BCD Units Chan Cont (LSB=17) Hex Tens Chan Cont (LSB=24) Pad Zero X/Y Mode (X=1, Y=0) Mode Cont (See Table A) Pad Zero SSM (See Table B) Parity (Odd) RADIO SYSTEMS MANAGEMENT WORD FORMATS Table A – Mode Control Bits 27 28 00 01 10 11 Description REC A/A REC T/R A/A T/R Table B - SSM Bits 30 31 00 01 10 11 Description Valid Functional Test No Computed Data Not Used ARINC SPECIFICATION 429, PART 1 - Page 112 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-48 TACAN Control Word – Label 147 115 Bit No. 1 0 2 1 3 1 4 0 5 0 6 1 7 1 8 1 9 10 11 12 13 14 15 -16 17 18 19 20 21 22 23 24 25 26 27-28 29 30-31 32 Function 1 4 Label Number (147) 7 SEL SEL LOBE AUTO/MAN TUNE A/A AGC Disable Pad TACAN/MLS Select (LSB) BCD Channel Code Units (MSB) (LSB) HEX Channel Code Tens TST X/Y Mode Control INT SSM Parity (odds) (MSB) 1 TACAN 1 ANTENNA 2 ANTENNA LOBE AUTOTUNE ENABLE TEST X NORMAL 0 Note TACAN 2 ANTENNA 1 MANUAL TUNE DISABLE X [1] NO TEST Y [2] INVERSE [3] [1] TACAN/MLS Select Bits 15 16 00 10 01 11 Description TACAN MLS W Not Used MLS Z [2] Mode Control Bits 27 28 00 10 01 11 Description REC T/R A/A REC A/A T/R [3] SSM Bits 30 31 00 01 10 11 Description Valid Data No Computed Data Functional Test Not Used ARINC SPECIFICATION 429, PART 1 - Page 113 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-49 Horizontal Alarm Limit/Horizontal Integrity Threshold (BNR) – Label 124 – IE2 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 P SSM [Note 1] Horizontal Alarm Limit (HAL) /Horizontal Integrity Threshold [Notes 2, 3] Pad [Note 4] Phase of Flight [Note 5] 876 543 21 Octal Label 4 2 1 001 010 10 [1] SSM (Status Matrix): BITS 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data (NCD) Functional Test Normal Operation [2] Horizontal Alarm Limit (HAL) / Horizontal Integrity Threshold The LDPU’s optional internal GNSS receiver will generate a horizontal position integrity alarm when the EPU (Estimated Position Uncertainty) exceeds the Horizontal Alarm Limit for a period of time equal to the Time To Alarm for the current phase of flight. If the value of the HPL (Horizontal Protection Level, label 130) output from the internal GNSS receiver exceeds the horizontal integrity threshold specified in label 124, then horizontal integrity is deemed to be unavailable. In the HAL field, the LSB (bit 16) has a weight of 1 meter, while the MSB (bit 28) has a weight of 4096 m. [3] “All Ones” Value for HAL Field If an “all ones” value is encoded into bits 28 to 18, the HAL value should be assumed to be the default value for the phase of flight specified in bits 13 to 11. If the HAL value is “all ones” (8191 meters) and the phase of flight code is “000” (“unspecified”) then the SSM field should be set to NCD. [4] Pad Bits The pad bits, bits 15 and 14, should be set to 0. [5] Phase of Flight The “phase of flight” field, bits 13 to 11, informs an optional GNSS receiver within the LDPU of the current phase of flight, so that the GNSS receiver may adjust its internal parameters to meet requirements for that phase of flight. BITS 13 12 11 Phase of Flight Alarm Limit Horizontal Vertical Time To Alarm 0 0 0 Not Specified Unchanged Unchanged Unchanged 0 0 1 Oceanic 4 NM (7408 m) N/A 8s 0 1 0 En Route 2 NM (3704 m) N/A 8s 0 1 1 Terminal/Departure 1 NM (1852 m) N/A 8s 1 0 0 Non-Precision Approach 0.3 NM (555.6 m) N/A 8s 1 0 1 LNAV/VNAV Precision Appr. As specified in 1s 1 1 0 APV-II Precision Approach As specified in bits Vertical Alarm 28 to 18 Limit word, label 1s 1 1 1 GLS Precision Approach TBD 1s ARINC SPECIFICATION 429, PART 1 - Page 114 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-50 Vertical Alarm Limit / Vertical Integrity Threshold (BNR) – Label 127 – IE2 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM Note 1 Vertical Alarm Limit (VAL) /Vertical Integrity Threshold [Note 2] Pad [Note 3] Octal Label 7 2 1 111 010 10 [1] SSM (Status Matrix): BITS 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Test Normal Operation [2] Vertical Alarm Limit (VAL) / Vertical Integrity Threshold The LDPU’s optional internal GNSS receiver will generate a vertical position integrity alarm when the estimated error in vertical position exceeds the Vertical Alarm Limit for longer than the time-to-alarm for the current phase of flight. (The phase of flight is specified in label 124.) If the value of the VPL (Vertical Protection Level, label 130) output from the internal GNSS receiver exceeds the vertical alarm limit specified in bits 28-21, then vertical position integrity is defined to be “unavailable.” The LSB, bit 21, has a weight of 1 meter, while the MSB, bit 28, has a weight of 128 m. [3] Pad Bits The pad bits, bits 20 to 11, should be set to 0. ARINC SPECIFICATION 429, PART 1 - Page 115 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES TABLE 6-51 CDTI Display Unit - Label 262 - 144 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM S Display Range Spare SDI Octal Label 00 + 20 NM 00 262 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 010 011 01 Bit 1 Label 1st digit 2 Label 1st digit 3 Label 2nd digit 4 Label 2nd digit 5 Label 2nd digit 6 Label 3rd digit 7 Label 3rd digit 8 Label 3rd digit ___2 ___6 ___2 9 Reserved for SDI 10 Reserved for SDI 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Display Range 16 Display Range 17 Display Range 18 Display Range 19 Display Range 20 Display Range 21 Display Range 22 Display Range 23 Display Range 24 Display Range 25 Display Range 26 Display Range 27 Display Range 28 Display Range 29 sign (always positive) 0 30 SSM 31 SSM 32 Parity Description 1 0 1 1 0 0 1 10 0 0 0 0 0 0 LSB (1/32 NM) (1/16 NM) (1/8 NM) (1/4 NM) (1/2 NM) (1 NM) (2 NM) (4 NM) (8 NM) (16 NM) (32 NM) (64 NM) (128 NM) MSB (256 NM) Notes [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [2] [2] NOTES [1] All zeroes = “Range is less than 1/32 NM,” All ones = “Range is 512 NM.” [2] Sign/Status Matrix (SSM): Bits 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Test Normal Operation ARINC SPECIFICATION 429, PART 1 - Page 116 TABLE 6-52 ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES Range Ring Radius – 261 144 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RR T P SSM Range Ring Radius Spare SDI Octal Label Valid 2 NM 00 162 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 100 011 01 Bit 1 Label 1st digit 2 Label 1st digit 3 Label 2nd digit 4 Label 2nd digit 5 Label 2nd digit 6 Label 3rd digit 7 Label 3rd digit 8 Label 3rd digit ___2 ___6 ___1 9 Reserved for SDI 10 Reserved for SDI 11 RRT,Range Ring Type 12 Spare 13 Spare 14 Range ring radius 15 Range ring radius 16 Range ring radius 17 Range ring radius 18 Range ring radius 19 Range ring radius 20 Range ring radius 21 Range ring radius 22 Range ring radius 23 Range ring radius 24 Range ring radius 25 Range ring radius 26 Range ring radius 27 Range ring radius 28 Range ring radius 29 sign (always positive) 0 30 SSM 31 SSM 32 Parity NOTES Description 1 0 1 1 0 0 0 1 0 0 (0 = floating, 1 = locked) 0 0 LSB (1/64 NM) (1/32 NM) (1/16 NM) (1/8 NM) (1/4 NM) (1/2 NM) (1 NM) (2 NM) (4 NM) (8 NM) (16 NM) (32 NM) (64 NM) (128 NM) MSB (256 NM) Notes [1] [1] [1] Sign/Status Matrix (SSM) Bits 31 30 0 0 0 1 1 0 1 1 Meaning Failure Warning No Computed Data Functional Test Normal Operation ARINC SPECIFICATION 429, PART 1 - Page 117 ATTACHMENT 7 DATA BIT ENCODING LOGIC BI - POLAR RZ BIT NUMBER DATA 01 0 0 1 1 8 9 10 11 N 67 101101 45 23 1 HI NULL LO ARINC SPECIFICATION 429, PART 1 - Page 118 ATTACHMENT 8 OUTPUT SIGNAL TIMING TOLERANCES HI TRANSMITTED VOLTAGE LINE A TO LINE B NULL LO X Y PARAMETER Bit Rate Time Y Time X Pulse Rise Time** Pulse Fall Time** HIGH SPEED OPERATION 100k bps + 1% 10 µsec + 2.5% 5 µsec + 5% 1.5 + 0.5 µsec 1.5 + 0.5 µsec LOW SPEED OPERATION 12 – 14.5kbps Z* µsec + 2.5% Y/2 + 5% 10 + 5 µsec 10 + 5 µsec * Z = 1 where R = bit rate selected from 12 – 14.5kbps range ** Pulse rise and fall times are measured between the 10% and 90% voltage amplitude points on the leading and trailing edges of the pulse and include permitted time skew between the transmitter output voltages A-to- ground and B-to-ground. These rise and fall times are for open circuit output measurements – Appendix 1 c-16 provides waveforms for typical test performance. ARINC SPECIFICATION 429, PART 1 - Page 119 THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ATTACHMENT 9A GENERAL AVIATION LABELS AND DATA STANDARDS The following labels and data standards provided by GAMA (General Aviation Manufacturers Association) are typically used by general aviation. Labels with a “G” or “P” suffix refer to GAMA standard, or GA industry PRIVATE bit structures, respectively. All others are ARINC standard words. LABEL (OCTAL) 001 002 012 017 024G 027 030G 031G 032 033 034G 035G 041 042 043 060P 061P 074G 075G 100G 100 101G 102G 105 110 113G 114 115 116G 117G 121 122G 123 125 147G 150 157P 162G 163G 173 174 202 204 210 213 222P 222 EQPT. ID (HEX) 02 09 02 09 02 09 10 11 11 02 16 02 18 02 12 02 10 02 10 11 02 09 02 02 02 02 02 02 02 02 11 02 25 02 10 11 02 02 02 02 02 02 02 02 02 02 02 06 12 02 10 10 02 09 02 02 02 02 02 10 11 PARAMETER NAME Distance to go Distance to go Time to go Time to go Ground Speed Ground Speed Selected Runway Heading Selected Course 1 Selected Course 2 VHF COM Frequency VHF COM Frequency Beacon Transponder Code Beacon Transponder Code ADF Frequency ADF Frequency ILS Frequency ILS Frequency VOR/ILS Frequency VOR/ILS Frequency VOR/ILS Frequency DME Frequency DME Frequency Set Position Latitude Set Position Longitude Set Magnetic Heading Omega Data Select Covariance Data Data Record Header Active WPT From/To Data Selected Course 1 Selected Course 1 Selected Heading Selected Heading Selected Altitude Selected Runway Heading Selected Course 2 Message Checksum Desired Track (True) Waypoint Bearing (True) Cross Track Distance Vertical Deviation HORIZ.CMD.(To Autopilot) VERT.CMD. (To Autopilot) Throttle Command Greenwich Mean Time Magnetic Variation Greenwich Mean Time Normalized AOA ADF Bearing Wind on Nose Localizer Deviation Glideslope Deviation DME Distance DME Distance Baro Corrected Alt.#1 True Airspeed Static Air Temperature VOR Radial VOR Omnibearing VOR Omnibearing VOR Omnibearing 241P 251G 252 260G 261P 275G 277P 300G Normalized AOA 0 2 Distance To Go 0 2 Time-To-Go 0 2 Date 0 2 GPS Discrete Word 1 0 2 LRN Status Word 0 2 Cabin DSPY Cont DSC 0 2 STN MAG DEC, Type & Class DATA TYPE BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BNR BNR DSC DSC BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BCD BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR UNITS N.M. Min. Knots Degrees Degrees Degrees MHz MHz Discrete Discrete KHz KHz MHz MHz MHz MHz MHz MHz MHz Deg:Min Deg:Min Deg Discrete Discrete Discrete Deg/180 Deg/180 Deg/180 Deg/180 Feet Deg/180 Deg/180 Deg/180 Deg/180 Naut Mi Feet Deg/180 Deg/180 Deg/sec Hr/Min Deg/180 Hr:Min:Sec 1=Stall Deg/180 Knots DDM DDM Naut Mi Naut Mi Feet Knots Deg C Deg/180 Deg/180 Deg/180 Deg/180 BNR BNR BNR BCD DSC DSC DSC BNR 1-Stall Naut Mi Minutes Discrete Discrete Discrete Discrete Discrete RANGE ±3999.9 0-399.9 0-2000 0-359.9° 0-359° 0-359° 118-135.975 118-135.975 SIG BITS / DIGITS 5 4 4 4 3 3 5 5 POSITIVE SENSE Always Pos Always Pos Always Pos Always Pos Always Pos Always Pos Always Pos Always Pos Always Pos APPROX. RESOL MIN XMIT INT (msec) 0.1 100 0.1 100 1.0 250 0.1° 167 1.0° 167 1.0° 167 0.025 0.025 190-1750 5 190-1750 5 108-111.95 4 108-111.95 4 108-117.95 4 108-117.95 4 108-117.95 4 108-135.95 4 108-134.95 4 180N-180S 6 180E-180W 6 0-359° 3 ±180° ±180° ±180° ±180° 65536 ±180° ±180° ±180° ±180° 128 16384 ±180° ±180° 2.56 0-23.59.9 ±180° 23:59:59 ±2 ±180° 256 0.4 0.8 512 512 131,072 2047.93 512 ±180° ±180° ±180° ±180° 12 12 12 12 16 11 12 12 12 18 14 14 12 18 5 12 5:6:6 12 12 9 12 12 16 16 17 15 11 12 12 12 12 0.5 0.5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 North 0.1 East 0.1 1 .0° Above S.L. A/C To WPT Fly Left Fly Down Fly Right Fly Up Inc. Power East Upward Head Wind Fly Right Fly Down Always Pos Always Pos Above S.L. Always Pos Above Zero To Station From VOR From VOR From VOR 0.05° 0.05° 0.05° 0.05° 1 0.1° 0.05° 0.05° 0.05° 0.0005 1.0 0.01° 0.05° 0.001° 0.1 0.05° 1.0 sec 0.0005 0.05° 0.5 0.0001 0.0002 0.005 0.005 1.0 0.0625 0.25 0.044° 0.044° 0.044° 0.044° 100 100 167 167 167 167 167 100 100 250 250 250 100 100 See Note 1 See Note 1 167 167 31.3 31.3 100 167 167 See Note 2 31.3 31.3 31.3 31.3 50 50 50 100 500 50 125 31.3 50 33.3 33.3 83.3 3.3 31.3 62.5 250 50 50 31.3 31.3 ±2 12 Upward 0.0005 125 4096 15 Always Pos 0.125 100 512 9 Always Pos 1.0 100 6 1 Day 500 1000 200 200 See Note 2 MAX XMIT INT (msec) MAX UPDATE INT NOTES 200 200 500 333 333 333 100 200 100 200 100 200 100 200 200 200 333 333 333 333 333 200 200 500 500 500 200 200 333 333 62.5 62.5 200 333 333 62.5 62.5 62.5 62.5 100 100 100 200 1000 100 125 125 62.5 100 66.6 66.6 167 167 62.5 125 500 100 100 62.5 62.5 Bit 11 Non Std SSM Squelch SSM XMIT SSM Reply See Att. 9B See Att. 9B See Att. 9B See Att. 9B See Att. 9B See Att. 9B See Att. 9B See Att. 9B See Att. 9B Bit 11 Non Std Bit 11 Non Std See Att. 9B See Att. 9B See Att. 9B Bit 11 Non Std See Att. 6 Bit 11 Non Std Bit 29 Non Std See Att. 6 More than one MKR beacon bit set is MKR self test. 125 200 200 1000 1000 400 200 125 1000 See Att. 9B See Att. 9B See Att. 9B ARINC SPECIFICATION 429, PART 1 - Page 120 THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ATTACHMENT 9A GENERAL AVIATION LABELS AND DATA STANDARDS LABEL (OCTAL) 301G 302G 303G 304G 305G 306G 307G 310 311 312 313 314 315 316 320 321 326G 327G 351G 352G 353P 371G EQPT. ID (HEX) 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 PARAMETER NAME Message Characters 7-9 Message Characters 10-12 Message Length / Type / Number Message Characters 1-3 Message Characters 4-6 NAV/WPT/AP Latitude NAV/WPT/AP Longitude Present Position Latitude Present Position Longitude Ground Speed Track Angle (True) True Heading Wind Speed Wind Angle (True) Magnetic Heading Drift Angle Lateral Scale Factor Vertical Scale Factor Distance To Destination Est Time to Destinaiton DATA TYPE BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR UNITS Discrete Discrete Discrete Discrete Discrete Deg/280 Deg/180 Deg/180 Deg/180 Knots Deg/180 Deg/180 Knots Deg/180 Deg/180 Deg/180 Naut Mi Feet Naut Mi Minutes 0 2 Dest Local Time Offset BCD Hour/Min 0 2 Specific Equipment Ident DSC 0 9 Specific Equipment Ident DSC 1 0 Specific Equipment Ident DSC 1 1 Specific Equipment Ident DSC 1 2 Specific Equipment Ident DSC 1 6 Specific Equipment Ident DSC 1 8 Specific Equipment Ident DSC RANGE SIG BITS / DIGITS POSITIVE SENSE APPROX. RESOL MIN XMIT INT (msec) See Note 2 See Note 2 See Note 2 180N-180S 20 180E-180W 20 180N-180S 20 180E-180W 20 4096 15 ±180° 12 ±180° 15 256 8 ±180° 8 ±180° 15 ±180° 12 ±128 15 ±2048 15 32,768 18 4096 12 North East North East Always Pos Always Pos Always Pos Always Pos .000172° .000172° .000172° .000172° 0.125 0.05 0.0055° 1.0 0.7 0.0055° 0.05° 0.0039 NM 0.0625 Ft 0.125 1.0 See Note 2 See Note 2 See Note 2 See Note 2 100 100 25 25 25 50 50 25 25 80 80 500 500 23:59 5 Always Pos .01 Min 1000 500 500 500 500 500 500 500 MAX XMIT INT (msec) MAX UPDATE INT NOTES 200 200 50 50 50 100 100 50 50 1200 1200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Via Flight Plan Via Flight Plan See Att. 9B NOTE 1: NOTE 2: These labels are transmitted once at the beginning of each flight plan/graphics map data transfer. Refer to the GAMA FMS Output Bus Standard for further information. These labels are used to make up the individual records that comprise a flight plan/graphics map data transfer. Not all labels are transmitted with each record. Ten records are transmitted in one second. Refer to the “FMS Waypoint/Navaid/Airport Data Transfer Protocol”, addendum 3. THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ARINC SPECIFICATION 429, PART 1 - Page 121 ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM See Chapter 3 See Below SDI VOR/ILS Frequency Label 034G Bit 11 Bit 12 Bit 13 Marker Sensitivity Last Tune Source VOR Digital Filtering “1” denotes high, “0” denotes low “1” denotes control head. “0“ denotes other “1” denotes no filter. “0” denotes filter (Normally “1” but “0” for Honeywell (Olathe) manufactured equipment) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM See Chapter 3 See Below SDI DME Frequency Label 035G Bit 13 12 11 DME Mode 0 0 0 Standby 0 0 1 Directed Freq #1 0 1 0 Directed Freq #2 0 1 1 Directed Freq #3 1 0 0 Hold Freq #1 1 0 1 Hold Freq #2 1 1 0 Not used 1 1 1 Spare 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM 0 Relane MSB Binary Address Omega Data Select Label 060P *Specific user word Bit 28 Bit 27 Full Restart Bit Rho Rho Updating “1” denotes restart “1” inhibits update Bit 26 25 Function 0 0 No Action 0 1 Relane 1 0 Do Not Release 1 1 Invalid Use 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM Term Indent - Exponent (IEEE Flt. Pt.) MSB Mantissa (IEEE Flt. Pt.) Coveriance Data* Label 061P *Specific user word Bit 27 Sign “1” denotes negative Bit 29 28 Functions 0 0 Term 1 0 1 Term 2 1 0 Term 3 1 1 Not Used 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM Pad (Zeros) Pad (Zeros) MSB Number of Records Data Record Header Lable 074G Bit 21 Prior Record Change “1” denotes changed record 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM 0 From Waypoint LS Byte To Waypoint LS Byte From Waypoint MS Byte To Waypoint MS Byte See Below Active Waypoint From/To Data Label 075G Bit 9 Bit 10 Bit 11 Bit 12 Auto/Leg/Man/Obs Mag/True Reference Radar Waypoint Displayed Lat/Long/ILS Mode “1” denotes Auto/Leg, “0” denotes Man/Obs “1” denotes True, “0” denotes Magnetic “1” inhibits display “1” denotes ILS, “0“ denotes Lat/Long These are User Specific bits 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM Same as Attachment 2 SDI Selected Altitude Label 102G Bit 11 Bit 12 Altitude Select Knob Altitude Alert “0” denotes “in motion” “1” denotes “on” User-specific bits ARINC SPECIFICATION 429, PART 1 - Page 122 THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM Check Sum Message Check Sum Label 113G The message checksum is the two’s complement 21 but sum of all the other words transmitted in the group discarding the intermediate carry and replacing bit 32 with odd parity. 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM + - Data See Below SDI Vertical Deviation Label 117G Bit 14 Bit 13 Bit 12 Bit 11 VNAV Arm Enable/Alert VNAV Bendover VNAV Bendover Direction Altitude with respect to 1000 ft. “1” denotes enable “1” denotes “capture”, “0” denotes “track” “1” denotes “fly up”, “0” denotes flydown” “1” denotes “greater”, “0” denotes less User Specific bits 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Day P SSM 10s 1s Month 10s 1s Year SDI 10s 1s Date Label 260G 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P SSM Spare Waypoint Number (Binary) See Below Words in Message Message Length/Type/No. Label 303G Bit 16 Date Record “1” denotes “off route”, “0” denotes “on route” Bit 24 Bit 25 Bit 26 FMS Plan Mode WPT at Plan Center Flight Plan GAP Follows “1” denotes “SELECT”, “0” denotes “not SELECT” “1” denotes “CENTER”, “0” denotes “not CENTER” “1” denotes “GAP”, “0” denotes “no GAP” Bit 15 14 13 WYPT/STATION TYPE 0 0 0 Waypoint 0 0 1 Nav Aid 0 1 0 Airport 0 1 1 NDB 1 0 0 Altitude Profile Point 1 0 1 No Symbol 1 1 0 VOR 1 1 1 Intersection THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ARINC SPECIFICATION 429, PART 1 - Page 123 ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES Bit No. Function 1 2 3 4 5 6 Label 261G 02 LRN Status 7 8 9 10 SDI 11 12 Spare 13 14 15 16 Reserved 17 18 19 20 Vert Dev (Final Appr) 21 Lat Dev Scaling in Transition 22 Lat Dev. (Final Appr) 23 Appr Integrity (Final Appr) 24 GPS Integrity GPS Annunciation 25 27(0) & 26(0) & 25(0) – Enroute 26 27(0) & 26(0) & 25(1) – Terminal 27 27(0) & 26(1) & 25(0) – Approach (27(1) & 26(0) & 25(0) – Oceanic 28 29 Spare SSM 30 31 31(0) & 30(0) – Normal Operations 31(0) & 30(1) – No Computed Data 31(1) & 30(0) – Functional Test 31(1) & 30(1) – Not used 32 Parity (odd) Bit Status 1 0 x x x x x x x x Pad Zero Angular Yes Angular Valid Fail Linear No Linear Invalid Valid ARINC SPECIFICATION 429, PART 1 - Page 124 THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label 275G 02 LRN Status SDI Waypoint Alert Dead Reckon Direct To Mode 15(0) & 14(0) – Multiple Sensor Based 15(0) & 14(1) – VOR/DME Offset (RNAV) Approach 15(1) & 14(0) – VOR/TACAN (non-Offset) Approach/Enroute 15(1) & 14(1) – ILS Approach Vert & Lat Dev Scaling FMS Controlled Hdg Sub-mode Remote FGS Army for Nav Capt FMS Plan Mode Display Final Appr Course Angular Scaling Integrity Warn To From Parallel XTK Offset Airport Display Selected Message Alert True/Mag HSI Valid (NAV Warn) SSM Parity (odd) Bit Status 1 0 x x x x x x x x On DR Select Off Not DR Not Select Approach FMS/FGS Arm Select Display Active Warn To From Selected Select On True Valid Enroute FGS Only No Change Not Select No Change Not Active Not Warn Not To Not From Not Selected Not Selected Off Magnetic Warn THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ARINC SPECIFICATION 429, PART 1 - Page 125 ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label 277G 02 LRN Status SDI (if required) Play Briefing #1 Play Briefing #2 Play Briefing #3 Play Briefing #4 Play Briefing #5 Play Briefing #6 Cancel Briefing #1 Cancel Briefing #2 Cancel Briefing #3 Cancel Briefing #4 Cancel Briefing #5 Cancel Briefing #6 Annunciate Cabin Message (Note) Spares Alternate Format SSM 31(0) & 30(0) – Normal Operation 31(0) & 30(1) – No Computed Data 31(1) & 30(0) – Functional Test 31(1) & 30(1) – Failure Warning Parity (Odd) Bit Status 1 0 x x x x x x x x ALTERNATE Pad Zero STD NOTE: The ALTERNATE FORMAT bit (#29) causes the briefing play (BITS 11 – 16) and briefing cancel (BITS 17 – 22) controls to be interpreted as the briefing number from 1 to 63 with the briefing #1 bit as the least significant. If BIT 29 is set to 1, this decoding will be used. If the briefing number is non zero, the indicated briefing will be played or canceled. ARINC SPECIFICATION 429, PART 1 - Page 126 THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label 300 02 Station Declination Spares DME Tuned and Received Station Declination Binary number with sign bit 24 East is positive. West is 2’s complement of the positive value. Range is 127 deg. E/W. Resolution is 1 degree at bit 17. VOR at location DME at location TACAN at location Class Bit 29/28/0 low 0/1 high 1/0 terminal SSM Parity Bit Status 1 0 x x x x x x x x Pad Zero Not Collated Being Received Same Location Not Received Yes No Yes No Yes No THIS ATTACHMENT WAS REPRODUCED WITH PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ARINC SPECIFICATION 429, PART 1 - Page 127 ATTACHMENT 9B GENERAL AVIATION WORD EXAMPLES 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 GA Equipment Company Private Company I. D. EQ Code EQ Code Ident P Use (Binary) MSD (Hex) MSD (Hex) SDI LABEL 371 LABEL 371 Company I. D. Field Binary Bit Assignments COMPANY 24 23 22 21 20 19 0 0 0 0 0 1 B&D INSTRUMENTS 0 0 0 0 1 0 BEECH AIRCRAFT 0 0 0 0 1 1 BENDIX AVIONICS 0 0 0 1 0 0 CANADIAN MARCONI 0 0 0 1 0 1 CESSNA AIRCRAFT 0 0 0 1 1 0 COLLINS AVIONICS 0 0 0 1 1 1 DELCO ELECTRONICS 0 0 1 0 0 0 FOSTER RNAV 0 0 1 0 0 1 GABLE CONTROLS 0 0 1 0 1 0 GLOBAL SYSTEMS 0 0 1 0 1 1 GULFSTREAM AEROSPACE 0 0 1 1 0 0 HONEYWELL 0 0 1 1 0 1 KING RADIO 0 0 1 1 1 0 LEARJET 0 0 1 1 1 1 LITTON AERO PRODUCTS 0 1 0 0 0 0 OFFSHORE NAVIGATION 0 1 0 0 0 1 RACAL AVIONICS 0 1 0 0 1 0 SPERRY 0 1 0 0 1 1 UNIVERSAL NAVIGATION SYS 0 1 0 1 0 0 3M AVIATION SAFETY SYSTEMS 0 1 0 1 0 1 ALLIEDSIGNAL GENERAL AVIATION AVIONICS 0 1 0 1 1 0 ALLIEDSIGNAL GLOBAL WULFSBERG 0 1 0 1 1 1 BF GOODRICH AVIONICS 0 1 1 0 0 0 GARMIN 0 1 1 0 0 1 ARNAV 0 1 1 0 1 0 COMPUTER INSTRUMENT CORPORATION 0 1 1 0 1 1 SPARE 1 1 1 1 1 1 SPARE ARINC SPECIFICATION 429, PART 1 - Page 128 THIS ATTACHMENT WAS REPRODUCED WITH THE PERMISSION OF GAMA. REVISIONS ARE NOT SHOWN, FOR ANY COMMENTS OR QUESTIONS, PLEASE CONTACT GAMA. ATTACHMENT 9C GENERAL AVIATION EQUIPMENT IDENTIFIERS Equipment HEX ID 01 02 04 05 06 09 0B 10 11 12 16 18 25 27 36 5A 5B A9 B0 B2 B6 B8 C7 FA FB EQUIPMENT Flight Control Computer Flight Management Computer Inertial Reference System Attitude and Heading Ref. System Air Data System Airborne DME Global Positioning System Airborne ILS Receiver Airborne VOR Receiver Airborne ADF System Airborne VHF Comm Receiver ATC Transponder Electronic Flight Instruments Microwave Landing System Radio Management System Loran Omega Airborne DME Controller Airborne ILS Controller Airborne ADF Controller VHF Comm Controller ATC Transponder Controller Microwave Landing System Controller Loran Controller Omega Controller ARINC SPECIFICATION 429, PART 1 - Page 129 ATTACHMENT 10 MANUFACTURER SPECIFIC STATUS WORD 32 31 30 29 28 27 26 25 24 23 22 21 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 P Company Private Use [A] Company I.D. SDI (Binary) [B] Label (171) BIT 16 15 14 13 12 11 0 0 0 0 01 0 0 0 0 10 0 0 0 0 11 0 0 0 1 00 0 0 0 1 01 0 0 0 1 10 0 0 0 1 11 0 0 1 0 00 0 0 1 0 01 0 0 1 0 10 0 0 1 0 11 0 0 1 1 00 0 0 1 1 01 0 0 1 1 10 0 0 1 1 11 0 1 0 0 00 0 1 0 0 01 0 1 0 0 10 0 1 0 0 11 0 1 0 1 00 0 1 0 1 01 0 1 0 1 10 0 1 0 1 11 0 1 1 0 00 0 1 1 0 01 0 1 1 0 10 0 1 1 0 11 0 1 1 1 00 Company B&D INSTRUMENTS BEECH AIRCRAFT BENDIX AVIONICS CANADIAN MARCONI CESSNA AIRCRAFT COLLINS AVIONICS DELCO ELECTRONICS FOSTER RNAV GABLES CONTROLS GLOBAL SYSTEMS GULFSTREAM AEROSPACE HONEYWELL KING RADIO LEAR JET LITTON AERO PRODUCTS OFFSHORE NAVIGATION RACAL AVIONICS SPERRY UNIVERSAL NAVIGATION SYSTEMS 3M AVIATION SAFETY SYSTEMS ALLIED SIGNAL GENERAL AVIATION AVIONICS ALLIED SIGNAL GLOBAL WULFSBAG BF GOODRICH AVIONICS GARMIN ARNAV COMPUTER INSTRUMENT CORPORATION RYAN SPARE c-17 1 1 1 1 1 1 SPARE [A] This word is used for manufacturer-specific information exchange (e.g., sub-LRU-Level BITE status). The Company I.D. fields should be used to differentiate each manufacturer’s unique use of the Company Private Use field. [B] Per Section 2.1.4 ARINC SPECIFICATION 429, PART 1 - Page 130 ATTACHMENT 11 SYSTEM ADDRESS LABELS SYSTEMS 777 CABIN INTERPHONE SYSTEM c-17 CVR #2 c-16 CVR 747 DFHR AND A330/340 SSFDR c-15 DFDAU (MANDATORY LOAD FUNCTION) SDU #2 RFU c-17 HGA/IGA HPA c-17 LGA HPA GPS/GNSS SENSOR FCMC Com A340-500/600 c-16 FCMC Mon A340-500/600 FCMC Int A340-500/600 MCDU 1 MCDU 2 MCDU 3 PRINTER 1 PRINTER 2 c-16 HUD HIGH SPEED DL (ARINC 615) MCDU 4 EIVMU 1 c-14 EIVMU 2 EIVMU 3 EIVMU 4 APM-MMR MMR c-16 ILS MLS AHRS c-17 HIGH-SPEED DATA (HSDU #1) HIGH-SPEED DATA (HSDU #2) VDR #1 VDR #2 VDR #3 NETWORK SERVER SYSTEM c-17 ELECTRONIC FLIGHT BAG LEFT ELECTRONIC FLIGHT BAG RIGHT c-15 CABIN VIDEO SYSTEM (AIRSHOW) LOW SPEED DL (ARINC 603) FMC 1 FMC 2 c-14 DFDAU (AIDS) CFDIU ACARS MU/CMU (724B, 748) WBS TCAS SDU #1 SYSTEM ADDRESS LABEL (OCTAL) 152 156 157 163 170 173 174 175 177 201 210 211 212 220 221 222 223 224 225 226 230 234 235 236 237 241 242 244 245 246 247 250 251 252 253 254 255 256 266 300 300 301 302 303 304 305 306 307 ARINC SPECIFICATION 429, PART 1 - Page 131 ATTACHMENT 11 SYSTEM ADDRESS LABELS SYSTEMS GPWS GNLU 1 GNLU 2 GNLU 3 GNU 1 GNU 2 GNU 3 AUTOTHROTTLE COMPUTER FCC 1 FCC 2 FCC 3 APU APU CONTROLLER MODE CONTROL PANEL (MCP) FMC 3 ATC TRANSPONDER DADC CABIN TELECOMMUNICATIONS UNIT (CTU) HF DATA RADIO/DATA UNIT #1 HF DATA RADIO/DATA UNIT #2 REMOTE DATA CONCENTRATOR ACESS EFIS PASSENGER SERVICES SYSTEM (PSS) 767300,400 CABIN SERVICE SYSTEM (CSS) 747-400 AUDIO ENTERTAINMENT SYSTEM (AES)BOEING ENGINE INDICATION UNIT MULTICAST BRIDGE CABIN TERMINAL 3 CABIN TERMINAL 4 CABIN TERMINAL 1 CABIN TERMINAL 2 OMEGA NAV. SYSTEMS SYSTEM ADDRESS LABEL (OCTAL) 310 311 312 313 314 315 316 321 c-16 322 323 324 325 326 327 330 331 332 334 340 c-15 344 345 c-17 360 c-14 361 362 363 c-16 364 365 c-14 366 c-16 367 372 373 374 c-14 375 376 ARINC SPECIFICATION 429, PART 1 - Page 132 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS A1-1.0 Introduction Selection of the electrical characteristics of the Mark 33 DITS followed verification of the suitability of proposed values in laboratory tests performed by the Boeing Commercial Airplane Co. Boeing presented two reports to AEEC’s Systems Architecture and Interfaces Subcommittee on these activities, one at the meeting held in Arlington, Virginia, in March 1977 and the other at the meeting held in Los Angeles, California, in May 1977. The material in this Appendix is excerpted from these reports. A1-2.0 Electromagnetic Emission and Susceptibility Tests Electromagnetic emission and susceptibility tests were conducted to determine if the proposed 100 kbps waveform was suitable for use in a commercial airplane EMI environment. The EMI conditions used for the tests were derived from RTCA Document DO-160, “Environmental Conditions and Test Procedures for Airborne Electronic/Electrical Equipment and Instruments” dated February 28th, 1975. A1-2.1 Cable and Test Configuration The cable used for the tests was standard aircraft type twisted shielded wire of 22 AWG. The wire configuration consisted of approximately 60 ft. of cable which was subjected to the EMI environment within a screened room. This cable was connected in series with 300 ft. of cable not subjected to the EMI environment. The test was configured to simulate the maximum length wire run with DO-160 conditions applied. The 60 Ft. length of cable was connected to the transmitter for the emission tests and to the receiver for the susceptibility tests. A1-2.2 Transmitter Characteristics The block schematic of the bipolar line driving transmitter built for the tests is shown in Figure a-(i). The waveform was shaped at the pulse generator such that it exhibited the following characteristics: Differential Output Voltage: HI +10V NULL 0V LO -10V Risetime = Falltime = l.0 µ sec Bit Rate= 100 kilobits/second HI time= NULL time= LO time A1-2.3 Receiver Input Circuit Description To perform the susceptibility tests, receivers were constructed utilizing various methods of common mode rejection and various processing schemes. Differential Amplifier Input. Figure a-(ii) shows schematics of the differential input stages used for the receivers. The differential amplifier input stage required resistors to local ground at the input to provide a path for the input current for the voltage followers. Voltage protection was used to prevent damage to the voltage followers in the event of high voltage, common mode spikes. The voltage follower stages provided a controlled impedance for the differential amplifier stage. Opto-Isolator Input The opto-isolator input stage utilized two H-P 5082-4371 isolators connected in opposite polarity to detect the bipolar data. The HP 5082-4371 input has a forward conduction “knee” at approximately 1.4 volts. A second simple LED (HP 5082-4650) was connected in series with each opto-isolator to provide a combined knee voltage of approximately 3 volts. A series resistor RL of 1000 ohms was placed in series with the LED/opto-isolator network to limit the receiver current to 7mA at 10 volts (differential) applied at the input. At 4.5V differential on the line, one opto-isolator conducts 1.5 mA. One circuit configuration which enables the opto-isolator to operate at 100 kilobits per second at these low input currents is shown in figure a-(iii). A potential of +15 volts is applied to pin 8 to provide maximum gain in the first transistor. During conduction, a charge on the second transistor is discharged via pin 7 and R2 to a potential of +0.5 volts set by R1 and R3. Discharging to a +0.5 volt potential reduces the possibility of a loss of the first bit following a long null period. This problem has been observed when discharging pin 7 to ground potential. ARINC SPECIFICATION 429, PART 1 - Page 133 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(i) BIPOLAR TRANSMITTER BLOCK SCHEMATIC + PULSE GENERATOR _ SHAPED BIPOLAR RZ PSEUDO RANDOM BIT SEQUENCE GENERATOR SWITCHING LOGIC LINE DRIVER TERMINATION DETAIL OF LINE DRIVER AND TERMINATION LM0002 Ro L1 2 LM0002 Ro 2 L1 ARINC SPECIFICATION 429, PART 1 - Page 134 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(ii) RZ BIPOLAR RECEIVER INPUT TYPES TESTED R DIFFERENTIAL AMPLIFIER OVER VOLTAGE VOLTAGE FOLLOWERS R PROTECTION R > 12 K Ohms (Provides Path for V. F. Input Current) Figure (a) Differential amplifier input schematic. L1 RL L2 LED LED OPTO ISOLATORS ZERO’S ONE’S RL = CURRENT LIMITING = 1000 OHMS LED = LED IN SERIES WITH OPTO ISOLATOR TO PROVIDE ON NULL LEVEL OPTO-ISOL = HP 5082-4371 Figure (b) OPTO-ISOLATED INPUT SCHEMATIC ARINC SPECIFICATION 429, PART 1 - Page 135 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS A1-2.4 Receiver Data Detection Technique Two data detection schemes were used, (i) data sampling (sample and decision) and (ii) integrate and dump (Figure a-(iv). The data sampling system detects positive-going or negative-going edges which exceed ±3 volts differential voltage. The edges cause a timing circuit to time for approximately 2 µsec. When the timing circuit has timed out, a sample of the input is taken. If the sample is HI, a ONE is declared. If the sample is LO, a ZERO is declared. If the sample is NULL, and error diagnostic can be output, since a NULL state is known to be invalid at the data sampling time. An error diagnostic will be output if, for example, during a period of NULL on the line, a short-duration noise spike causes the input to exceed the ±3V threshold, so initiating the edge detector timing circuit, but dissipates rapidly so that a NULL is estimated at the data sampling time. The integrate-and-dump processor circuit detects positive or negative-going edges which exceed the ±3V differential threshold. The edge detection causes an integration circuit to integrate the input voltage for a period of 5 µsec. The output of the integrator is sampled (timing is derived from the edge detector) at the end of the integration period. If it is above zero voltage, a ONE is declared; if it is below zero voltage, a ZERO is declared. A threshold level could be introduced about zero voltage to provide an indication of the total energy contained in the pulse. If the integrator output fell within the threshold, an error diagnostic could be presented indicating the at the detection of the bit was marginal. A1-2.5 Test Data Message The test waveform was a continuous pseudo-random bit pattern. This continuous pattern did not test the initial synchronization or “false-alarm” aspects in a word-by-word transmission environment with NULL on the transmission line between words. A1-2.6 Emission of RF Energy Test Results The following tests were performed under conditions of light (one receiver) and heavy (20 receivers) line loading. A. Conducted RF Interference (RTCA DO-160 Paragraph 21.2) The interference measured was within the limits specified in DO 160 Figure 21-2. B. Radiated RF Interference (RTCA DO-160 Paragraph 21.3) The interference measured was within the limits specified in DO-160 Figure 21-5. It should be noted that the 20dB limit exceedance permitted in DO 160 was not taken. The transmitter output spectrum can be further improved by the addition of filtering to attenuate output frequencies above those of interest in the digital data. A1-2.7 Susceptibility Test Results The tests were performed to determine the susceptibility of the Mark 33 DITS to RF, AF and spike interference levels specified in DO-160 under conditions of light (one receiver) and heavy (20 receivers) line loading. The following receiver configurations were tested: (i) Differential Amplifier input, time sample processing (ii) Differential Amplifier input, integrate-and-dump processing (iii) Opto-isolator input, time sample processing (iv) Opto-isolator input, integrate-and-dump processing The data transmitted consisted of a continuous pseudo-random bit sequence. Error checking was made on a bit-by-bit basis. A. Conducted RF Susceptibility (DO-160 Paragraph 20.20B Category Z) No bit errors were detected with RF applied to any of the line loading and receiver configurations. B. Magnetic Fields Induced Into Interconnecting Cables (DO-160 Paragraph 19.3) Test performed at a level above those specified in DO-160 Figure 19-1. No bit errors were detected with the field applied to the cable for any cable loading or receiver configuration. ARINC SPECIFICATION 429, PART 1 - Page 136 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(iii) OPTO-ISOLATOR FRONT-END CIRCUIT SCHEMATIC 15 V 8 2 3 HP - 5082 - 4371 5V R1 10k 7 R2 500 5V R4 5.6k 6 O/ P 5 R3 1k ARINC SPECIFICATION 429, PART 1 - Page 137 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(iv) DATA DETECTION HI NULL T+ T- LO (a) SAMPLE - AND - DECISION BIT N BIT N + 1 D ES D E S ZERO HI T+ NULL T- LO ( b ) INTEGRATE - AND - DUMP S DMP I S DMP I E E LEGEND: E = EDGE DETECT (BIT TIMING) D = DELAY S = SAMPLE I = INTEGRATION INTERVAL DMP = DUMP INTEGRATOR CHARGE ARINC SPECIFICATION 429, PART 1 - Page 138 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS C. Electric Fields Induced Into Interconnecting Cables (DO-160 Paragraph 19.4) The tests were perform with voltage levels above those specified in DO 160 Figure 19-1 Category Z. No bit errors were detected with the field applied for any cable loading or receiver configuration. D. Spikes Induced Into Interconnecting Cables (DO-160 Paragraph 19.5, Category Z) The spikes were generated and applied to the cable as shown in DO-160, Figure 19-4. Bit errors were counted during the application of 50 transients and also following the transient test. The following results were observed: Receiver Configuration Line Loading Light Heavy Diff. Amp., Sample Det Diff. Amp., Int. & Dump Det Opto-Isolator, Sample Det Opto-Isolator, Int & Dump Det 0 0 0 0 8 15 0 1 All configurations performed with zero bit errors for approximately 107 bits following the transient test. A1-3.0 Pulse Distortion Tests For Typical Aircraft wire Installations Laboratory testing and computer simulation studies were conducted to investigate the pulse distortion introduced on typical aircraft wire installations. A1-3.1 Laboratory Tests Receivers and a transmitter were constructed to operate using the DITS high speed (100 KBPS) waveform. Lengths of twisted shielded cable were connected to form a representative wiring configuration for digital data. The wire length and stub configuration were selected to represent postulated installations on a B747 airplane. The cable used for lab tests was 20 and 22 AWG twisted shielded cable with wrapped KAPTON insulation, no. BMS B-51, Class 2 type III. The pulse distortion at the receiver nodes of the wiring systems were recorded. The characteristics of the 20 AWG cable were measured and used to develop the cable model used in the computer simulation. A1-3.2 Computer Simulation A computer program was developed to evaluate pulse distortion on lines with stubs. The DITS transmitter impedance and voltage waveform was modeled. The cable model was developed from the measured cable characteristics. The DITS receiver input impedance was modeled. The computer simulation was run and results were plotted for various line length and stub configurations representing postulated installations on a B747 airplane. A1-3.3 Results The results of the laboratory tests and computer simulation for the same cable configuration showed good agreement, with a maximum difference of 0.4 volts on rising and falling edges. The computer simulation showed slightly higher cable loss effect than the lab test. The lab test results were recorded using an oscilloscope camera; the computer results were plotted. Only the plotted results are presented here. Figure a-(v) shows the schematic for the first simulation. This configuration represents a transmitter, a receiver and a single length of twisted shielded cable 200 feet long. The cable is modeled as Blocks 1 to 4, for later stub connection. At the transmitter and receive ends of the cable, the shields are grounded via a 0.05 µH inductor (which models the inductance of the ground lead). At other nodes, the shields and cable inners are carded through, representing a continuous length of cable. Figure a-(vi) Transmitter open circuit differential output voltage. This waveform was used for all the simulation runs. Figure a-(vii) The transmitter output voltage and receiver input voltage for the configuration in Figure a-(v). Figure a-(viii) shows the schematic for the second simulation. This configuration represents a transmitter at an engine location, with receivers at the equipment bay and the flight deck. Four receiver loading configurations are shown with maximum loading of twenty receivers. The waveforms for this simulation run are shown in Figures a-(ix) through a(xvi). ARINC SPECIFICATION 429, PART 1 - Page 139 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS Figures a-(ix) and a-(x) Transmitter and receiver waveform for loading configuration 1. Figures a-(xi) to a-(xvi) Waveforms for loading configurations 2, 3 and 4. Figure a-(xvii) shows the schematic for the third simulation. This configuration represents a transmitter at the flight deck with receivers at the equipment bay, the inner engine and the outer engine. Figures a-(xviii) to a-(xxi) Waveforms for the third simulation. Figure a-(xxii) shows the schematic for the fourth simulation. This configuration represents a transmitter at the equipment bay with receivers at the equipment bay, the flight engineer’s panel, the first officer’s panel and the captain’s panel. Figures a-(xxiii) to a-(xxvi) Waveforms for the fourth simulation. Figure a-(xxvii) shows the schematic for the fifth simulation. This is a long line simulation and is included to show the operation of the system with lines longer than would realistically be used in a “B747-sized” airplane. This configuration represents a transmitter with one receiver close (10 feet) and one receiver remote (500 feet). Figures a-(xxviii) and a-(xxix) Waveforms for the “long line” configuration. A1-3.4 Conclusions From laboratory tests and simulations, it is concluded that no intolerable bit distortion is introduced into the “high speed DITS” waveform due to cable lengths and stub configurations likely to be encountered on a “B747-size” transport aircraft. If installations are anticipated involving longer line lengths or cables with radically different electrical characteristics, then further investigation may be required. ARINC SPECIFICATION 429, PART 1 - Page 140 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(v) TRANSMITTER BMS 13-51 20 AWG TSP 200 FEET 100 k TRANS 1 1 (58m) 4 2 2 BUSLIN 5 3 1 6 1 SHIELD 2 1 * 1 (1m) 4 2 BUSLIN 5 3 2 6 1 SHIELD 2 2 1 (1m) 4 2 BUSLIN 5 3 3 6 1 SHIELD 2 3 1 (1m) 4 1 2 BUSLIN 5 2 4 3 6 1 SHIELD 2 4 * REC 1 100k A .1 3 5 1 .01 40 4 6 2 .01 40 .1 B TRANS ALL L’s .05µh TERM * SHIELD TIED TO INDUCTOR ON TERM Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 141 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(vi) Time (microseconds) TRANSMITTER LEAD A TO LEAD B VOLTAGE Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 142 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(vii) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) OPEN CIRCUIT VOLTAGE AT RECEIVER ONE Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 143 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(viii) Configuration 1 2 3 4 # Load Rec 1 1 1 10 10 # Load Rec 2 1 10 1 10 TRANSMITTER 200 FEET 10 FEET RECEIVER TWO 85 FEET RECEIVER One 1 (3.05m) 4 2 BUSLIN 5 5 3 6 1 2 REC 2 1 SHIELD 5 2 TRANS 1 2 * * 1 4 1 4 (61m) (10m) 2 5 2 5 3 BUSLIN 1 6 Node BUSLIN 2 13 6 1 4 (10m) 2 5 BUSLIN 3 3 6 1 SHIELD 1 2 * * 1 SHIELD 2 2 * 1 SHIELD 3 2 1 2 3 4 5 6 7 89 1 4 (6m) 2 5 3 BUSLIN 4 6 1 REC 1 2 1 SHIELD 4 2 * .1 3 5 1 .01 40 4 6 2 .01 40 .1 ALL L’s 1 .05 µ h 2 TERM * SHIELD TIED TO INDUCTOR ON TERM BLOCK 40pf 16.5k 6k 50pf 45pf 15k TRANS REC 1 CONFIGURATION 1 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 144 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(ix) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) VOLTAGE AT FIRST NODE CONFIGURATION 1 Amplitude Volts CONFIGURATION 1 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 145 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(x) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO CONFIGURATION 1 Amplitude Volts CONFIGURATION 2 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 146 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xi) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) VOLTAGE AT FIRST NODE CONFIGURATION 2 Amplitude Volts CONFIGURATION 2 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 147 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xii) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO CONFIGURATION 2 Amplitude Volts CONFIGURATION 3 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 148 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xiii) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) VOLTAGE AT FIRST NODE CONFIGURATION 3 Amplitude Volts CONFIGURATION 3 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 149 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xiv) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO CONFIGURATION 3 Amplitude Volts CONFIGURATION 4 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 150 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xv) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) VOLTAGE AT FIRST NODE CONFIGURATION 4 Amplitude Volts CONFIGURATION 4 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 151 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xvi) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO CONFIGURATION 4 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 152 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xvii) TRANSMITTER 85 FEET 10 FEET REC TWO 150 FEET REC 50 FEET THREE 50 FEET 50 FEET 10 FEET 10 LOADS 1 LOAD REC 2 1 2 REC 3 1 2 * 1 SHIELD 6 2 3 BUSLIN 6 6 5 4 * 1 (15m) 1 SHIELD 5 2 3 BUSLIN 5 6 5 1 (3.05m) 4 * 2 * 2 TRANS 1 2 1 4 (26m) 1 4 (46m) 1 (15m) 2 5 2 5 2 BUSLIN 1 3 6 NODE 1 BUSLIN 2 3 6 NODE 2 BUSLIN 3 3 4 5 NODE 63 1 4 (3.05m) 2 5 3 BUSLIN 4 6 1 REC 1 1 2 LOAD 1 SHIELD 2 1 * * SHIELD 11 2 2 * * SHIELD 1 3 2 * * 1 SHIELD 2 4 * * 1 2 3 4 5 6 7 89 .1 3 5 1 .01 40 4 6 2 .01 40 .1 ALL L’S 1 .05 µh 2 TERM * SHIELD TIED TO INDUCTOR ON TERM BLOCK 40pf 16.5k 6k 50pf 45pf 15k TRANS REC 1 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 153 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xviii) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) Time (microseconds) VOLTAGE AT FIRST NODE Amplitude Volts Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 154 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xix) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO Amplitude volts Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 155 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xx) Time (microseconds) VOLTAGE AT SECOND NODE Time (microseconds) VOLTAGE AT RECEIVER THREE Amplitude volts Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 156 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxi) Time (microseconds) VOLTAGE AT THREE NODE REC TWO REC THREE REC FOUR TRANSMITTER 5 FEET 5 FEET 85 FEET 20 FEET 20 FEET 20 FEET 20FEET REC 4 1 LOAD 1 REC 3 1 LOAD 2 1 REC 2 1 LOAD 2 2 1 * 6 1 SHIELD 2 7 7 2 BUSLIN 5 4 * 6 1 (6.1m) 1 SHIELD 2 6 6 2 BUSLIN 5 1 (6.1m) 4 * 6 5 1 SHIELD 2 5 2 BUSLIN 5 1 (1.5m) 4 * 3 * 3 * 3 ARINC SPECIFICATION 429, PART 1 - Page 157 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxii) TRANS 1 1 (1.5m) 4 1 (26m) 4 1 (6.1m) 4 1 (6.1m) 4 1 REC 1 2 2 BUSLIN 5 2 BUSLIN 5 2 BUSLIN 3 1 6 NODE 13 2 NODE 6 23 3 5 2 BUSLIN 5 NODE 6 33 4 6 2 1 LOAD SHIELD 1 1 2 * * 1 SHIELD 2 2 * * SHIELD 1 2 3 * * 1 SHIELD 2 4 * * 1 2 3 4 5 6 7 89 .1 3 5 1 .01 40 4 6 2 .01 40 .1 ALL L’S 1 .05 µ h 2 TERM * SHIELD TIED TO INDUCTOR ON TERM BLOCK 40pf 16.5k 6k 50pf 45pf 15k TRANS REC 1 Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 158 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxiii) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) VOLTAGE AT FIRST NODE Amplitude Volts Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 159 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxiv) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO Amplitude volts Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 160 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxv) Time (microseconds) VOLTAGE AT SECOND NODE Time (microseconds) VOLTAGE AT RECEIVER THREE Amplitude volts Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 161 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a(xxvi) Time (microseconds) VOLTAGE AT NODE THREE Time (microseconds) VOLTAGE AT RECEIVER FOUR Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 162 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxvii) 5 FEET REC TWO TRANSMITTER 5 FEET 328 FEET 164 FEET 8 FEET REC ONE OR 100 TRANS 1 2 REC 2 1 (1.5m) 4 1 2 BUSLIN 5 2 3 5 6 1 LOAD SHIELD 1 5 2 * * 1 4 (1.5m) 1 4 1 (100m) 2 5 2 5 2 BUSLIN 1 Node BUSLIN 2 Node 3 61 3 6 23 (50m) BUSLIN 3 4 1 4 (2m) 5 2 5 Node BUSLIN 4 6 33 6 REC 1 1 1 LOAD, 2 @ 100 1 SHIELD 2 1 * * SHIELD 1 2 2 * * 1 SHIELD 2 3 * * 1 2 3 4 5 6 7 89 1 SHIELD 2 4 * * .1 3 5 1 .01 40 4 6 2 .01 40 .1 ALL L’s 1 .05 µh 2 TERM * SHIELD TIED TO INDUCTOR ON TERM BLOCK 40pf 16.5k 6k 50pf 45pf 15k Trans Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 163 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxviii) Time (microseconds) TRANSMITTER OUTPUT VOLTAGE Time (microseconds) VOLTAGE AT FIRST NODE Amplitude Volts Amplitude volts ARINC SPECIFICATION 429, PART 1 - Page 164 APPENDIX A LABORATORY VERIFICATION OF ARINC 429 DITS ELECTRICAL CHARACTERISTICS FIGURE a-(xxix) Time (microseconds) VOLTAGE AT RECEIVER ONE Time (microseconds) VOLTAGE AT RECEIVER TWO Amplitude Volts ARINC SPECIFICATION 429, PART 1 - Page 165 APPENDIX B AN APPROACH TO A HYBRID BROADCAST-COMMAND/RESPONSE DATA BUS ARCHITECTURE A2-1.0 Introduction During the time that the broadcast approach to digital information transfer became established in the air transport industry, the military aviation community adopted a command/response time division multiplex technique as its standard. In this approach, all aircraft systems needing to exchange digital data are connected to a common bus and a dedicated “bus controller” determines which of them may output data on to the bus at any given time. MIL STD 1553 was written to describe this system. The airlines considered adopting MIL STD 1553, or something like it, for use on post-1980 new civil aircraft types but found the multiplex technique to be inappropriate for such applications. In civil avionics systems, data typically flows from a given source to a single sink, or group of sinks which may be connected in a parallel, and these sinks are typically not themselves data sources. Thus there is no need for the data transfer system to provide the capability for every unit of every avionics system to both talk and listen to every other unit. The broadcast technique is adequate, and thus the airlines elected to stay with it for their new DITS. Another development in this same time frame has been the increased use by the military, particularly in transport aircraft, of avionics equipment designed originally for the airlines. This trend may be expected to continue and so give rise to the need to interface equipment providing Mark 33 DITS I/0 capability with a MIL STD 1553A data bus system. The material in this Appendix prepared by the Information Engineering Division of the USAF Directorate of Avionics Engineering describes one way of doing this, using a data exchange buffer to compensate for the electrical, logic and timing differences between the two systems. A2-2.0 Suggested Mark 33 DITS/MIL STD 1553A Interface The following is a proposed method for interfacing an avionic system employing sensors designed for any combination of ARINC Mark 33 DITS and MIL-STD-1553A. This method minimizes message related differences and compensates for electrical, logic and timing differences in a Data Exchange Buffer (DEB). In a hybrid system such as shown in Figure b-(i), a signal may originate in either a DITS type subsystem or a 1553A subsystem and may be destined for either type of terminal. DITS data received by a DEB is momentarily stored and then retransmitted, complete with label, to the 1553A bus controller. The bus controller determines the intended destinations from the label and look-up table. For DITS destinations, the word is retransmitted, as received, to the appropriate DEB. For 1553A destinations, the data may be retransmitted as received or reformatted, as required by the destination subsystem. Reformatting could involve removal of label and reversing of bit order (MSB vs LSB first). Figure b-(ii) shows the handling of a word originating in the destined for DITS terminals. Upon arrival at the appropriate destination DEB, the data is momentarily stored and then retransmitted in DITS format, complete with label, to the destination subsystem. If all labels in the system are unique, all receivers in all subsystems associated with a DEB may be connected in parallel. Only the data with the proper label will be recognized by each receiver. If labels are not unique, the DEB must have separate transmitters to transmit the data with identical labels. The desired transmitter could be specified in the 1553A subaddress field. The retransmission of the data by the DEB allows inherently for different electrical and logical characteristics. The storage of the data allows for simultaneous reception from multiple receivers (DITS and 1553A) and retransmission when the desired bus is available. The much higher speed of 1553A would make retransmission delays small. Figure b-(iii) illustrates the organization of a minimum system. It consists of multiple DITS receivers dumping received data into a first-in first-out (FIFO) stack, available as single LSI chips. The received data is temporarily stored and then retransmitted by the 1553A terminal. Data received via 1553A is dumped into another FIFO for retransmission by a DITS transmitter. The hardware consists only of DITS receivers, the 1553A terminal, the DITS transmitter, and as many FIFO’s as are required. Hand-shaking signals available on the FIFO’s eliminate almost all supporting SSI chips. This entire system would probably fit on one full ATR card or less. Figure b-(iv) illustrates possible organization for a more sophisticated DEB. It consists of an many DITS transmitters and receivers as necessary, a single (internally redundant) 1553A remote terminal, a buffer memory, a controller (microprocessor), and a program for the controller contained in ROM. Whenever a complete, valid word is available at a receiver, the controller is notified. When the parallel data bus becomes available, the word is transferred to memory. When the desired transmitter (DITS or 1553A) becomes available, the data word is routed from memory to the transmitter. The low rate of DITS terminals (minimum 320 microsec/word) would result in a very low loading of the parallel bus and controller. The speed of the 1553A terminal might necessitate a direct memory access arrangement. The controller, the program memory, the buffer memory and a dual 1553A remote terminal would probably fit on one one-sided 3/4 ATR card. The required ARINC transmitters and receivers would probably fit on another card. This method represents one way of constructing a hybrid system. The retransmission of the label with the data greatly reduces the intelligence required by the DEB but increases bus loading. A more intelligent DEB, perhaps located in the bus controller, could achieve much higher efficiencies. ARINC SPECIFICATION 429, PART 1 - Page 166 APPENDIX B AN APPROACH TO A HYBRID BROADCAST-COMMAND/RESPONSE DATA BUS ARCHITECTURE FIGURE b-(i) HYBRID BUS ARCHITECTURE TRR OLD SUBSYSTEM NEW SUBSYSTEM RT RT TR R TRR OLD SUBSYSTEM DATA EXCHANGE BUFFER BUS CONTROLLER DITS BUSES DUAL 1553A BUS RT OLD SUBSYSTEM NEW SUBSYSTEM RT RT TR ARINC SPECIFICATION 429, PART 1 - Page 167 APPENDIX B AN APPROACH TO A HYBRID BROADCAST-COMMAND/RESPONSE DATA BUS ARCHITECTURE FIGURE b-(ii) MESSAGE WORD FORMATTING Received DITS word (32bits) LABEL Data stored in buffer (2x16 bits) LABEL Transmitted via 1553A S LABEL S Data stored in buffer (2x16 bits) LABEL Retransmitted via DITS (32 bits) LABEL ARINC SPECIFICATION 429, PART 1 - Page 168 APPENDIX B AN APPROACH TO A HYBRID BROADCAST-COMMAND/RESPONSE DATA BUS ARCHITECTURE FIGURE b-(iii) MINIMUM DATA EXCHANGE BUFFER 1553 A BUS 1553A TERMINAL FIFO DITS RECEIVER DITS XMTR DITS BUS 3 DITS BUS 1 DITS BUS 2 DITS RECEIVER ARINC SPECIFICATION 429, PART 1 - Page 169 APPENDIX B AN APPROACH TO A HYBRID BROADCAST-COMMAND/RESPONSE DATA BUS ARCHITECTURE FIGURE b-(iv) PROGRAMMABLE DATA EXCHANGE BUFFER 1553A TERMINAL Internal Parrallel Data Bus BUFFER MEMORY DITS XMTR PROGRAM CONTROLLER Address DITS RECEIVER DITS RECEIVER ARINC SPECIFICATION 429, PART 1 – Page 170 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) Collins Avionics Divisions 400 Collins Road, NE Cedar Rapids, Iowa, 52406 (319) 395-1000 Cable COLINRAD Cedar Rapids Rockwell International Signal Degradation • Modification Signal to Noise Ratio (MSN) • Static Accuracy 4 May 1979 A Control System View of ARINC 429 Bus Specifications By T. G. Sharpe and G. E. Forquer I. Introduction and Summary Spectral Characteristics • Update Interval • Transmit Interval • Pre-sampling Bandwidth Limit The following discussion of these characteristics should aid the reader in understanding their purpose and assessing their adequacy. It is recognized that some changes may necessarily take place as the industry completes its digital interfacing standardization task. II. Stability Consideration The discussion below summarizes concepts that have grown out of an in-house effort to determine what parameter characteristics Collins feels should be included in the data standards tables of ARINC Bus Specification 429 (DITS). The DITS specification seems to be evolving as more than merely a digital bus description since in many ways it is taking on the characteristics of a system interface specification. This raises philosophical questions concerning those characteristics, which should appear in the individual equipment specifications versus those which should appear in “429”. The authors cannot resolve such partitioning questions. Hopefully we can contribute, as outlined below, to an understanding of what information is required by control systems designers to achieve an acceptable system performance. The detailed discussion in this paper evolves a set of terms (outlined below) which are usable in a specification. Which of these terms appear in the individual equipment specifications and which appear in “429” remains to be determined. At the present time, it is suggested that control system designers interfacing with digitally bused data should be concerned with three prime areas: stability considerations, signal degradation, and spectral characteristics. Without these elements of information, thorough analysis of system performance will not be possible. The following eight parameter characteristics should prove adequate for the minimal control of interfacing considerations. Stability • • • Control Band Magnitude Limits Phase Limits There is nothing uniquely digital in this area. Here our concern is with those characteristics that are most often used in linear system stability analysis – namely gain and phase characteristics. We recognize at the outset that all sensor systems are not 100% linear but this does not prevent us from defining a linear model of sufficient quality to support stability analyses. It is useful to consider here that generally the sensor will be wideband relative to the band of frequencies of interest to the control system. This is necessary from a stability point of view since the converse (that is, signals narrowband relative to the control band) would introduce excessive phase lag in the control band. Thus far we have implicitly considered both bandpass and lowpass centered at zero frequency. For simplicity, however, the discussion below will assume low pass sensor characteristics but the ideas apply generally. Figure 1 illustrates an assumed sensor characteristic. Gain and Phase Constraints Note that prime concerns are that the gain remain essentially constant through the control band and that the phase be bounded by a linear characteristic through the control band. From a control law stability point of view, we are not concerned with what happens at frequencies above the control band because these are beyond the range where the data is being used by the control system. If we consider open loop Bode plots broken at the sensor output, the control band as used above should be wide enough to include the phase crossover as well as the gain crossover. The phase and gain characteristics provide information about phase and gain margin degradation. For most sensors the gain crossover in typical control laws is known approximately. Phase crossover is not as easily determined. A reasonable first cut would be to define the control band as approximately ten times the open loop crossover frequency with the expectation that beyond this range control law gain is low enough to prevent gain margin ARINC SPECIFICATION 429, PART 1 – Page 171 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) problems. However, some sensors may have trouble holding a tight gain (and phase) spec over this wide a bandwidth. Possibly in these cases a loosening of the spec between open loop crossover and ten times open loop crossover may be required. With this kind of specification a simple transport delay in combination with a gain change can be used for stability analysis or, for slightly more complex cases, simple transfer functions can be used to approximately fit the spec. The important point here is not to constrain the sensor designer to a first order or second order or any specific implementation, but to rather bound in a simple yet usable sense the stability degradation the sensor can introduce. The important stability characteristics are defined concisely below. • Control Band – That band of frequencies over which magnitude and phase characteristics of the sensor are important to the control system stability. • Magnitude Constraint – The bounds (envelope) on the permissible gain variation in a linear frequency response sense that are permissible over the control band. • Phase Constraint – The bounds (envelope) on the permissible phase variation in a linear frequency response sense that are permissible over the control band. ARINC SPECIFICATION 429, PART 1 – Page 172 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) Potential Measurement Technique These quantities could be measured by providing a sinusoidal input stimuli at selected frequencies in the control band using a mid-range amplitude. At each frequency the output component of interest (assuming some distortion) will be the output component whose frequency corresponds to the input frequency. The phase and amplitude of this component of this component relative to the forcing function will provide the magnitude and phase information. In the terminology of nonlinear system analysis, this procedure yields and empirically derived describing function for the sensor over the control band. If amplitude dependent nonlinearities are severe, more than one amplitude of forcing function may have to be used with the procedure repeated at each amplitude. III. Signal Degradation In this area we are concerned with what the sensor may have done to degrade the signal. The thrust here is not stability but performance. Figure 2 presents a view of sensor and signal characteristics that is useful in this context. In Figure 2 some important sources of signal degradation are illustrated. The term “noise” is used somewhat loosely in Figure 2 to denote degradation sources. Process noise and installation noise are inherent in the signal impinging on the sensor – the former being things such as gust noise and beam noise and the latter being effects such as EMI, mounting errors, etc. Within the sensor itself there is internally generated noise such as shot noise from resistors, EMI from digital buses, etc. that is independent of the input signal. In a radio receiver this is the kind of noise that is measured at the output when the input is shorted. Note that this “noise” can also include bias and drift effects. If there is a digital sampling process in the sensor, some aliasing of the input signal spectrum will occur. This aliased energy may also be regarded as noise. The other inherent sensor degradation is more difficult to deal with, however, for it is signal dependent. A familiar analog example is input amplitude dependent characteristics such as saturation effects that only become significant above certain input amplitudes. Another is nonlinearities that produce harmonic distortion under sine wave excitation as shown in the example below. SENSOR Process Noise Signal ++ Sensor Input + + Signal Dependent Noise Internally Generated Noise Sensor Ouput f( ) + + Measurement + + + - Error Installation Noise Figure 2. Sensor and Signal Characteristic and Measurement Noise Harmonic Distortion Consider square law distortion in an otherwise linear sensor. Let the sensor output be y(t) = x(t) + kx(t)² To evaluate the spectral characteristics of measurement error will require tests which force the system with noise type inputs. Exponentially correlated noise of specified variance and correlation time (or bandwidth) should be sufficient in most cases. If a sensor is known to be susceptible to a specific type of noise, however, that noise should be included in the test. Often it will be useful to separate out the low frequency or d-c components of measurement error since these may be more tolerable in some applications than dynamic errors. A set of tests that will measure these characteristics is described below. ARINC SPECIFICATION 429, PART 1 – Page 173 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) Where x(t) is the sensor input and let x(t) = sinwt. Then y(t) = sinwt + ksin²wt kk y(t) = sinwt ± m 22 cos2wt Note that d.c. and second harmonic components as well as the forcing frequency appear at the output. In digital systems a similar effect occurs when multiple rates are introduced, such as signals being received at one rate from a digital bus and being used at a different rate by a software program. If the analog signals originally sampled and put on the bus were sinusoidal at one frequency then, in general, frequency components less than and greater than the input frequency (as well as the input frequency) appear after the second sampler. The amplitude and number of these spurious outputs is a function of the two sampling rates as well as the input frequency. The net effect of all such internal sensor effects is observable by subtracting sensor input from sensor output to yield measurement error as shown in Figure 2. Measurement Error The involved nature of what can happen to the signal within the sensor as shown in Figure 2 is the source of ambiguity in conventional “accuracy” specs. Since measurement noise can be dependent on input amplitude as well as spectral characteristics, it is not possible to specify it with a single and simple metric. It should also be apparent that measurement error must be addressed statistically since a significant portion of the input, process noise, is only describable as a random process.1 Technically the input signal is also in general a random processes influenced by such things as the gust striking the aircraft. Gusts also can only be described as random processes. 1 Recognizing that a complete description of a random process includes not only probability distributions but also spectral characteristics. Modified Signal to Noise Ratio (MSN) Force the sensor with random noise of specified rms value (σ) and correlation time (τ). Determine the power spectral density (PSD) of the input signal to the sensor. Determine the PSD of the measurement error. Plot the two PSD’s on a common plot as shown in Figure 3. Define a modified signal to noise ratio (which will be a function of frequency) as the square root of noise ratio at each frequency of signal PSD amplitude to measurement error PSD. Note in the example shown in Figure 3 there is a bulge in the measurement error around zero frequency. This effect would indicate d-c bias and possibly low frequency bias drift from the sensor. This effect may or may not be important depending on whether the application permits washing out low frequency components, e.g. in a complementary filter. In the range of frequencies where accurate sensor response is required, it is suggested that appropriate values for the modified signal to noise (MSN) will be 100 to 1000. Roughly, these numbers correspond to noise power being 1% to .1% of signal power at each frequency or noise being 40 to 60 db down from signal. The relationship between MSD and ordinary signal to noise can be understood by assuming both signal and noise PSD’s are flat over a band of frequencies ∆w as shown in Figure 3. Let the value of the signal PSD in this band be So, then rms signal power in the band ∆w is given by So*w. Similarly, rms error power is given by Po*w . Therefore conventional signal to noise over the band w is given by So . Requiring that this signal to noise be 100 is equivalent to requiring thatPonoise power be 1% of signal power over this band. Carrying this back to the MSN implies that MSN (w) = So = 100 over the band ∆w. The above also represents the motivation for considPeoring square root of the ratio than the ratio directly. Amplitude Dependent Nonlinearities The approach described above tests for input frequency dependent degradations by providing a realistic input spectrum. It should be realized that if there are amplitude dependent degradations, the MSN analysis will yield different answers depending on the rms value of the input noise. It is suggested that the MSN measurement be done with worst case input noise, i.e., largest rms and bandwidth ARINC SPECIFICATION 429, PART 1 - Page 174 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) that will be encountered. In some cases alternate MSN specs for different flight regimes may be appropriate. In many cases a more explicit presentation of the amplitude dependent nonlinearities may be desirable. A good example here is localizer receiver linearity, specified as being linear within a given percentage up to .155 DDM, a larger percentage from .155 to .310 DDM and not decreasing between .310 and .400 DDM. Such a specification is important in defining localizer capture laws, where one can begin “using” the signal crudely before it is linear or precisely accurate. It should be noted that this is a slightly different use of sensor data than for precise state control, i.e. the control is carrying the system to a prescribed state rather than maintaining it at a prescribed state in the presence of noise. Normally the latter operation will require more accurate information from the sensor. The amplitude dependent degradations should be measured statically -- that is, one should provide a test input at specified amplitude, allow transients to settle, and measure the output value. Potential Measurement Technique Modified Signal to Noise (MSN) determination requires assuming a random process model for the signal impinging on the sensor. Normally an exponentially correlated signal with specified variance will be sufficient. Empirically determined power spectral densities (using discrete Fourier Transform techniques) will need to be measured for input signal as well as measurement error. Static accuracy measurement was described above. IV. Spectral Characteristics In this area the digital nature of the system interface must be faced squarely. The control system designer cannot alter the signal degradation introduced by Signal Power Spectral Density ( SPSD(w) ) The important signal degradation terms are defined concisely below. Only the last two are proposed as parameter characteristics--the first three being definitions to clarify the last two. • Measurement Error – The difference between the signal impinging on the sensor and the output representation of that signal by the sensor expressed in consistent units. • Signal PSD (SPSD) – The power spectral density of the signal impinging on the sensor. • Measurement Error PSD (MEPSD) – The power spectral density of measurement error introduced by the sensor. • Modified Signal to Noise Ratio – A measure primarily of the spectral characteristics of sensor errors defined as the square root of the ratio of SPSD and MEPSD at each frequency in the control band. i.e., MSN(w) = SPSD (w) MEPSD (w) So Measurement A Error Power M Spectral Density P ( MEPSD(w) ) L ( ) rms = s0∆w I T U D E Po ⎜⎝⎛ rms = p ∆w 0 ⎟⎠⎞ frequency ∆w w MSN (w) = SPSD (w) MEPSD (w) MSN ∆ Modified Signal to Noise Ratio Figure 3. Modified Signal to Noise Ratio • Static Accuracy – A measure of the amplitude dependent characteristics of sensor errors defined as the difference between input and output signals after all transients have settled. ARINC SPECIFICATION 429, PART 1 - Page 175 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) the sensor whether it be due to nonlinearities, aliasing, noise, etc. He has great potential, however, for making matters worse if he is not alert to potential aliasing problems that he may introduce. To analyze aliasing precisely he would need a precise definition of the spectrum of each signal being received on the digital bus including the update interval for each signal. A more practical approach is to place an upper bound on the received signal spectrum and then ensure downstream performance is adequate using this bound as the signal spectrum. These ideas are made more precise below. Multirate Sampling A simple model for signals received from a bus and used in a digital processor is shown in Figure 4. We note that the spectrum of the signal on the bus, F1 (s), is an infinitely replicated version of the analog input spectrum with replicas spaced by the input sampling frequency F1. We cannot, therefore, speak of the bandwidth of F1 (s) strictly. What we mean here is that a bound is required on each copy in F1 (s). Deriving the spectrum of the signal F2 (s) is beyond the scope of this discussion but a technique has been developed that will yield this spectrum, F2 (s), given the quantities F1, F2, and the shape of the repeated spectrum of F (s) in F1 (s). There is considerable spreading of signal energy in this process with considerable “aliasing” potential even if the quantity fc in Figure 4 is much less than the Nyquist frequency ( f1 2 , f2 2 ) for both F1 and F2. The “aliasing” in the spectrum F2 (s) occurs because the second sampler is not operating on a properly band limited function (see Figure 4) due to the “infinite replica” nature of the spectrum F2 (s). Deterministic Versus Random Signals Adequate roll off chracteristic of the digitally bused data reduces the aliasing problem of the second sampler if the second sampling is properly performed. However, not only this spectrum but also the frequency F1 enters into the aliasing in F2 (s), therefore, it is desirable also to carefully specify F1. This will be accomplished through the update interval. Assuming F2 is somewhat fixed by computer speed and loading considerations, aliasing can be minimized for a given input spectrum by making F1 as high relative to F2 as possible. The important spectral characteristic terms are defined concisely below. • Update Interval – The cyclic time interval, as measured at the DITS bus interface, between transmissions of new freshly sensed and converted/derived values of the parameter. Sampler Analog F(S) Quantity f1 F (S) Digital 1 Register Sampler f2 F 2 (S) Bused Signal F(S) Analog Input Spectrum Software Fetch S The discussion above did not specify whether the original analog quantity was a deterministic signal or a random process. For deterministic cases we deal with the Fourier transforms of the signals involved. However, as pointed out in Section III the signals of interest are really describable only in terms of random processes. For this case the development must proceed in terms of power spectral density of the signals involved. Figure 5 then illustrates the bound on bused signal PSD that is envisioned. Recall that white noise through a lowpass filter yields a PSD that rolls off at 40 db/decade as shown below. -2f1 -f1 -fc fc f1 2f1 S Figure 4 Analysis of Multirate Sampling White Noise Input PSD: U(S) = A - ∞ < w < + ∞ Filter Transfer Function: T (jw) = 1 Jτw+1 Output PSD: Y (S) = T(S)T*(S)U(S) Y(w) = A τ2w2+1 ARINC SPECIFICATION 429, PART 1 - Page 176 APPENDIX C DIGITAL SYSTEMS GUIDANCE (PART 1) • Transmit Interval – The cyclic time interval, as measured at the DITS bus interface, between transmissions of the parameter. Transmit Interval ≤ Update Interval. • Pre-sampling Bandwidth Limit – That bandwidth for a first order lag that will upper bound the spectral characteristics of the signal of the signal on the bus. Power Spectral Density 40 db/decade Pre-Sampling Bandwidth Limit Frequency w Note: Periodic Function Only Positive Half of Zero Centered Component Shown (see Figure 4) Figure 5 PSD Bound on Bused Signal BOEING COMMERCIAL AIRPLANE COMPANY P.O. Box 3707 Seattle, Washington 98124 M/S 47-09 A Division of The Boeing Company May 11, 1979 SYST-B8713-79-209 Attachment to SYST-B-8764-20-075 DESIGN PARAMETERS FOR DIGITAL AVIONIC SYSTEMS Prepared by Boeing Commercial Airplane Company REVISION A ARINC SPECIFICATION 429, PART 1 - Page 177 APPENDIX D DIGITAL SYSTEMS GUIDANCE (PART 2) Mr. B. R. Climie, Chairman Airlines Electronic Engineering Committee Aeronautical Radio, Inc. 2551 Riva Road Annapolis, Maryland 21401 Dear Rick: The enclosed paper is a revised version of “Design Parameters for Digital Avionic Systems,” which was originally circulated with AEEC letter 79022/SAI-99. The revision addresses the topic of aliasing which could occur when reducing the sampling rate of a digitally encoded signal. This topic was discussed at the DITS working group meeting held on April 18 and 19. Sincerely AIR TRAFFIC CONTROL AND ELECTRONIC SYSTEMS AFN: Enclosure A. F. Norwood, Chief BBOOEEIINNGG Summary This paper explains the necessity for defining presampling filter characteristics, transport delays and minimum update rates for digital and noise characteristics are discussed. A design procedure for selecting the required filter characteristic and update rate is presented. Introduction The new generation of commercial aircraft will use digital technology to implement many functions, which were traditionally performed with analog hardware. These functions include inner and outer servo loops for aircraft control and guidance, processing and filtering signals from navigation and other sensors, and filtering of data prior to its display on cockpit instruments. Digital technology will also replace the majority of the formerly analog communication paths between systems, sensors, instruments and actuators. A basic property of these and other digital systems is that they only process or transfer values of data from discrete points in time. The contrast between the discrete time nature of a digital system and the continuous time nature of an analog system is shown in Figure 1. Analog systems are said to operate in the continuous time domain while digital systems are said to operate in the discrete time domain. In order for discrete time digital systems to be used to process or transfer the inherently continuous time data from real world physical systems, samples of the continuous data must be taken at periodic intervals. These samples from discrete points in time can then be used as the input to the discrete time digital system. It is intuitively obvious that the interval between samples affects the accuracy with which the continuous time data is represented by the discrete samples. It is also obvious that rapidly varying signals should be sampled more often than slowly varying signals in order to maintain an adequate representation of the continuous analog data. Selection of a proper sampling rate for each signal is a design task unique to digital systems. An understanding of the Sampling Theorem is necessary in order to make the proper trade offs between sampling rate, signal-to-noise ratio, signal delay, and system complexity. The Sampling Theorem The Sampling Theorem states that a signal which contains no frequency components higher than fo Hertz can be exactly recovered from a set of its samples if the samples are spaced no further apart than ½ fo seconds. This is equivalent to requiring that the sampling frequency be greater than twice the highest frequency component of the signal. The reason for this requirement can be shown by examing the frequency spectrum of the sampler output. Modeling the sampling operation as the multiplication of the input signal by an impulse train as shown in Figure 2 allows the sampler output spectrum to be computed from a Fourier Transform identity. The required identity states that time domain multiplication is equivalent to frequency domain convolution. Therefore, the output spectrum is found by convolving the input spectrum with the spectrum of the impulse train. This relationship is shown in Figure 3. The convolution operation has the effect of reproducing the spectrum of the input signal about zero frequency and at all harmonics of the sampling frequency. If the sampling frequency, 1/Ts, is greater than twice fo the spectral components centered about the sampling frequency and its harmonics will not overlap the spectral component centered about zero frequency. Therefore, the spectral component centered about zero, which is identical to the input spectrum, can be obtained by passing the sampled output through a low pass filter with a bandwidth of fo Hz. Application of the Sampling Theorem to Digital Avionics Systems The discussion of the Sampling Theorem in the preceding section has shown that a signal which contains no frequency components higher than fo Hz. can be exactly represented by a series of samples spaced no further apart than ½ fo seconds. However, signals, which represent physical quantities, such as those processed by avionic systems never satisfy the strict bandwidth limitation requirement stated above. Therefore exact reproduction of the original signal from its samples is not possible. The effect of the non-bandlimited nature of signals is to distort the replica reconstructed from the samples. The shaded area shown in Figure 4 represents typical high frequency signal energy which distorts the low frequency portion of the signal spectrum. The high frequency portion of the signal takes on the identity of the lower frequencies, hence the name “aliasing” for this phenomenon. Aliasing becomes a greater problem when the signal is corrupted by noise, which has a wider bandwidth than the signal. When this occurs both signal energy and noise energy which is beyond one half of the sampling frequency is aliased into the low frequency portion of the recovered signal. This effect is shown in Figure 5. The signal-to-noise ratio is degraded by both noise and signal components which are aliased into the low frequency portion of the signal spectrum. The effect of aliasing can be decreased by sampling the incoming signal at a higher rate and/or using a presampling filter to reduce the bandwidth of the signal prior to sampling. Neither of these approaches can ever completely eliminate the effect of aliasing and they each result in some negative impact on the overall system. An increase in the sampling rate requires more computations to be done in a given period of time. This requires more computational resources, which increases the weight, complexity, and power requirements of the computer subsystems. The use of a presampling filter to limit the bandwidth prior to sampling distorts the signal. It also increases the delay experienced by signals as they propagate through the system. The increase in delay reduces phase margin if the signal is used in a closed loop control system. Therefore, more stringent delay requirements must be placed on other components in the loop if the system phase margin is to remain constant. Design Tradeoffs for Digital Avionics Systems The final choices of sample rate and presampling filter depend upon the input signal and noise spectra, maximum allowable signal-to-noise ratio degradation due to aliasing, maximum allowable transport delay, available computational resources, and the bandwidth of the system which uses the data. A practical way to make these choices is to analyze the system for various sample rates and filters. This can best be done with the aid of a computer program which computers the effect of each combination of sample rate and filter characteristic on the output signal-to-noise ratio for the defined input signal and noise spectra. The initial computation is to determine the effect of the prefilter on the inband signal-to-noise ratio without regard to aliasing effects. A typical plot of signal-to-noise ratio versus presampling filter bandwidth is shown in the top curve of Figure 6. This curve forms a baseline against which signal-to-noise ratio degradation caused by aliasing can be compared. The signal-to-noise ratio is determined by computing the input signal power and input noise power, which is passed by the selected prefilter. This parameter will generally exhibit a peak value at a specific bandwidth. The signal-to-noise ratio will decrease with increasing bandwidth as more noise is admitted and decrease with decreasing bandwidth as signal energy is eliminated. The filter order is an important design parameter because higher order filters roll off more rapidly near the cutoff frequency. Therefore higher order filters admit less noise and signal from beyond the cutoff frequency than low order filters. Because of this characteristic, high order filters alias no more noise into the signal than slightly narrower bandwidth low order filters. However, high order filters delay the signal more than low order filters. The ultimate objective of the design task discussed in this paper is to achieve acceptable system performance with the minimum possible ARINC SPECIFICATION 429, PART 1 - Page 178 APPENDIX D DIGITAL SYSTEMS GUIDANCE (PART 2) sampling rate. System performance is adversely affected by large propagation delays and high in-band noise levels. If the maximum allowable propagation delay is given, the minimum usable filter bandwidth can be found standard plots of group delay versus frequency for the type and order of filter considered. (See for example Reference 1, page 112.) This minimum bandwidth is plotted on Figure 6 as a vertical line. The maximum achievable signal-to-noise ratio is constrained by the requirement for a presampling filter wide enough to limit delay to the given value. The intersection of the minimum bandwidth line with the top curve of Figure 6 gives the maximum achievable signal-to-noise ratio i.e., the signal-to-noise ratio which would be achieved by an unsampled system. Sampling rate is chosen by comparing the maximum acceptable degradation in signal-to-noise ratio to the actual aliasing degradation due to sampling at the candidate rates. For the example shown in Figure 6, a sampling rate of 50Hz would be chosen. A system interface which meets prescribed limits on signal delay and maximum noise due to aliasing can be designed using the procedures outlined above. Some systems which use sampled data, such as closed loop control systems, have a bandwidth which is much smaller than that of the sampling filter. For this reason it is important to verify that the signal and noise power which is aliased into the frequency band of interest is well below the inherent noise in that band. This can be accomplished by constructing a signal and noise power spectral density plot for the filter and sampling rate chosen. The power spectral density plot is most easily obtained with the aid of a computer program. A typical plot of this type is shown in Figure 7. The example power spectral densities in Figure 7 show that the aliased signal and noise is much lower than the inherent noise level in the frequency range of interest. If this constraint is not met a different combination of filter and sampling frequency must be chosen. In some situations it may be desired to reduce the sampling rate of a digitally encoded signal. This may be done where wideband digital data is used to drive an instrument or subsystem which responds only to narrower bandwidth data. Simple deletion of unwanted samples to reduce the sampling rate can cause aliasing problems similar to those encountered when sampling an analog signal at an insufficient rate. The aliasing can be elimination of the unwanted samples. Design of the digital filter is subject to the same set of delay versus aliasing noise tradeoffs as the design of an analog presampling filter. Conclusion The procedures outlined in this paper can be used to choose the presampling filter and sampling rate required for interfaces to a digital signal processing or control system. The values are chosen to meet the constraints of maximum allowable delay and maximum allowable noise due to aliasing. Signal and noise spectra of the signal to be sampled must be supplied as an input to the design procedure. Reference: Herman J. Blinchikoff and Anatol I. Zverev, Filtering in the Time and Frequency Domains, John Wiley and Sons, New York. Analog Input Analog Input Analog System Analog Output Analog Output time time Figure 1(a) Typical Input and Output of Analog System Digital Input (discrete values) Digital System Digital Output (discrete values) Digital Input time time Figure 1(b) Typical Input and Output of Digital System ARINC SPECIFICATION 429, PART 1 - Page 179 APPENDIX D DIGITAL SYSTEMS GUIDANCE (PART 2) ARINC SPECIFICATION 429, PART 1 - Page 180 APPENDIX D DIGITAL SYSTEMS GUIDANCE (PART 2) r (t) X rs(t) Low Pass Bw =oHz r (t) ∞ ∑δ (t−nTs) n=−∞ Figure 2 Mathmatical Model of Sampling Process R (f) -fo 0 fo Figure 3(b) Spectrum of f(t) Bandlimited to fo Hz ∞ ∑ ℑ{ δ (t − nTs )} n = −∞ - -- - -- 2 - Ts -1 Ts 0 1 Ts Figure 3(b) Spectrum of Input Train, 2 f Ts ∞ ∑δ (t−nTs) n=−∞ −2 Ts −1 − 1 0 Ts 2T s 1 2T s 1 Ts 2 Ts f Figure 4 Sampler Output Spectrum When Input Signal Bandwidthis not Limited to One-Half of the Sampling Frequency Input Noise Spectrum Input Signal Spectrum −1 0 1 2T s 2T s Figure 5(a) Input Signal and Noise Spectra - -- Rs(f) signal recovery -1 -fo Ts - 1 Ts + fo 0 fo 1 Ts 1 Ts - fo Figure 3(c) Spectrum of Sampling Output - -- f −1 0 1 2T s 2T s Figure 5(b) Output Signal and Noise Spectra Showing Signal-to-Noise Ratio Degradation Due to Aliasing of Signal and Noise ARINC SPECIFICATION 429, PART 1 - Page 181 APPENDIX D DIGITAL SYSTEMS GUIDANCE (PART 2) ARINC SPECIFICATION 429, PART 1 - Page 182 APPENDIX E GUIDELINES FOR LABEL ASSIGNMENTS The ARINC 429 data bus was developed to provide a standardized means of digital information transfer between the “ARINC 700” series of avionics units. ARINC 429 has proven to be a very flexible standard and its usage has extended to provide data transfer between Line Replaceable Units (LRU) which are not otherwise covered by ARINC Characteristics. It is important that each new usage of ARINC 429 be coordinated and indexed by ARINC such that the information on usage (label allocation, data format, etc.) is available industry-wide. The use of the same label for two different functions on a particular LRU type built by different manufacturers can create serious problems. To facilitate the coordination of ARINC 429 label usage between the industry and the ARINC staff, a set of guidelines is provided. 1. New labels should be selected from the five character field as defined in Section 2.3 (three octal and three hexadecimal). 2. c-17 The following labels have special significance and should not be used: label 000 (not used) and label 377 (equipment identification). The preferred SSM encoding for method for the Equipment Identification Word (label 377) is according to the Discrete word guidelines. When this label was originally assigned, it was recognized as a non-BNR word. The SSM encoding was according to the BCD and DISC guidelines that were identical at that time. During development of Supplement 4, the SSM for DISC was revised to it current form to provide enhanced failure warning. When the SSM encoding was changed, some systems retained the BCD encoding for the Equipment Identification word and others changed to DISC encoding. 3. The following labels are presently “spare” and should only be used for new parameters which may have very widespread usage throughout the airplane architecture. 005 040 050 054 107 163 227 371 c-16 006 046 051 055 113 167 240 007 047 052 057 124 226 243 4. Where possible, similar word usage should be “grouped”; for example, if Engine N 1 is to be provided from a new unit (PMUX) it should utilize label 246 which is presently N 1 (engine direct). 5. Where possible, grouped usage should have identical data specification (units, range, significant digits/bits, positive sense, resolution, min--max transmit interval). To facilitate this commonality it is permissible for a particular LRU to output a lower resolution signal (fewer significant digits/bits) if the least significant remainder of the data field is set to zeros. 6. Where word grouping is not possible, the labels should be selected from the following subgroups: Binary coded decimal (BCD) sub-group 001 to 067, 125, 165, 170, 200, 201,230 to 237. Binary (BNR) subgroup 070 to 124, 126 to 144, 150 to 154, 162 to 164, 166, 167, 171 to 177, 202 to 227, 240 to 257, 262 to 265, 267, 310 to 347, 360 to 376. Mixed BCD and BNR subgroup 260, 261 Discretes subgroup 145 to 147, 270 to 276 Maintenance and discrete data subgroup 155, 156 Maintenance data subgroup 157 to 161, 350 to 354 Test word subgroup 266, 277 Application dependent subgroups 300 to 307 Acknowledgement subgroup 355 Maintenance ISO #5 subgroup 356 ISO #5 message subgroup 357 A schematic of these subgroups is attached. ARINC SPECIFICATION 429, PART 1 - Page 183 APPENDIX E GUIDELINES FOR LABEL ASSIGNMENTS 7. Allocation of bits within words, as defined in the appropriate sections. BCD BNR Discretes Maintenance data Test Application dependent Acknowledgement Maintenance ISO #5 ISO #5 message 8. The data should be fully defined by Equipment ID and the label and the Source Destination Indicator (SDI). It should not be necessary to decode additional bits in the word to correctly interpret the data field. 9. The equipment ID should be allocated as the two least significant digits of the 7XX ARINC equipment specification, if one exists. For equipment not otherwise covered by an ARINC Specification, an equipment ID should be allocated with a non-numeric value of the hexadecimal character set as the least significant digit. 10. Equipment ID of 000 (HEX) should not be used. 11. The SDI code should indicate the aircraft installation number of the source equipment, in a multi-system installation, as described in 2.1.4. Least Significant Digit Two Most Sig. Digits 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 / / / /0 X MAINT BCD MIX 1 2 3 4 5 6 7 BCD DATA BNR BCD DISCRETE MAINT DISC M DATA MAINT BCD BNR DISCRETE APPLICATION DEPENDENT BNR DATA BNR ACK TEST TEST M ISO ISO5 EQ ID ARINC SPECIFICATION 429, PART 1 - Page 184 APPENDIX X CHRONOLOGY & BIBLIOGRAPHY X-l.0 Chronology AEEC established the Systems Architecture and Interfaces (SAI) Subcommittee in 1975 to develop the air transport industry’s approach to digital avionics systems architecture, to define digital system interface standards. With respect to this last-named, the Subcommittee soon determined that the industry’s previous approaches to digital information transfer, described in ARINC Specification 419, “Digital Data System Compendium”, needed rationalization and modernization to be applicable in the future digital systems world. However, this work was not started immediately because of the need to concentrate on the more basic tasks related to digital systems architecture. About a year later, AEEC deemed it timely to start the spec-writing for a digital automatic flight control system based on the system architecture concepts developed by the SAI Subcommittee. The Subcommittee AEEC established to do this began its work in January 1977. Part of this activity was the definition of black box interface standards, and this brought into sharp focus the need for the new digital information transfer system to be properly specified. The SAI Subcommittee immediately began to devote time to the discussion of the issues involved to give direction to the Digital Information Transfer System (DITS) working group it set up to develop a spec draft. This group met early in April 1977, and produced a draft which the full Subcommittee reviewed at its meeting in May. A second working group meeting during the period of that Subcommittee meeting, followed by a third in mid-June, produced the second draft of the spec. This draft was submitted to AEEC for adoption, which was achieved at the Summer 1977 General Session in July. The spec adopted by AEEC contained details of numeric data (BNR and BCD) transfer only. The SAI Subcommittee notified AEEC of its intent to broaden the scope of the document to cover alpha/numeric (ISO Alphabet No. 5) and graphic data handling also. These subjects would be addressed in a Supplement to the spec which AEEC would be asked to approve at a later date. X-2.0 Bibliography The following is a list of AEEC letters associated with the preparation of ARINC Specification 429. A list of AEEC letters related the SAI Subcommittee's overall activities may be found in ARINC Report 299, “AEEC Letter Index”. AEEC Letter No. Date Subject 76-130/SAI-20 Dec. 9, 1976 Report of the Systems Architecture and Interfaces Subcommittee Meeting held November 16th, 17th and 18th, 1976 in Seattle, Washington 77-009/SAI-22 Jan. 27, 1977 Whither On-Board Digital Data Transmission Standards? 77-020/SAI-25 Feb. 11, 1977 More On Digital Data Transmission Standards N77-035/SAI-26 Mar. 21, 1977 Boeing Report On Alternative Digital Information System Signalling Standards 77-037/SAI-28 Mar. 25, 1977 Report of the Systems Architecture and Interfaces Subcommittee Meeting Held March 7th, 8th and 9th, 1977 in Arlington, Virginia 77-047/SAI-33 Apr. 13, 1977 Circulation of Draft No. I of Project Paper 429, “Mark 33 Digital Information Transfer System (DITS)” 77-056/SAI-37 Apr. 18, 1977 Report of the SAI Subcommittee BITS Working Group Meeting Held April 5-6, 1977, in Annapolis, Maryland 77-066/SAI-41 Jun. 8, 1977 Report of the Systems Architecture and Interfaces Subcommittee Meeting Held May 9th, 10th and 11th, 1977 in Los Angeles, California 77-079/SAI-46 Jun. 23, 1977 X-3.0 Meeting Attendees Circulation of Draft No. 2 of Project paper 429, “Mark 33 Digital Information Transfer System (DITS)” The following people comprised the SAI Subcommittee’s Digital Information Transfer System Working Group. Tom Ellison Wolfgang Bull Siegmar Gomille UNITED AIRLINES DEUTSCHE LUFTHANSA DEUTSCHE LUFTHANSA San Francisco, California Hamburg, Germany Hamburg, Germany ARINC SPECIFICATION 429, PART 1 - Page 185 APPENDIX X CHRONOLOGY & BIBLIOGRAPHY Jim Wahlen Tony Martin Frank Rasmussen Ed Schroeder Arvind Dandekar Bill Harts David Lewis Ralph Bazil Hal Pierson Bob Clark Capt. Russ Glastetter David Featherstone BENDIX AVIONICS BOEING BOEING BOEING COLLINS RADIO, ROCKWELL INT. COLLINS RADIO, ROCKWELL INT. DELCO ELECTRONICS KING RADIO CORPORATION MITRE CORPORATION SPERRY FLIGHT SYSTEMS USAF AERONAUTICAL RADIO, INC. Ft. Lauderdale, Florida Seattle, Washington Seattle, Washington Seattle, Washington Cedar Rapids, Iowa Cedar Rapids, Iowa Milwaukee, Wisconsin Olathe, Kansas McLean, Virginia Phoenix, Arizona Dayton, Ohio Annapolis, Maryland The following people attended one or more of the SAI Subcommittee meetings held November 16th-18th, 1976, March 7th9th, 1977 and May 9th-11th, 1977, during which the 429 DITS spec drafts and other proposals produced by the DITS working group were reviewed, refined and finalized. Airlines and ARINC Staff T. A. Ellison, Chairman J. S. Davidson Gerard Collin Jean Baptiste Rigaudias Jean Le Luc Clarence L. Richmond Robert M. Cook Jose M. Recacha P. Lorie Ludwig Kilchert Norton Codish Vic Persson Karl H. Riesen T. E. Jackson L. R. Berryhill M. W. Brecht O. R. Evans C. H. Humphrey Robert K. Moyers Claude Gouillon Wallace L. Urie W. T. Carnes B. R. Clime D. H. Featherstone C. C. Tinsley UNITED AIRLINES AIR CANADA AIR FRANCE AIR FRANCE AIR INTER AMERICAN AIRLINES DELTA AIRLINES IBERIA SPANISH AIRLINES KLM AIRLINES LUFTHANSA GERMAN AIRLINES PAN AM WORLD AIRLINES SCANDINAVIAN AIRLINES SWISSAIR TWA UNITED AIRLINES UNITED AIRLINES UNITED AIRLINES UNITED AIRLINES U.S. AIR FORCE UTA WESTERN AIRLINES AERONAUTICAL RADIO, INC. AERONAUTICAL RADIO, INC. AERONAUTICAL RADIO, INC. AERONAUTICAL RADIO, INC. San Francisco, California Montreal, Canada Orly Aerogare, France Orly Aerogare, France Orly, France Tulsa, Oklahoma Atlanta, Georgia Barajas-Madrid, Spain Amsterdam, Netherlands Hamburg, Germany Jamaica, New York Stockholm-Bromma, Sweden Jamaica, New York Kansas City, Missouri Denver, Colorado San Francisco, California San Francisco, California San Francisco, California Washington, D.C. Puteaux, France Los Angeles, California Annapolis, Maryland Annapolis, Maryland Annapolis, Maryland Annapolis, Maryland Manufacturers and Others Bernard E. Bouet Jean Tambareau Russell Fine William M. Russell III S. R. Sporn Robert L. Daniel Jean Francois Ferreri Jay J. Ahmann T. H. Hitt Brendan J. Spratt William C. Thompson James C. Whalen Howard E. Allen Donald L. Beckman Jerry Doniger Ken Kendall Albert T. Kirchhein Harry W. Bedell Jr. AEROSPATIALE AEROSPATIALE AIRESEARCH MFG. CO. AIR TRANSPORT ASSOCIATION ARMA DIV./AMBAC AVIATION CONSULTANT AVIONS MARCEL DASSAULT BENDIX AVIONICS DIV. BENDIX AVIONICS DIV. BENDIX AVIONICS DIV. BENDIX AVIONICS DIV. BENDIX AVIONICS DIV. BENDIX CORP. FLIGHT SYSTEMS BENDIX CORP. FLIGHT SYSTEMS BENDIX CORP. FLIGHT SYSTEMS BENDIX CORP. FLIGHT SYSTEMS BENDIX CORP. FLIGHT SYSTEMS BENDIX LONG BEACH FAC. Toulouse, France Toulouse, France Torrance, California Washington, D.C. Garden City, New York Studio City, California Saint Cloud, France Burbank, California Burbank, California Ft. Lauderdale, Florida Ft. Lauderdale, Florida Ft. Lauderdale, Florida Tukwila, Washington Teterboro, New Jersey Teterboro, New Jersey Teterboro, New Jersey Teterboro, New Jersey Lakewood, California ARINC SPECIFICATION 429, PART 1 - Page 186 APPENDIX X CHRONOLOGY & BIBLIOGRAPHY Dwayne Broderson James R. Fries R. F. Gorman Anthony J. Martin J. McHutchison Richard A. Peal Frank A. Rasmussen Irving R. Reese E. T. Schroeder V. J. Small Robert W. Sutton Ray Hillman Richard A. Keall Donald J. Gussin Arvind J. Dandekar R. V. Donaldson J. C. Hall Bryand C. Hawkins Eugene C. Machacer Donald H. Wickenkamp John F. Lent Michel Pascal Richard A. Johnson L. David Lewis John H. Sheldrick Tom Sizlo John Carter David Burton Roy F. Keating Rene Plouhinec John E. Reed Charles Sheets Robert E. Weir Richard Haley S. C. Caliendi Harry Graves Ronald G. Raymond Claude P. Roquefeuill Jack Hawkins J. Langenback Ray Swanson Ken Berg David A. Nelson John C. Cotton L. J. Singleton P. H. Weinheimer William R. Beckman Job Van Der Bliek Wm. J. Hillman Ed Selvig Barry J. Aldridge Gordon Belcher Derek Marshall Karl-Heinz Terheiden Harold L. Pierson Richard W. Telsch Gary C. Horan G. A. Lucchi Gerard A. Collin Lloret Jean-Yves Begeault Jefferson Z. Amacker Joseph Koprowski John Desmond Dave Richardson BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BOEING COMMERCIAL AIRPLANE BRITISH AEROSPACE BRITISH AEROSPACE CANADIAN MARCONI CO. COLLINS RADIO GROUP COLLINS RADIO GROUP COLLINS RADIO GROUP COLLINS RADIO GROUP COLLINS RADIO GROUP COLLINS RADIO GROUP CROUZET CROUZET DELCO ELECTRONICS DIV. GMC DELCO ELECTRONICS DIV. GMC DELCO ELECTRONICS DIV. GMC DOUGLAS AIRCRAFT COMPANY E-A INDUSTRIAL CORP. ELDEC CORPORATION ELDEC CORPORATION ELECTRONIQUE MARCEL DASSAULT FAA GARRETT CORP. GARRETT AIREASEARCH HAMILTON STANDARD HAWKER SIDDELEY AVIATION HONEYWELL INC. HONEYWELL INC. ISPENA ITT CANNON ELECTRIC ITT CANNON ELECTRIC JAEGER KING RADIO CORP KING RADIO CORP LITTON AERO PRODUCTS LITTON AERO PRODUCTS LITTON AERO PRODUCTS LOCKHEED CALIFORNIA CO LOCKHEED CALIFORNIA CO LOCKHEED CALIFORNIA CO LOCKHEED CALIFORNIA CO MARCONI ELLIOTT AVIONICS MARCONI ELLIOTT AVIONICS MARCONI ELLIOTT AVIONICS MESSERSCHMITT-BLOKOW-BLOHM MITRE CORPORATION MITRE CORPORATION PRATT & WHITNEY AIRCRAFT RCA SAGEM SAGEM SFENA SINGER KEARFOTT SINGER KEARFOTT SMITHS INDUSTRIES INC. SMITHS INDUSTRIES INC. Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Seattle, Washington Surrey, England Hatfield, England Montreal, Canada Cedar Rapids, Iowa Cedar Rapids, Iowa Cedar Rapids, Iowa Cedar Rapids, Iowa Cedar Rapids, Iowa Cedar Rapids, Iowa Pasadena, California Valence, France Milwaukee, Wisconsin Milwaukee, Wisconsin Milwaukee, Wisconsin Long Beach, California Chamblee, California Lynnwood, California Lynnwood, California Saint Cloud, France Washington, D.C. Torrance, California Torrance, California Windsor Locks, Connecticut Hatfield, Herts, England Minneapolis, Minnesota St. Louis Park, Minnesota Paris, France Santa Ana, California Santa Ana, California Pasadena, California Olathe, Kansas Olathe, Kansas Woodland Hills, California Woodland Hills, California Seattle, Washington Burbank, California Burbank, California Burbank, California Burbank, California Rochester Kent, UK Rochester Kent, UK Seattle, Washington Hamburg, Germany McLean, Virginia McLean, Virginia East Hartford, Connecticut Van Nuys, California Paris, France Paris, France Velizy-Villacoublay, France Little Falls, New Jersey Little Falls, New Jersey Clearwater, Florida Clearwater, Florida Brian Williams Mike C. Pietromonaco Donald Baker Don Burkholder Jack E. Emfinger D. A. Few Martin S. Klemes R. J. Lofquist Harry Miller Ronald H. Neeves Edmond Olive R. E. Schaffer Harry O. Smith Al J. Venancio Lou Borbely Glenn H. Jones Robert Schaeperkoetter C. A. Bennet H. E. Sutherland D. A. Giroux Charles Legrand J. Ribiere J. Lane Ware William Donnell R. R. Fay Jean-Pierre Tomasi Blaine C. Ferch Erwin C. Gangi Capt. R. A. Glastetter ARINC SPECIFICATION 429, PART 1 - Page 187 APPENDIX X CHRONOLOGY & BIBLIOGRAPHY SMITHS INDUSTRIES INC. S. P. INC SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SPERRY FLIGHT SYSTEMS SUNSTRAND DATA CONTROL SUNSTRAND DATA CONTROL SUNSTRAND DATA CONTROL TELEDYNE CONTROLS El TELEDYNE CONTROLS El THOMSON-CSF THOMSON-CSF THOMSON-CSF THOMSON-CSF TRACOR APPLIED TECHNOLOGY TRACOR APPLIED TECHNOLOGY TRT USAF USAF USAF Cheltenham, Glos, UK Bellevue, Washington Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Phoenix, Arizona Redmond, Washington Redmond, Washington Redmond, Washington Segundo, California Segundo, California Les-Moulineaux, France Les-Moulineaux, France Malakoff, France New York, New York Austin, Texas Austin, Texas Le Plessis-Robinson, France Wright Patterson AFB, Ohio Dayton, Ohio Wright Patterson AFB, Ohio AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401- 7645 USA SUPPLEMENT 1 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: June 1, 1978 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: April 11, 1978 SUPPLEMENT 1 TO ARINC SPECIFICATION 429 - Page 2 A. PURPOSE OF THIS SUPPLEMENT ORIGINAL TEXT FOLLOWS This Supplement adds to Specification 429 material related to the transfer of graphic and ISO alphabet No. 5 encoded alpha/numeric data by the Mark 33 DITS. Also, it clarifies the purpose of the SDI function, adds BCD and BNR numeric data encoding examples to Attachment 6 and introduces two Appendices into the Specification. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c-1” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-1 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is identified by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 1.3.2 ISO Alphabet No. 5 Data Transfer Existing text supplemented – no other changes. 1.3.3 Graphic Data Transfer New section added by this Supplement. 2.1.2 Information Element To permit the use of common hardware elements for the transmission of BNR and BCD numeric data, the format for the Mark 33 DITS BCD word differs from that used formerly for this type of data. Bit no. 32 is assigned to parity, bit nos. 31 and 30 to the sign/status matrix, bit no. 29 is the most significant bit of the data field, and the maximum decimal value of the most significant character is 7. Previously, the BCD word contained no parity bit, the sign/status matrix occupied bit nos. 32 and 31, bit no. 30 was the most significant data bit and the maximum decimal value of the most significant character was 3. This format made the word 8-bit byte oriented with respect to the data. This characteristic is not retained in the Mark 33 system. Also, the Mark 33 BCD word will not accommodate latitude and longitude to the formerly specified resolution of 0.1 minute of arc. If BCD transmission of these quantities in required, either the resolution must be decreased or the word must be restructured. Restructuring involves limiting the maximum decimal value of the most significant character to 1, moving the remaining BCD characters towards the MSB by two bit positions and using bit nos. 9 and 10 for data instead of reserving them for source/destination identification encoding per Section 2.1.4 of this document. It is probable, however, that future latitude and longitude displays will not be the simple, dedicated read-out type for which BCD data is intended. More likely is the use of some form of multiple-message display, such as a CRT, which will be backed by its own data processor and prefer inputs of BNR data. If this proves to be the case, there will be no problem! 2.1.3 Information Identifier Text expanded to explain differing roles of label codes in numeric (BCD/BNR) and alpha/numeric (ISO Alphabet No. 5) data transfer. “Special Note” added. ORIGINAL TEXT FOLLOWS The first eight bits of each word are assigned to a label function so that the data contained in the word may be identified. Label code assignments are set forth in the table of Attachment 1 to this document. 2.1.4 Source/Destination Identifier COMMENTARY revised to improved clarity of opening sentence, and to modify the statement concerning the BCDencoding of latitude and longitude as a consequence of the clarification of the use priorities for bit nos. 9 and 10 introduced into Section 2.1.4 by this Supplement. Section modified to indicate that bit nos. 9 & 10 are not available for the SDI function in DITS words employed for graphic and ISO Alphabet No. 5 data transfer, or in BNR/BCD words in which bit nos. 9 and 10 are needed for valid data in order to achieve the desired resolution. Code table revised and function application more fully described. Consequential revisions to Commentary. SUPPLEMENT 1 TO ARINC SPECIFICATION 429 - Page 3 ORIGINAL TEXT FOLLOWS Bit nos. 9 & 10 of the word should be reserved for a data source/destination identification function. This function may find application when specific words need to be directed to a specific system of a multi-system installation or when the source system of a multi-system installation needs to be recognizable from the word content. When the source/destination identifier function is used, bit nos. 9 & 10 should be encoded as follows. When it is not used, binary zeros or valid data should be transmitted in these positions Bit No. 10 9 System 0 0 1 0 1 2 1 0 3 1 1 4 . COMMENTARY In many applications of the Mark 33 DITS, data source/destination identification will not be needed. In these cases, bits 9 & 10 will be used as pad bits for valid data. In certain other applications of the system, for example, BCD latitude and longitude encoding (if needed – see Commentary following Section 2.1.2 of this document), the need to use bit nos. 9 and 10 to obtain adequate data resolution will preclude source/destination identification in this way. Note that this document does not address the practical question of how these bits will be set in those multi-system installations in which the source/destination identification function is desired. One way would be to use program pins on individual system black boxes which would be wired to set up the appropriate code. The ARINC Characteristics devoted to the individual systems will define the method actually to be used. 2.1.5 Sign/Status Matrix Section divided into two sub-sections, one to describe the BCD numeric and ISO Alphabet #5 alpha/numeric data sign status matrix, and the other to describe the BNR numeric data sign/status matrix. ORIGINAL TEXT FOLLOWS The “sign” (plus, minus, north, south, etc.) of the transmitted data and the status of the transmitter hardware should be encoded in bit nos. 30 and 31 as shown in the table below. Bit No. 31 30 00 01 10 11 Designation BNR/BCD Data ISO # 5 Data Plus, North, East Right, To No Computed Data Functional Test Minus, South, West, Left, From TBD Notes: 1. A source system should indicate failure by ceasing to supply data to a bus. 2. Both bits should be “zero” in BNR and BCD words when no sign is needed. 3. The “no computed data” code should be generated when computed data is not available for reasons other than equipment failure. 4. When is appears in a word identified by its label as a system output, the “functional test” code should be interpreted as advice that the data in the word results from the execution of a functional test. When it appears in a word identified by its label as an instruction, e.g., a radio channel change command, this code should be interpreted as a command to perform a functional test. 2.1.6 Data Standards Typographical errors corrected in second paragraph of Commentary. 2.2.1 Transmission System Interconnect Existing material supplemented with information concerning shield grounding. 2.2.3.2 Receiver Voltage Levels DC levels between terminal A and ground and terminal B and ground at which receivers should not be damaged raised from +20VDC to +28VDC (min) and for –20VDC to –28VDC (min) respectively to align numerical values with aircraft DC power supply value. 2.3.1.3 ISO Alphabet No. 5 Data New section added by this Supplement. 2.4.1 Bit Rate Existing commentary supplemented with warning against selection of 13.6 KBPS and 100 KBPS because of possible interference with operation of OMEGA and LORAN C system on the aircraft. Attachment 2: Data Standards Tables 1 and 2 Column heading “MIN TRANSMIT INTERVAL msec” changed to “MAX TRANSMIT INTERVAL msec” in each case. Attachment 2: Data Standards Table 3 Table 3 (Alpha/Numeric (ISO Alphabet No. 5) Data Standards) deleted. Table 4 (Discrete Data) renumbered Table 3. Note: Table 3 was reserved for alpha/numeric (ISO Alphabet No. 5) data standards prior to the preparation of this Supplement. The need for it disappeared as a result of the particular approach selected for handling this data introduced into Specification 429 by this Supplement. SUPPLEMENT 1 TO ARINC SPECIFICATION 429 - Page 4 Attachment 6: General Word Formats and Encoding Examples BNR word format example amended as consequence of change to sign/status matrix (see Section 2.1.5) General Word Formats for ISO Alphabet No. 5 data added. Encoding examples added. Appendix 1: Laboratory Verification of ARINC 429 DITS Electrical Characteristics New material added by this Supplement. Appendix 2: An Approach to a Hybrid Broadcast Command/Response Data Bus Architecture. New material added by this Supplement. NOTE: Due to the large number of changes Created by this Supplement, it is NOT available separately to update 429-1. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401- 7645 USA SUPPLEMENT 2 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: March 1, 1979 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: December 6, 1978 SUPPLEMENT 2 TO ARINC SPECIFICATION 429 - Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement amends the material added to Specification 429 on ISO Alphabet No. 5 data transfer, and expands the multiple-word DITS message concept first used in this application to cover Discrete, Acknowledgement and Maintenance (ISO Alphabet No. 5 and discrete data formats) information transfer as well. The Application Notes of Chapter 3 of the Specification are amended to bring them into line with adopted practice in the control of DME’s and ATC transponders, and supplemented with material related to the multipleword message applications of the system just mentioned. Also, additions and modifications have been made to the label codes and data standards in Attachments 1 and 2 of the Specification to bring them into line with adopted practice. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original test for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c2” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-2 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.1.2 INFORMATION ELEMENT Text revised to describe word application groups. ORIGINAL TEXT FOLLOWS: 2.1.2 Information Element The basic information element is a digital word containing 32 bits. Word formats for the different types of data handled by the Mark 33 DITS (see Section 2.3.1 of this document) are depicted in Attachment 6. When less than the full data field is needed to accommodate the information conveyed in a word in the desired manner, the unused bit positions should be filled with binary zeros or valid data pad bits. If valid data bits are used, the resolution possible for the information will exceed that called for in this specification. The Commentary following Section 2.1.6 of this document refers. 2.1.3 INFORMATION IDENTIFIER Text revised to describe label use for AIM/Discrete/Maintenance data word type identification. ORIGINAL TEXT FOLLOWS: 2.1.3 Information Identifier The first eight bits of each word are assigned to a label function. Labels will a) identify the information contained within numeric (BCD/BNR) data words (e.g., DME distance, static air temperature), and b) act as receiving device addresses for alpha/numeric (ISO Alphabet No. 5) data words (e.g., navigation system CDU or map display). Label code assignments are set forth in Attachment 1 to this document. 2.1.5.1 BCD NUMERIC AND AIM DATA WORDS Title and text revised to include other AIM applications in material originally prepared to describe sign/status matrix use in ISO Alphabet No. 5 words, and to provide definition of Self-Test. ORIGINAL TEXT FOLLOWS: 2.1.5.1 BCD Numeric and ISO Alphabet No. 5 Data Words The sign (plus, minus, north, south, etc.) of BCD numeric data, the word type of alpha/numeric (ISO alphabet No. 5) data and the status of the transmitter hardware should be encoded in bit nos. 30 and 31 of the word as shown in the table below. Bit No. 31 30 0 0 0 1 1 0 1 1 Designation BNR/BCD Data ISO #5 Data Plus, North, East Right, to Initial Word No Computed Data No Computed Data Functional Test Intermediate Word Minus, South, West Left, From Final Word Notes: 1. A source system should annunciate any detected failure that causes one or more of the words normally output by that system to be unreliable by ceasing to supply the affected word or words to the data bus. 2. Both bits should be “zero” when no sign is needed. 3. The “no computed data” code should be generated when computed data is not available for reasons other than equipment failure. SUPPLEMENT 2 TO ARINC SPCIFICATION 429 - Page 3 4. When it appears in a word identified by its label as a system output, the “functional test” code should be interpreted as advice that the data in the word results from the execution of a functional test. When it appears in a word identified by its label as an instruction, e.g., a radio channel change command, this code should be interpreted as a command to perform a functional test. 5. If, during the execution of a functional test, a source system detects a failure which causes one or more of the words normally output by that system to be unreliable, it should immediately change the states of bit nos. 30 and 31 in the annunciation is replaced with the “failure warning” annunciation 2.2.3.1 TRANSMITTER VOLTAGE LEVELS 5. See Section 2.3.1.3 of this document for definitions of the terms “Initial Word”, “Intermediate Word” and “Final Word”. Tolerances on “HI” and “LO” voltage states changed from ± 0.5 volt to ± 1.0 volt to correct previously undetected error. 2.1.5.2 BNR NUMERIC DATA WORDS 2.3.1.2 DISCRETES Text revised to provide definition of Self-Test. ORIGINAL TEXT FOLLOWS: Minor changes to existing wording to improve clarity. New paragraphs added to describe two types of dedicated –to-discrete words and their applications. 2.1.5.2 BNR Numeric Data Words ORIGINAL TEXT FOLLOWS: The sign (plus, minus, north, south, etc.) of BNR numeric data words and the status of the transmitter hardware should be encoded in bit nos. 29, 30 and 31 of the word as shown in the table below. Bit No. 31 30 29 000 001 010 100 101 110 111 011 Designation BNR Data Failure Warning/Plus, North, East Right, To Failure Warning/Minus, South, West, Left, From No Computed Data Functional Test/Plus, North, East, Right, To Functional Test/Minus, South, West Left, From Normal Operation/Plus, North, East, Right, To Normal Operation/Minus, South West, Left, From Not Used (Growth) Notes: 1. A source system should annunciate any detected failure that causes one or more of the words normally output by that system to be unreliable by setting bit nos. 30 and 31 in the affected word(s) to the “failure warning” code defined above. Words containing this code should continue to be supplied to the data bus during the failure condition. 2. Bit no. 29 should be “zero” when no sign is needed. 3. The “no computed data” code should be generated when computed data is not available for reasons other than equipment failure. 4. When it appears in a word identified by its label as a system output, the “functional test” code should be interpreted as advice that the data in the word results from the execution of a functional test. A self-test should produce indications of 1/8 of positive full-scale values unless indicated otherwise in an ARINC Equipment Characteristic. 2.3.1.2 Discretes In addition to handling numeric data as specified above, the Mark 33 DITS should also be capable of accommodating discrete items of information, either in the “spare” bits of data words or, when necessary, in dedicated words. Any discrete information contained in a word assigned a label in Attachment 1 is specified in the definition for that word in Attachment 2. The rule to be followed in the assignment of bits to discrete functions is to start with the least significant bit available in the word and to continue towards the most significant bit. Attachment 6 shows this against the background of the generalized word structure. 2.3.1.3 Maintenance Data (General Purpose) This section inserted to describe use and application of general purpose Maintenance words. ORIGINAL TEXT FOLLOWS: 2.3.1.3 Alpha/Numeric (ISO Alphabet No. 5) Data ISO Alphabet No. 5 alpha/numeric data will consist of seven-bit characters encoded per the table of Attachment 5 to this document. Three such characters should occupy bit nos. 9 through 29 of a DITS 32-bit word, as shown in the general word format diagram in Attachment 6. As for numeric (BCD) data words, bit nos. 1 through 8 should be the word label (receiving device address-see Section 2.1.3), bit nos. 30 and 31 the sign/status matrix and bit no. 32 the word parity bit. The typical alpha/numeric message contains more than three ISO Alphabet No. 5 characters, necessitating the transmission of multi-DITS-word messages. The following procedure should be used to permit receivers to determine that such messages are received in their entirety, with no words having been “lost along the way”. Only when this determination has been made, and the parity check for each word shows the data to be error-free, should the message be displayed to the aircrew or otherwise utilized. SUPPLEMENT 2 TO ARINC SPECIFICATION 429 - Page 4 2.3.1.3 Alpha/Numeric (ISO Alphabet No. 5) Data (cont’d) The first DITS word of the message should contain the label in bit nos. 1 through 8, two numeric characters encoded per ISO Alphabet No. 5 in bit nos. 9 through 15 and 16 through 22 and the ISO Alphabet No. 5 control character “STX”in bit nos. 23 through 29. The two numeric characters should indicate the decimal number of DITS words in the message (maximum number is 99), with the most significant character occupying bit nos. 16 through 22. This count, which should include this initial word, will be one plus the next whole number greater than one third of the number of ISO Alphabet No. 5 characters to be transmitted. The sign/status matrix should contain the “initial word” code defined in Section 2.1.5 of this document. The subsequent DITS words of the message should each contain the label in bit nos. 1 through 8 and three ISO Alphabet No. 5 characters. The sign/status matrix of all these words except the last word should contain the “intermediate word” code defined in Section 2.1.5.1 of this document. The last word of the message should contain the “final word” code in its sign/status matrix. Any unused bit positions in the final word resulting from the number of ISO characters in the message being one or two less than a number wholly divisible by three should be filled with binary “zeros”. 2.3.1.4 AIM Data Section number, text and title revised to include other AIM word applications in material originally prepared to describe ISO Alphabet No. 5 data handling (originally in Section 2.3.1.3). Detailed amendments in this area also. 3.1.4.2 DME The “Override” switching function has been replaced by the “DME Mode Select” function. 3.1.4.7 ATC TRANSPONDER “Mode A/B Select” and “Standby” deleted from list of switching functions. Control word format re-structured to release bits unneeded in numeric data part of word for assignment to discrete switching functions. Fig. 3-1 Radio Systems Management Word Formats Bit nos. 11 and 12 in the DME data word have been assigned to “DME Mode Select”. The description of bit 14 in the VOR/ILS data word has been revised to improve clarity. ORIGINAL TEXT FOLLOWS: [1] When bit no. 4 is “zero”, the ILS mode should be “off. When bit no 14 is “one”, the ILS mode should be “one”. SUPPLEMENT 2 TO ARINC SPCIFICATION 429 - Page 5 ORIGINAL ATC TRANSPONDER WORD FORMAT ILLUSTRATION FOLLOWS: ATC TRANSPONDER LABEL Beacon Transponder Code PARITY (odd) SIGN/STATUS MATRIX 0.7 (3 ) 0.7 (6 ) 0.7 (2 ) 0.7 (0 ) A/B Mode Select IDENT STANDB Y ALT. REP. OFF RESERVED (SDI) Bit No. Example 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 1 01 1 0 0 0 1 1 0 0 0 0 0 0 0 0 00 1 1 0 1 1 00 0 [1] [1] Bit Zero One 11 Alt. Rep. ON 12 Standby OFF 13 Ident OFF 14 Select Mode A Alt. Rep. OFF Standby ON Ident ON Select Mode B The revised format of the ATC transponder word is as shown on page 10. 3.2 AIM Information Transfer New section added by this Supplement. Attachment 1: Label codes Some parameter names have been changed and others have been added to the list. Instead of showing the entire list, only the original assignment of those that have been changed are shown below. SUPPLEMENT 2 TO ARINC SPECIFICATION 429 - Page 6 Label (Octal) 007 014 015 016 017 024 027 041 042 043 044 045 100 107 110 112 124 130 131 132 133 145 146 147 166 203 204 214 216 220 221 223 224 225 226 227 234 235 236 237 241 242 245 247 270 271 272 273 274 334 340 346 350 351 352 353 354 355 356 357 360 372 373 374 375 376 Original Assignment Align Status/Inertial Discretes None assigned None assigned None assigned None assigned Selected Course None assigned None assigned None assigned None assigned None assigned None assigned Selected Course AFS Discretes None assigned None assigned FMC Discretes None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned Altitude (29.92) Altitude (Baro) Air Data Computer Discretes Baroset None assigned None assigned Altitude (29.92) Altitude Baro Mach Computed Airspeed Max Allowable Airspeed Baroset (millibars) Baroset (ins. of Hg) None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned Free Heading N1 or EPR Actual None assigned Engine Discretes Control Panel Discretes Control Panel Discretes Control Panel Discretes Instrument Discretes None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned None assigned Proposed Assignment No assignment Magnetic Heading Wind Speed Wind Direction-True Selected Runway Heading Selected Course #1 Selected Course #2 Set Latitude Set Longitude Set Magnetic Heading True heading Minimum Airspeed Selected Course #1 No assignment Selected Course #2 Selected EPR or N1 Caution & Warning DFDR Discretes #1 Tt2 Pt2 Pt7 Thrust Lever Angle AFS DFDR Discretes #1 AFS DFDR Discretes #2 AFS DFDR Discretes #3 RALT Check Point Dev. Altitude (1013.25mb) Baro Corrected Altitude #1 No assignment No assignment Baro Corrected Altitude #2 Indicated Angle of Attack No assignment Caution/Warning DFDR Discretes #2 No assignment No assignment No assignment Baro Correction (mb #1) Baro Correction (mb #1) Baro Correction (mb #2) Baro Corrected (in of Hg #2) Corrected Angle of Attack Total Pressure Minimum Airspeed Total Fuel Discrete Data #1 Discrete Data #2 Discrete Data #3 Discrete Data #4 Discrete Data #5 Platform Heading EPR Actual N1 Actual Maintenance Data #1 Maintenance Data #2 Maintenance Data #3 Maintenance Data #4 Maintenance Data #5 Acknowledgement Maintenance ISO #5 Message ISO #5 Message Potential Vertical Speed Wind Direction-Magnetic N-S Velocity-Magnetic E-W Velocity-Magnetic Along Heading Acceleration Cross Heading Acceleration SUPPLEMENT 2 TO ARINC SPCIFICATION 429 - Page 7 Attachment 2: Data Standards A number of additions and changes have been made to the tables. The octal labels and parameter names are shown for each data item that has been changed. The original data is shown only for the data that has been changed by this supplement. Also a second “Note” has been added to Table 2. Table 1 BCD DATA Label Parameter (Octal) Name Max Transmit Interval Range (Scale) Sig. Fig. 170 Decision Hgt Sel.(EFI) 200 0 - 500 3 201 DME Distance 200* -1 - 399.99* 5 230 True Airspeed 500* 130 - 599* 3 231 Total Air Temp. 500 +500 — 99* 2 233 Static Air Temp. 500 -99 - +60* 2 234 Baroset (mb)* 200* 0 - 3999* 4* 235 Baroset (ins. of Hg*) 200* 0 - 39.99* 4* Pad Fig. 2 0 2 3 3 1* 1* Units Feet N.M. Knots oc oc mb ins.Hg Resol 1.0 0.01 1.0 1.0 1.0 1.0* 0.01* *This data has been changed. Note: Labels 017, 027, 041, 042, 043, 044, 045, 236 and 237 previously had no values assigned. Values for labels 223, 224, 225, 226 and 227 have been changed. Table 2 BNR DATA Label (Octal) 100 103 121 122 140 141 164 202 203 206 207 210 215 313 314 317 320 321 322 323 324 325 331 334 335 336 337 340 341 342 343 344 Parameter Name Selected Course Selected Airspeed Horiz. Strg. Signal Vert.Strg.Signal Flight Director-Roll Flight Director-Pitch Radio Height DME Distance Altitude (29.92) Computed Airspeed Max.Allowable Airspeed True Airspeed Impact Pressure Track Angle True True Heading Track Angle-Magnetic Magnetic Heading Drift Angle Flight Path Angle Flight Path Acceleration Pitch Angle Roll Angle Body Long-accel. Free Heading Track Angle Rate Inertial Pitch Rate Inertial Roll Rate N1 Actual * N1 Command N1 Limit N1 Derate N2 Max Transmit Interval 62.5* 62.5* 100 100 62.5* 62.5* 50 200* 62.5 125 500* 500* 125 50* 50* 50* 50* 50* 50* 20 50* 50* 6.25* 20* * 20 20 200 200 200 200 100 Sig. Bits (Not Inc. Sign) 9 11* 9* 9 9 9 18* 16 17* 12* 12 11 12* 12 12 12 12 11 10 12* 13 14 12 12* * 12* 12* 12 12* 12* 12* 14 Units Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Feet N.M. Feet Knots Knots Knots ins/Hg* Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 g Deg/180 Deg/180 g Deg/180 * Deg/sec Deg/sec RPM RPM* RPM* RPM* RPM* Range ± 180 o ± 180 o +45o * +22.50 o * ±45 o ± 22.5 32768* 512 131,071 1024 1024 2048 32* ± 180 o ± 180 o ± 180 o ± 180 o +90 o ± 45 o 4* +90 o ± 180 o 4 ± 180 o * 128 128 4096 4096* 4096* 4096* 16384* Approx. Resol. 0.35o 0.25* 0.1 o * 0.05 o * 0.1 o 0.05 o 0.125 0.0008 1.0* 0.25* 0.25 1.0 0.008* 0.05 o 0.05 o 0.05 o 0.05 o 0.05 o 0.05 o 0.001* 0.01 o 0.01 o 0.001 0.05 o * 0.03 o * 0.03 o * 1 1* 1* 1* 1* SUPPLEMENT 2 TO ARINC SPECIFICATION 429 - Page 8 Table 2 BNR Data (cont’d) Label (Octal) 345 346 347 362 365 366 367 Parameter Name Exhaust Gas Temp. N1 Actual Fuel Flow Along Track Horiz. Accel. Integrated Vertical Accel. N-S Velocity E-W Velocity Max Transmit Interval 200 200 200 50* 50* 200* 200* Sig. Bits (Not Inc. Sign) 11* 12* 11* 12 15* 15 15 Note: Labels 110, 112, 130, 131, 132, 133, 241, 245, 247, 346, 360, 372, 373, 374 and 376 previously had no values assigned. Values for label 216 have been deleted. *This data has been changed. Attachment 6: General Word Formats and Encoding Examples AIM word format examples have been added. Detailed descriptions of these words have been included in the text of Section 2.3.1.3. Units OC * RPM* Lbs/hr g Knots Knots Knots Range 2048 4096* 32768 4 4096* 4096 4096 Approx. Resol. 1* 1* 16* 0.001 0.125* 0.125 0.125 AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401- 7645 USA SUPPLEMENT 3 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: November 1, 1979 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: August 31, 1979 SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces material on the transfer of file data and the related protocol. The file transfer capability is being added primarily for the Flight management Computer (FMC) program/data load and update and FMC intersystem crosstalk. A number of labels and corresponding data standards have been added. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement; and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c3” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-3 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.1.5.1 BCD NUMERIC, DISCRETE AND AIM DATA WORDS Table amended to provide consistency between AIM and file transfer data words. ORIGINAL TEXT FOLLOWS: Bit No. 31 30 00 01 10 11 Designation BCD Numeric Data AIM Data Plus, North East Right, To Final Word No Computed Data Intermed. Word Functional Test Control Word Minus, South West, Left, From Initial Word 2.1.6 DATA STANDARDS Text added to clarify data encoding. ORIGINAL TEXT FOLLOWS: 2.1.6 Data Standards The units, ranges, resolutions, refresh rates, number of significant bits, pad bits etc. for the items of information to be transferred by the Mark 33 DITS are tabulated in Attachment 2 to this document. COMMENTARY Note that Section 2.3.1.1 of this document calls for numeric data to be encoded in BCD and binary, the latter using two’s complement fractional notation. In this notation, the most significant bit of the data filed represents one half of the maximum value chosen for the parameter being defined. Successive bits represents the increments of a binary fraction series. Negative number are encoded as the complements of positive values and the negative sign is annunciated in the sign/status matrix. In establishing a given parameter’s binary data standards for inclusion in Attachment 2, the units, maximum value and resolution of the parameter are first determined in that order. The least significant bit of the word is then given a value equal to the resolution increment, and the number of significant bits is chosen such that the maximum value of the fractional binary series just exceeds the maximum value of the parameter, i.e., equals the next whole binary number greater than the maximum parameter value less one least significant bit value. For example, if the Mark 33 DITS is required to transfer altitude in units of feet over a range of zero to 100,000 feet with a resolution of one foot, the number of significant bits is 17 and the maximum value of the fractional binary series is 131,071 (i.e., 131,071 – 1). Note that because accuracy is a quality of the measurement process and not the data transfer process, it plays no part in the selection of word characteristics. Obviously, the resolution provided in the DITS word should equal or exceed the accuracy in order not to degrade it. For the binary representation of angular data, the Mark 33 DITS employs “degrees divided by 180o” as the unit of data transfer and ± 1 (semicircle) as the range for two’s complement fractional notation encoding ignoring, for the moment, the subtraction of the least significant bit value. Thus the angular range 0 through 359.XXX degrees is encoded as 0 through ± 179.XXX degrees, the value of the most significant bit is none half semicircle and there are no discontinuities in the code. For convenience, all binary word ranges in Attachment 2 are shown as whole binary numbers rather than such numbers less one least significant bit value. Also the resolutions shown are approximate only. Accurate resolutions can be determined, if required, by reference to the range values and numbers of significant bits for the words of interest. SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 3 2.1.6 Data Standards (cont’d) COMMENTARY (cont’d) It should be noted that in all applications of the two’s complement fractional notation, the maximum value of the word, once chosen, cannot be changed by the use of more bits in the data field. The number of bits in the word affects only the resolution of the data, not its range. Binary coded decimal (BCD) data is encoded per the numeric subset of the ISO Alphabet No. 5 code (see Attachment 5 to this document) using bit nos. 1 through 4 of the seven-bit-per-character code. Alpha/numeric data is encoded using all seven bits per character of the ISO Alphabet #5 code and is transmitted using the special word format described in Section 2.3.1.3 of this document. 2.3.1.5 FILE DATA TRANSFER Section added to provide description of file data transfer protocol. 3.1.4.3 HF COMMUNICATIONS Text amended to describe switching functions and finer frequency selection increments. ORIGINAL TEXT FOLLOWS: 3.1.4.3 HF Communications Frequency Range: Frequency Selection Increments Characters encoded in DITS word: Switching Functions: 2.8MHz to 24MHz 1kHz 10MHz, 1MHz, 0.1MHz, 0.01MHz, 0.001MHz USB/AM mode selection Fig. 3-1 RADIO SYSTEMS MANAGEMENT WORD FORMATS Error corrected in bits 24 and 25 of ILS word. HF COMM frequency word format changed and second word added to enable the use of 100 Hz channel spacing. ORIGINAL TEXT FOLLOWS: HF COM Function LABEL HF COM Frequency PARITY (Odd) SIGN/STATU S MATRIX 10MHz (2) 1MHz (3) 0.1MHz (5) 0.01MHz (7) 0.001MHz (9 ) USB/AM MODE RESERVED (SDI) Bit No. Example Notes 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 111 1 0 0 0 [1] [2] [1] When bit no. 10 is “zero” the equipment should operate in the AM mode. When bit no. 10 is “one” the equipment should operate in the SSB (USB) mode. [2] Only bit no. 9 is available for the SDI function in this word. ATTACHMENT 1: LABEL CODES The following labels have been given new assignments: 053, 056, 060, 061, 062, 063, 065, 066, 067, 070, 071, 075, 076, 077, 120, 126, 134, 137, 143, 175, 176, 177, 200, 217, 226, 251, 252-256, 257, 260, 261, 277, 300-307, 361. ATTACHMENT 2: DATA STANDARDS Tables 1 and 2 have both additions and modifications made to the data standards. Notes 2 thru 5 deleted. The original information provided in ARINC 429-2 is included in these tables. An asterisk beside a value designated that a change has been recommended. The formats of table 1 and 2 have also been changed to provide the addition of data standard descriptors. Table 3.7 added for GPWS discretes. SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 4 ATTACHMENT 2: DATA STANDARDS (cont’d) TABLE 1 BCD DATA LABEL (OCTAL) PARAMETER NAME MAX. TRANSMIT INTERVAL msec RANGE (SCALE SIG. PAD FIG. FIG. UNITS RESOL 0 1 0 Present Position-Lat. 0 1 1 Present Position-Long. 0 1 2 Ground Speed 0 1 3 Track Angle (true) 0 1 4 Magnetic Heading 0 1 5 Wind Speed 0 1 6 Wind Direction (true) 0 4 1 Set Latitude 0 4 2 Set Longitude 0 4 3 Set Magnetic Heading 1 2 5 Greenwich Mean Time # 2 3 0 True Airspeed 200* 200* 200* 200* 200* 200* 200* 200* 200* 200* 200 62.5* 90S-90N 5 0 Deg/Min* 0.1 180E-180W 6 0 Deg/Min* 0.1 0-2000 4 1 Knots 1.0 0-359.9 4 1 Deg 0.1 0-359 3 2 Deg 1.0 0-299 3 2 Knots 1.0 0-359 3 2 Deg 1.0 90S-90N 5 0 Deg/Min 0.1 180E-180W 6 0 Deg/Min 0.1 0-359.9* 4* 1* Deg 0.1* 0-23.59.9 5 0 Hr/Min* 0.1 100-599 3 0 Knots 1.0 TABLE 2 BNR DATA LABEL (OCTAL) PARAMETER NAME 1 0 0 Selected Course #1 1 0 1 Selected Heading 1 0 5 Selected Runway Heading 1 1 0 Selected Course #2 1 1 6 Cross Track Distance 1 2 1 Horiz. Steering Signal 1 2 2 Vertical Steering Signal 1 2 3 Throttle Command 1 3 0 Tt2* 1 3 1 Pt2* 1 3 2 Pt7* 1 4 0 Flight Director-Roll 1 4 1 Flight Director-Pitch 1 4 2 Fast/Slow 1 4 3 Flight Director-Yaw* 1 6 4 Radio Height 2 0 3 Altitude (1013.25mb) 2 1 0 True Airspeed 2 1 1 Total Air Temp. 2 1 3 Static Air Temp. 2 2 1 Indicated Angle of Attack 2 4 1 Corrected Angle of Attack 2 4 7 Total Fuel 3 1 0 Present Position-Lat. 3 1 1 Present Position-Long. 3 1 2 Ground speed 3 1 3 Track Angle True 3 1 4 True Heading 3 1 7 Track Angle-Mag 3 2 0 Magnetic Heading 3 2 1 Drift Angle 3 2 2 Flight Path Angle 3 2 4 Pitch Angle 3 2 5 Roll Angle 3 6 0 Potential Vertical Speed MAX. TRANSMIT INTERVAL msec 50 62.5 62.5 50 62.5 100 100 * 200 200 200 100 100 62.5 100* 50 62.5 62.5* 500 500 62.5 62.5 200* 200 200 100* 40* 40* 40* 40* 40* 40* 20* 20* 50 SIG. BITS (NOT INC. SIGN) 9* 9* 9* 9* 8* 10* 9* * 11 13 13 9* 9* 8* 12* 17* 18* 11* 10* 10* 11* 11* 15* 18* 18* 15 12 12 12 12 11* 10* 13* 14 10* UNITS Deg/180 Deg/180 Deg/180 Deg/180 N.M. Deg/180 Deg/180 * oC PSIA PSIA Deg/180 Deg/180 Knots Deg/180* Feet Feet Knots oC oC Deg/90* Deg/90* Lb. Deg/180 Deg/180 Knots Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Ft/min* RANGE See Note 1 ±180o ±180o ±180o ±180o 128 ±60 o ±30 o * 128 32 32 ±45 o * ±22.5 o 32 ±180 o 16384* 131,072 2048 512 512 ±90 o * ±90 o * 655,360 0-90N-0-90S 0-180E-0-180W 4096 ±180 o ±180 o ±180 o ±180 o ±90 o * ±45 o * ±90 o * ±180 o 16384* APPROX RESOL 0.35* 0.35* 0.35* 0.35* 0.5* 0.06* 0.06* * 0.06 0.004 0.004 0.1* 0.05 0.125* 0.05* 0.125 0.05* 1.0* 0.5* 0.5* 0.05 0.05 20* 0.00035* 0.00070* 0.125 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.01 16* # The change to MTI was erroneously omitted from Draft 1 of Supplement 3, but was included prior to publication of Supplement 3. SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 5 ATTACHMENT 2: DATA STANDARDS (cont’d) NOTES 1. The number entered in the Range Column for each parameter that is not angular in nature is the nearest whole binary number greater than the parameter range required. As explained in the Commentary following Section 2.1.6 of this document, the weight of the most significant bit of the two’s complement fractional notation binary word will be one half this value, and the actual maximum value of the parameter capable of being encoded will be the number in the range column less one least significant bit value. The numbers entered in the RANGE column for angular parameters are the actual degree ranges required. The way in which these parameters are encoded is also explained in the Commentary following Section 2.1.6. 4. A change in ARINC 710 not shown in Supplement 2 is a planned change for Supplement 3. The resolution of Selected Runway Heading (BCD and BNR) will be changed to .1 o. 5. A change being considered for Supplement 3 is to change the range to –6g - +4g to facilitate direct recording by the flight recorder. ATTACHMENT 6: GENERAL WORD FORMATS & ENCODING EXAMPLES SSM codes in AIM words changed to reflect table amendment of section 2.1.5.1. Radio Height code example changed to reflect shift in field. Note 4 of Table 6.2 deleted to revert data coding to the original two’s complement notation. 2. Bit nos. 9 and 10 of the word may be used to achieve a 20 bit capability for high resolution of the Lat./Long. Position (codes 310 and 311). The resulting resolution is .000086o for latitude and .00017 o for longitude. 3. A change in ARINC 707 not shown in Supplement 2 is a planned change for Supplement 3. A selftest inhibit bit will be added and the range of the data word will be halved to a value of 8192 ft. Word formats added for date/flight leg and flight number information. Word format added for VOR Omnibearing. Codes 203, 204, 206 and 207 deleted in Table 6.1a. ORIGINAL TEXT FOLLOWS: ATTACHMENT 6 GENERAL WORD FORMATS AND ENCODING EXAMPLES 1. GENERAL WORD FORMATS SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 6 ATTACHMENT 6: GENERAL WORD FORMATS & ENCODING EXAMPLES (cont’d) SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 7 ATTACHMENT 6: GENERAL WORD FORMATS & ENCODING EXAMPLES (cont’d) DME DISTANCE WORD Attachment 6 (cont’d) GENERAL WORD FORMATS AND ENCODING EXAMPLES NOTES [1] Source/Destination Identifier (SDI) Field The purpose of the SDI field is explained in Section 2.1.4 of this document, as are also the limitations on its use. When the SDI function is not required, this field may be occupied by binary zero or valid data pad bits. [2] Discretes As discussed in Section 2.3.1.2 of this document, unused bits in a word may be assigned to discrete functions, one bit per variable. Bit #11 of the word should be the first to be so assigned; followed by bit #12 and so on in ascending numerical order until the data field is reached. In the absence of discretes, unused bit positions should be occupied by binary zero or valid data pad bits. [3] Pad All bit positions not used for data or discretes should be filled with binary zero or valid pad bits. Section 2.1.2 of this document refers. [4] Sign/Status Matrix (SSM) Section 2.1.5 of this document describes the functions of the sign/status matrix and the ways in which the bits constituting it are encoded. [5] Parity Bit This bit is encoded to render word parity odd. Section 2.3.4 of this document refers. SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 8 TABLE 6-1a BCD DATA ENCODING EXAMPLES NOTES: [1] [2] “P” denotes pad “zero” or valid data. Section 2.1.2 if this document refers. Note possible use of pad bits for discrete functions per Section 2.3.1.2. Because the actual maximum value of the most significant character of each of these quantities exceeds 7, it cannot be encoded in the most significant character position of the BCD word. For this reason each quantity has been given and “artificial” MSC of zero and its actual MSC encoded in the next most significant character position of the word. SUPPLEMENT 3 TO ARINC SPECIFICATION 429 - Page 9 NOTES: [1] [2] [3] [4] TABLE 6-2 BNR DATA ENCODING EXAMPLES “P” denotes pad “zero” or valid data. Section 2.1.2 of this document refers. Note possible use of pad bits for discrete functions per Section 2.3.1.2. Negative values are encoded as the two’s complements of positive values and the negative sign is annunciated in the sign/status matrix. Angles in the range 0 to 180o are encoded as positive numbers. Angles in the range 180 o to 360 o are subtracted from 360 o and the resulting number encoded as a negative value per note 2. Arc minutes and seconds are encoded as decimal degrees. Latitude values are encoded as positive angles in the range 0 to 90 o with the sign/status matrix indicating North or South. Longitude values are encoded as positive angles in the range 0 to 180 o with the sign/status matrix indicating East or West. Arc minutes and seconds are encoded as decimal degrees. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 4 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: August 1, 1980 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: June 17, 1980 SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces material on defining “No Computed Data” and “Failure Warning”, priority assignment of SSM codes, description of fault tolerance and isolation, address capability of A/N messages, command/response protocol, modification of data standards, addition of new labels, change of some word formats, addition of material on signal characteristics, change of receiver impedance limits, expansion of the current label, change of the receiver voltage thresholds and modification of the HF and DME word formats. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains description of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c4” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-4 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.1.3 INFORMATION IDENTIFIER Text changed to describe use of five-character label. Commentary text partially deleted. ORIGINAL TEXT FOLLOWS: 2.1.3 Information Identifier The first eight bits of each word are assigned to a label function. Label will: a. identify the information contained within BNR and BCD numeric data words (e.g., DME distance, static air temperature, etc.) and b. identify the word application for Discrete, Maintenance and AIM data. Label code assignments are set forth in Attachment 1 to this document. Special Note: In some ARINC 429 DITS applications, a bus will be dedicated to delivering a single information element from a source to one or more identical sink devices. In such circumstances, the sink device designer might be tempted to assume that decoding the word label is not necessary. Experience has shown, however, that system developments frequently occur that result in the need for additional information elements to appear on the bus. If a sink device designed for service prior to such a development cannot decode the original word label, it cannot differentiate between this word and the new data in the new situation. The message for sink designers should therefore be quite clear – provide label decoding from the outset, no matter how strong the temptation to omit it might be. COMMENTARY Attachment 1 defines 256 discrete label codes. This quantity is expected to meet label assignment needs for the foreseeable future. Should additional labeling capability be required in the longer term, it is envisaged that, rather than extend the length of the label field, a scheme will be devised in which existing label assignments are duplicated. For example, the system could readily accommodate the assignment of the same label to two dissimilar parameters for which the probability of transmission on the same bus is very low. Adherence to the label code assignments of Attachment 1 is essential in inter-system communications and in intra-system communications where the system elements are defined as “unit interchangeable” per ARINC Report No. 403. The assignment of label codes for all such communications must be coordinated with the air transport industry if chaos is to be avoided. A manufacturer who finds that Attachment 1 does not specify the label he needs for such system application must not simply choose one from those unassigned and “drive on”. He should contact ARINC for assistance. 2.1.5.1 BCD NUMERIC, DISCRETE, AIM DATA AND FILE TRANSFER WORDS Text describing “no computed data” modified. Commentary providing definitions added. ORIGINAL TEXT FOLLOWS: 2.1.5.1 BCD Numeric, Discrete, AIM Data and File Transfer Words The sign (Plus, minus, North, South, etc.) of BCD numeric data, the word type (first, intermediate, control, last) for AIM data, and the status of the transmitter hardware should be encoded in bit nos. 30 and 31 of the word as shown in the table below. The sign/status matrices of Discrete words should be encoded per the rules set forth for BCD numeric data. SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 3 Bit No. 31 30 00 01 10 11 BCD Numeric Word Plus, North East, Right To, Above No Computed Data Functional Test Minus, South West, Left, From, Below Designation AIM Intermediate Word Initial Word File Transfer Intermediate Word, Plus, North, etc. Initial Word Final Word ControlWord Final Word Intermediate Word, Minus South, etc. Notes: 1. A source system should annunciate any detected failure that causes one or more of the words normally output by that system to be unreliable by ceasing to supply the affected word or words to the data bus. 2. Bit nos. 30 and 31 of BCD numeric data words should be “zero” when no sign is needed. 3. The “no computed data” code should be generated for BCD numeric data words when computed data is not available for reasons other than equipment failure. 4. When it appears in a BCD numeric data word identified by its (label) as a system output, the “functional test” code should be interpreted as advice that the data in the word results from the execution of a functional test. When it appears in a BCD numeric data word identified by its label as an instruction, e.g., a radio channel change command, this code should be interpreted as a command to perform a functional test. A self-test should produce indications of 1/8 of positive fullscale values unless indicated otherwise in an ARINC Equipment Characteristic. 5. See Section 2.3.1.3 of this document for definitions of the terms “Initial Word”, “Control Word”, “Intermediate Word” and “Final Word.” 2.1.5.2 BNR NUMERIC DATA WORDS Table modified to permit sign coding for “no computed data”. Definition of “failure warning” and “no computed data” added. ORIGINAL TEXT FOLLOWS: 2.1.5.2 BNR Numeric Data Words The sign (plus, minus, north, south, etc.) of BNR numeric data words and the status of the transmitter hardware should be encoded in bit nos. 29, 30 and 31 of the word as shown in the table below. Bit No. 31 30 29 000 001 010 100 101 110 111 011 Designation BNR Data Failure Warning/Plus, North, East Right, To Failure Warning/Minus, South, West Left, From No Computed Data Functional Test/Plus, North, East, Right, To Functional Test/Minus, South, West Left, From Normal Operation/Plus, North, East, Right, To Normal Operation/Minus, South West, Left, From Not Used (Growth) Notes: 1. A source system should annunciate any detected failure that causes one or more of the words normally output by that system to be unreliable by setting bit nos. 30 and 31 in the affected word(s) to the “failure warning” code defined above. Words containing this code should continue to be supplied to the data bus during the failure condition. 2. Bit no. 29 should be “zero” when no sign is needed. 3. The “no computed data” code should be generated when computed data is not available for reasons other than equipment failure. 4. When it appears in a word identified by its label as a system output, the “functional test” code should be interpreted as advice that the data in the word results from the execution of a functional test. A self-test should produce indications of 1/8 of positive full-scale values unless indicated otherwise in an ARINC Equipment Characteristic. 5. If, during the execution of a functional test, a source system detects a failure which causes one or more of the words normally output by that system to be unreliable, it should immediately change the states of bits nos. 30 and 31 in the annunciation to the “failure warning” annunciation. SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 4 2.1.5.3 STATUS PRIORITIES New section inserted. 2.2.1 TRANSMISSION SYSTEM INTERCONNECT Commentary expanded to provide description of possible solutions to single-wire fault conditions. ORIGINAL TEXT FOLLOWS: 2.2.1 Transmission System Interconnect A data source should be connected to the data sink(s) by means of a single twisted and shielded pair of wires. The shields should be grounded at both ends and at all production breaks in the cable. The interwiring diagram to be found in each ARINC Equipment Characteristic shows connector pins assigned to carry shields into black boxes for grounding. Equipment manufacturers should ensure, however, that their equipment will operate correctly if, instead of being terminated on these pins, shields are grounded in the aircraft close to the rack connector. COMMENTARY In practical wire line digital information transmission systems, cable characteristics and electrical mismatches can produce distortion of the digital data pulses. Also, noise due to electrical interference perturbs digital signals. The performance of a digital receiver depends upon the receiver input signal characteristics (data with distortion and noise) and the receiver design. Prior to the selection of the voltage and impedance parameters set forth in this Section of this document, the pulse distortion likely to be encountered in systems built around them in existing size commercial aircraft was evaluated and judged to be acceptable for a well-designed receiver. No restriction is placed by this specification, therefore, on the number or length of sturbs for installations on aircraft no larger than those existing, e.g., B 747. See Appendix 1 to this document for a report of this investigation. 2.2.3.1 TRANSMITTER VOLTAGE LEVELS Text changed to improve clarity. ORIGINAL TEXT FOLLOWS: 2.2.3.1 Transmitter Voltage Levels The differential output signal across the specified output terminals (balanced to ground at the transmitter) should be + 10 ± 1.0 volts, 0 ± 0.5 volts and –10 ± 1.0 volts respectively for the “HI”, “NULL” and “LO” states when the transmitter is open circuit. The output impedance of the transmitter should be as specified in Section 2.2.4.1 of this document. This output impedance should be present for the “HI”, “NULL” and “LO” transmitter output conditions and also during transitions between these levels. 2.2.3.2 RECEIVER VOLTAGE LEVELS Receiver voltage thresholds changed. Fault voltage text deleted. Commentary revised to include description of receiver reaction to undefined voltages. ORIGINAL TEXT FOLLOWS: 2.2.3.2 Receiver Voltage Levels The differential voltage presented at the receiver input terminals will be dependent upon line length, stub configuration and the number of receivers connected. In the absence of noise, the normal ranges of voltages presented to the receiver terminals (A and B) would be: “HI” “NULL” “LO” +6V to 10V +0.5 to –0.5V -6V to –10V In practice, these nominal voltages will be perturbed by noise and pulse distortion. Thus, receivers should associate the following voltage ranges with the three states indicated: “HI” “NULL” “LO” +5V to 13V +2.5V to –2.5V -5V to –13V Receivers should not be damaged by the application of up to 20VAC (RMS) across terminals A and B by the application of up to +28Vdc (min) bias between terminal A and ground and –28Vdc (min) bias between terminal B and ground. See Attachment 3 to this document for a pictorial representation of transmitter and receiver voltage levels. COMMENTARY Receiver input common mode voltages (terminal A to ground and terminal B to ground) are not specified because of the difficulties of defining ground with any satisfactory degree of precision. Receiver manufacturers are encouraged to work with the differential input voltage (line A to line B) and not line-to-ground voltages. The opinion is held by some people that conditions on transmission lines will be encountered which will require receivers to operate with less than the above-defined minimum difference of 2.5V between the NULL and HI and NULL and LO states. Receiver designers are encouraged to investigate the possibilities and problems of working with a minimum difference of 1 volt between these states and to report their findings. 2.2.4.1 TRANSMITTER OUTPUT IMPEDANCE Text added to improve clarity. SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 5 ORIGINAL TEXT FOLLOWS: 2.2.4.1 Transmitter Output Impedance The transmitter output impedance should be 75 ± 5 ohms, divided equally between line A and line B to provide an impedance balanced output. COMMENTARY The output impedance of the transmitter is specified as 75 ± 5 ohms to provide an approximate match to the characteristic impedance of the cable. The match can only be approximate due to the wide range of characteristic impedance which may be encountered due to the variety of conductor wire gages and insulation properties. Measurements on a few samples of wire showed a spread of characteristic impedance of 63 and 71 ohms. An extrapolation over the wire gages 20 to 26 for wrapped and extruded insulation indicate an expected characteristic impedance spread of 80 to 60 ohms approx. Twisted shielded wire specifications do not control the characteristic impedance of the cable, thus future developments in insulation techniques may result in cables having characteristic impedances outside the range estimated. 2.2.4.2 RECEIVER INPUT IMPEDANCE Value of RI changed. ORIGINAL TEXT FOLLOWS: 2.2.4.2 Receiver Input Impedance The receiver should exhibit the following characteristics, measured at the receiver input terminals: Specification will include material specifically related to their use. 2.2.5 Fault Tolerance New section inserted. 2.2.5.1 Receiver External Fault voltage Tolerance New section inserted. 2.2.5.2 Transmitter External Fault Voltage Tolerance New section inserted. 2.2.5.3 Transmitter External Fault Load Tolerance New section inserted. 2.2.6 Fault Isolation New section inserted. 2.2.6.1 Receiver Fault Isolation New section inserted. 2.2.6.2 Transmitter Fault Isolation New section inserted. 2.3.1.2 Discretes Text modified to expand label examples. Reference to AIDS limitations deleted. ORIGINAL TEXT FOLLOWS: 2.3.1.2 Discretes Differential Input Resistance RI = 6,000 ohms minimum Differential Input Capacitance CI = 50pF maximum Resistance to Ground RH and RG ≥ 12,000 ohms Capacitance to Ground CH and CG ≤ 50pF. No more than twenty receivers should be connected on to one digital data bus and each receiver should incorporate isolation provisions to ensure that the occurrence of any reasonably probable failure does not cause loss of data to the others. See Attachment 4 to this document for a pictorial representation of the input and output circuits standards. COMMENTARY The above characteristics apply to differential amplifier receivers. Opto-isolator technology is progressing and may soon find application in digital data receivers. Opto-isolator receivers impose slightly greater loads on data buses than differential amplifier receivers and the way in which they are characterized is different. It is probable, however, that a future revision of this In addition to handling numeric data as specified above, the Mark 33 DITS should also be capable of accommodating discrete items of information either in the unused (pad) bits of data words or, when necessary, in dedicated words. Any discrete information contained in a numeric data word assigned a label in Attachment 1 is specified in the definition for that word in Attachment 2. The rule to be followed in the assignments of bits to discretes in numeric data words is to start with the least significant bit of the word and to continue towards the most significant bit available in the word. Attachment 6 shows that this against the background of the generalized word structure. There are two types of discrete words. These are general purpose discrete words, and dedicated discrete words. Five labels (octal 270-274) are assigned to the general purpose words in Attachment 1. These words should be used in ascending label order (starting with octal 270) when the system receiving the data can identify its source by reference to the port at which it arrives. The dedicated words should be used when the SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 6 2.3.1.2 Discretes (cont’d) data is intended for the AIDS DFDAU which cannot identify sources in this way. COMMENTARY The foregoing special provisions for the delivery of discrete data to an AIDS were made to compensate for the number of digital ports required when many ports are used is extremely difficult to achieve, which necessitated the development of the special AIDS words. These words should be limited to AIDS utilization. The few aircraft systems which deliver discretes to an AIDS by means of the Mark 33 DITS will be burdened very little by this. Similarly, the impact of label use will be small. 2.3.1.4 AIM DATA Text added to describe unit addressing. ORIGINAL TEXT FOLLOWS: 2.3.1.4 AIMS Data AIM data (Acknowledgement, ISO Alphabet No. 5 and Maintenance information encoded in dedicated words) should be handled in the manner described in this Section. All three of these applications may involve the transfer of more than 21 bits per “data package”. Source equipment should format such long messages into groups of 32-bit DITS words, each word containing the relevant application label (see Attachment 1) in bit nos. 1 through 8, and a sign/status matrix code in bit nos. 30 and 31. Bit no. 32 should be encoded to render word parity odd. The first word of each group should contain the sign/status matrix code defined for “initial word” in Section 2.1.5.1 of this document. It should also contain, in bit nos. 9 through 16, the binary representation of the number of words in the group, except that when this word is the only word to be transmitted, i.e., the total number of information bits to be transmitted is 13 or less, bit nos. 9 through 16 should all be binary “zeros”. When the word application label is assigned in Attachment 1 for Acknowledgement Data, bit nos. 17 through 29 of this initial word may be used for information transfer. When the word application label is either of those assigned in Attachment 1 for ISO Alphabet No. 5 data transfer or Maintenance Data (ISO Alphabet Not. 5), bit nos. 17 through 22 should be binary “zeros” (spares) and bit nos. 23 through 29 should take on the pattern of the ISO Alphabet No. 5 control character “STX”. The second word of the ISO Alphabet No. 5 and Maintenance Data (ISO Alphabet No. 5) application groups is an optional control word containing the sign/status matrix code for “control” information for the display. When it is used, bit nos. 9 through 13 should contain the binary representation of the line count, bit nos. 14 through 16 should encode the required color, bit nos. 17 and 18 the required intensity, bit nos. 19 and 20 the required character size and bit no. 21 should indicate whether or not the display is required to flash. See Attachment 6 to this document for the encoding standards. Bit nos. 22 through 29 of the word should be binary “zero” (spares). Intermediate words, containing the sign/status matrix code for “intermediate word”, follow the initial word of the group or the control word, when used. Intermediate words are optional in the sense that they are only transmitted if more words than the initial word and the final word (see below) are needed to accommodate the quantity of information to be transferred. When the word application group label that is assigned in Attachment 1 for Acknowledgement, Data bit nos. 9 through 29 of that word are available for information transfer. When the word application label is either of those assigned in Attachment 1 for ISO Alphabet No. 5 data transfer or Maintenance Data (ISO Alphabet No. 5), bit nos. 9 through 29 of each word should be divided into three seven-bit bytes (bit nos. 9 through 15, 16 through 22 and 23 through 29), each of which contains one ISO Alphabet No. 5 character. Each AIM application group transmission other than single-word transmissions (see below) should be terminated with a word containing the sign/status matrix code for “final word” defined in Section 2.1.5.1 of this document. The data field of this word should be structured similarly to that of the intermediate word. Any unused bit positions in ISO Alphabet No. 5) final transfer or Maintenance Data (ISO Alphabet No. 5) final words resulting from the number of ISO Alphabet No. 5 characters in the message being one or two less than a number wholly divisible by three should be filled with binary “zeros”. 2.3.1.5.1 COMMAND/RESPONSE PROTOCOL Text modified to describe transmitter reaction to lack of “Clear to send”. ORIGINAL TEXT FOLLOWS: 2.3.1.5.1 Command/Response Protocol File data will consist of both ARINC 429 BNR numeric words and ISO alphabet No. 5 characters. A file may contain from 1 to 127 records. Each record may contain from 1 to 126 data words. A record will contain, at the minimum, one of the eight versions of the “initial word” described in Section 2.3.1.5.2. Records in which this initial word contains the “Data Follows” code will also contain from 1 to 126 “intermediate words” (data) and a “final word” (error control). The file data transfer protocol is as follows. A transmitter having the data to send to a receiver transmits, on the bus connecting it to that receiver, the “Request to Send” initial word. The receiver responds, on the separate bus provided for return data flow, with the “Clear to Send” reply. The transmitter then sends the “Data Follows” initial word, the “intermediate words” and the “final word”. The receiver processes the error control information in the “final word” and, if no errors are revealed, closes out the transaction by SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 7 sending the “Data Received OK” word to the transmitter. If the receiver is not ready to accept data when the transmitter sends its “Request to Send” word, it will so indicate in its response (see Section 2.3.1.5.2). The transmitter should then wait 200 milliseconds and retransmit the “Request to Send”. The transmitter should also repeat a “Request to Send” transmission 50 milliseconds after the initial transmission if no response is obtained from the receiver. An alert should be raised in the system containing the transmitter if 4 attempts to obtain a “Clear to Send” response from a receiver are unsuccessful. If the receiver detects a parity error during the transmission, it may request an error-correcting retransmission by sending a “Data Received Not OK” word to the transmitter in which is identified the record in which the error occurred. The transmitter will interrupt the data flow and back up to the start of the record so identified. It will then send a “Data Follows” initial word identifying this record as the starting point of the retransmission and recommence its output of data, continuing through the “final word”. The receiver will then close out the transaction as before. An error detected by processing the error control information in the “final word” will also result in the receiver sending a “Data Received Not OK” word to the transmitter. In the absence of identification of the record in which the error occurred, this word should contain the sequence number of the first record of the file. The transmitter’s response will be to retransmit the whole file. The receiver can signal loss of synchronization to the transmitter at any time by sending the “Synchronization Lost” initial word. On receiving this word the transmitter should curtail the data flow and back up to the beginning of the file. It should then reestablish that the receiver can accept data by going through the request-to-send/clear-to-send routine. Having done this it should send the “Data Follows” initial word, followed by the data and the “final word”. The protocol also allows a transmitter to send file size information to a receiver without any commitment to send, or request to the receiver to accept, the file itself. The “Header Information” initial word is used for this purpose. Additionally, a “Poll” initial word is defined for use in system in which continuous “handshaking” between two terminals is desired. The response to a “Poll” word will be either a “Request to Send” initial word when the polled terminal does have data to transmit, or another “Poll” word when it does not. An exchange of “Poll” words may be interpreted as the message, “ I have nothing for you, do you have anything for me?” 2.4.2 INFORMATION RATES Commentary added to describe refresh rate. ORIGINAL TEXT FOLLOWS: 2.4.2 Information Rates The minimum update interval for each item of information transferred by the Mark 33 DITS is specified in the tables of Attachment 2. Discretes contained within data words will be transferred at the bit rate and repeated at the update rate of the primary data. Words dedicated to discretes should be repeated continuously at the rates defined in Attachment 2. COMMENTARY The time intervals between successive transmissions of a given BCD word specified in table 1 of Attachment 2 to this document are, in general, too short for the signal to be of use in driving a display device directly. If the signal was so used, the least significant character of the display would change too rapidly for human perception. Considerations other than human factors demand the time intervals specified. Thus, display designers should incorporate into their devices means for selecting those words to be used for updating the display from the greater quantity delivered. 3.1.4.2 DME Encoding and switch functions modified. ORIGINAL TEXT FOLLOWS: 3.1.4.2 DME Frequency Range: Frequency Selection: Increment: Characters encoded In DITS word: Switching Functions: 108.00MHz to 135.95MHz 50kHz 10MHz, 1MHz, 0.1MHz, 0.01MHz, (100MHz Character is always Decimal 1) Standby, DME Mode Select ILS Mode SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 8 FIGURE 3-1 Radio Systems Management Word Formats HF and DME words modified. ORIGINAL TEXT FOLLOWS: DME Function LABEL DME Frequency PARITY (odd) SIGN/STATUS MATRIX 10MHz (1 ) 1MHz (1 ) 0.1MHz (5 ) 0.01MHz (0 ) ILS Mode Standby DME Mode Select RESERVED (SDI) Bit No. Example Notes 32 31 30 1 00 29 28 27 26 25 24 23 00 1 0 0 01 22 21 20 19 1 8 17 16 15 14 01 0 1 0 0 0 0 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 00 10111000 [1] [2] [3] [1] Bit no. 14 should be set to “zero” for VOR frequencies and “one” for ILS frequencies by the tuning information source. [2] [3] Bit Zero One 11 DME Mode select coding per 12 Section 4.1.6 of ARINC Char. 709 13 Standby off Standby on HF COM Word #1 Function LABEL HF COM Frequency PARITY (odd) SIGN/STATUS MATRIX 10MHz (2 ) 1MHz (3 ) 0.1MHz (5 ) 0.01MHz (7 ) 0.001MHz (9 ) USB/LSB Mode SSB/AM Mode Word Identifier Bit No. Example Notes 32 31 30 29 28 27 26 25 24 23 22 21 20 09 18 17 16 15 14 13 12 11 0 00 11 0 0 1 1 0 1 0 0111 1001 0 [1] 10 9 8 7 6 5 4 3 2 1 0 0 11111000 [2] [3] [1] Bit no. 11 should be set to “zero” for LSB operation and “one” for USB operation. [2] Bit no. 10 should be set to “zero” for AM operation and “one” for SSB operation. [3] Bit no. 9 should be set to “zero” when the 100 Hz option is not used and “one” when it is. HF COM Word #2 Function NOT USED LABEL HF COM Frequency PARITY (odd) SIGN/STATUS MATRIX .1Kh z (5 ) Bit No. Example 32 31 30 29 28 27 26 0 0 0 0 101 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 0 0 0 00 0 0 0 0 0 0 0 0 0 0 Note: The HF COMM #2 word is used only when bit no. 9 of word #1 is “one”. 10 9 8 7 6 5 4 3 2 1 00 11111000 SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 9 ATTACHMENT 1: LABEL CODES ATTACHMENT 2: DATA STANDARDS Column “EQPT. ID (HEX)” has been added for fivecharacter label implementation. Table containing “Equipment ID Codes” added. The following labels have been given new assignments: The columns for “bandwidth”, “noise level” and “update interval” have been deleted. A column for “minimum transmit interval” has been added. The column for “transport delay” has been changed to “maximum transport delay”. A column for “EQPT.ID (HEX)” has been added. 004, 034, 056, 060-064, 070-106, 111, 114-122, 126, 127, 135, 136, 140-141, 144-162, 173-177, 202-212, 215, 217, 222-226, 242, 244-252, 256-265, 276, 310322, 340-342, 344, 345, 347, 350, 370, 377. Data standards added for new labels. Note [2]: A nominal interval description has been added. Label 226 (FWC #2) deleted. Labels 124 and 224 (C&W DFDR Discretes) deleted. Note [3]: A definition for “maximum transport delay” has been added. Note [4]: SDI assignments defined for labels 060-064. The following tables list the parameters for which the data standards have changed. An asterisk beside a particular value designates that a new value is suggested. TABLE 1 BCD DATA LABEL (OCTAL) PARAMETER NAMES UNITS RANGE (SCALE) SIG. DIG. POSITIVE SENSE MAXIMUM RESOL. TRANSMIT INTERVAL 010 Present Position – Lat. Deg:Min 90S-90N* 5* 0.1 500 017 Selected Runway Heading Deg 0-359.9 4 0.1 200* 024 Selected Course #1 Deg 0-359 3 1.0 200* 027 Selected Course #2 Deg 0-359 3 200* 033 ILS Frequency 200* 034 VOR/ILS Frequency 200* 041 Set Latitude Deg:Min 90S-90N* 5* N 0.1 500 065 Gross Weight 100lb. 0-10000* 5 1.0 200 067 Lateral CG Mlb-in.* ± 100.00* 4* 0.1* 200 200 Drift Angle Deg 231 Total Air Temperature oC ± 90* 3* -60-+90* 2* 0.1 200 1.0 500 232 Altitude Rate Ft/Min ± 20,000 4 Up 20.0* 62.5 233 Static Air Temperature oC -99-+60* 2* 1.0 500 TABLE 2 BNR DATA LABEL (OCTAL) PARAMETER NAME UNITS RANGE SIG. BITS POSITIVE SENSE APPROX. RESOL. MAXIMUM TRNASMIT INTERVAL 077 Lateral CG MLB/in ± 128* 14* 100 Selected Course #1 Deg/180 ± 180o 12 105 Selected Runway Heading Deg/180 ± 180o 11 110 Selected course #2 Deg/180 ± 180o 12 173 Localizer Deviation DDM ± 0.4 12 174 Glideslope Deviation DDM ± 0.8 12 222 VOR Omnibearing Deg/180 ± 180o 12 256 Fuel Quantity #1 Lbs. 131,072 15 257 Fuel Quantity #2 Lbs. 131,072 15 310 Present Position – Lat. Deg/180 0-90N-0-90S* 20 0.001 0.05 o 0.05 o 0.05 o 0.0001 0.0002 0.044 o 4 4 .000086 o* 200 50* 62.5* 50* 62.5* 62.5* 62.5* 200* 200* 200 SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 10 ATTACHMENT 2: DATA STANDARDS (cont’d) ORIGINAL TEX FOLLOWS: [2] Transmit intervals and the number of parameters to be transmitted are prime factors in bus loading. It was suggested that a Minimum Transmit Interval be specified (perhaps a value of ½ the Transmit Interval) to control bus loading. The ability of receivers to reject unwanted words would also be effective in improving bus efficiency. Table 3.2 FCC DISCRETES – LABELS 270, 271 Existing tables replaced by new set of tables. ORIGINAL TEXT FOLLOWS: Table 3.2: FCC Discretes – Labels 270, 271 Discrete Word #1 Bit No. Function 1 2 3 4 Label 5 6 7 8 9* Capt. Flight Director 10* F. O. Flight Director 11 Turbulence Mode 12 Autopilot #1 13 Autopilot #2 14 RESERVED (A/P #3) 15 Autothrottle #1 16 RESERVED (A/T #2) 17 Airspeed Hold Mode 18 Airspeed Select Mode 19 Mach Select Mode 20 Mach Hold Mode 21 22 Bank Angle Limit 23 24 Heading Select Mode 25 N1/EPR Select Mode 26 IAS on Throttle 27 Mach on Throttle 28 Spare 29 Spare 30 Sign/Status 31 Matrix 32 Parity (Odd) 1 X X X X On On Requested Engaged Engaged Engaged Armed Armed Requested Requested Requested Requested Requested Requested Requested Requested Bit Status 0 X X X X Off Off Not Requested Not Engaged Not Engaged Not engaged Not Armed Not Armed Not Requested Not Requested Not Requested Not Requested See Below Not Requested Not Requested Not Requested Not Requested SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 11 ATTACHMENT 2: DATA STANDARDS (cont’d) Bank Angle Limit Encoding Bit nos. 21, 22 and 23 of Discrete Word #1 should be encoded to indicate selected bank angle limit as follows: *Bits 9 and 10, which are normally used for the SDI, have purposely been used for Discrete information. Not used 5o 10 o 15 o 20 o 25 o 30 o Spare Limit Discrete Word #2 Bit No. 21 22 23 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Bit No. 1 2 3 4 5 6 7 8 9* 10* 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label Altitude Hold Mode Altitude Select Mode Vertical Speed Select Mode Vertical Speed Hold Mode Horizontal Navigation Vertical Navigation Land Command LOC Approach Command Back Course Approach Command CWS #1 CWS #2 CWS #3 Pitch Upper Mode Cancel Roll Upper Mode Cancel Heading Hold Spare Sign/Status Matrix Parity (odd) 1 X X X X X Requested Requested Requested Requested Requested Requested Requested Requested Requested Requested Requested Requested Requested Requested Requested Bit Status 0 X X X Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested Not Requested * Bits 9 and 10, which are normally used for the SDI, have purposely been used for Discrete information. SUPPLEMENT 4 TO ARINC SPECIFICATION 429 - Page 12 TABLE 3.7 GPWS DISCRETE LABEL 270 23 Visual message bit assignments inserted. TABLE 3.8 TCC DISCRETES LABELS 272 03, 273 03, 274 03, 275 03 New tables inserted. ATTACHMENT 3: VOLTAGE LEVELS Hi and Lo thresholds changed from 5-13 volts to 6.5-13 volts. ATTACHMENT 4: INPUT/OUTPUT CIRCUIT STANDARDS RI increased from 6,000 to 12,000 ohms. Total system resistance range of 300-6000 ohms changed to 400-8000 ohms. ATTACHMENT 6: GENERAL WORD FORMATS AND ENCODING EXAMPLES Format for alphanumeric message initial word modified. Slat/Flap angle word added. GMT binary word added. Label Fields changed in discrete word and maintenance (discrete) word. In table 6-1b note [1] deleted and bits 21 and 22 of latitude word interchanged. In Table 6-2 examples corrected for Present Position (Latitude and Longitude). Radio Height word added. ORIGINAL TEXT FOLLOW: P SSM 32 31 (01) 30 29 “STX” SPARES WORD COUNT 23 22 (Zeros) 17 16 BNR EQUIV. 9 ALPHA NUMERIC (ISO ALPHABET NO. 5) DATA – INITIAL WORD FORMAT LABEL 8 (356/357) 1 P SSM 32 31 (00) 30 29 MSB SDI DISCRETES 2 LSB 11 10 9 DISCRETE WORD FORMAT P SSM MAINTENANCE DISCRETES 32 31 (00) 30 29 MSB SDI DISCRETES LSB 11 10 9 MAINTENANCE (DISCRETE) WORD FORMAT APPENDIX 3: DIGITAL SYSTEMS GUIDANCE (PART 1) Appendix added. APPENDIX 4: DIGITAL SYSTEM GUIDANCE (PART 2) Appendix added. LABEL 8 (270-274) 1 LABEL 8 (350-354) 1 AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 5 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: April 4 1981 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: March 12, 1981 SUPPLEMENT 5 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces material on fault detection, transmit intervals for words using multiple SDI codes, modification of IRS/AHRS discrete formats, expansion of error control definition, revision of ILS word, addition of new labels and change of existing data standards. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c5” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-5 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.2.1 TRANSMISSION SYSTEM INTERCONNECT Text revised for break connections. Text added to Commentary describing increase of voltage threshold. ORIGINAL TEXT FOLLOWS: 2.2.1 Transmission System Interconnect A data source should be connected to the data sink(s) by means of a single twisted and shielded pair of wires. The shields should be grounded at both ends and at all production breaks in the cable to an aircraft ground close to the rack connector. COMMENTARY In practical wire line digital information transmission systems, cable characteristics and electrical mismatches can produce distortion of the digital data pulses. Also, noise due to electrical interference perturbs digital signals. The performance of a digital receiver depends upon the receiver input signal characteristics (data with distortion and noise) and the receiver design. Prior to the selection of the voltage and impedance parameters set forth in this Section of this document, the pulse distortion likely to be encountered in systems built around them in existing size commercial aircraft was evaluated and judged to be acceptable for a well-designed receiver. No restriction is placed by this specification, therefore, on the number or length of stubs for installations on aircraft no larger than those existing, e.g., B 747. See Appendix 1 to this document for a report of this investigation. Tests have shown that some receivers continue decoding data properly when one side of the transmission line is open or shorted to ground. When this condition exists noise immunity decreases and intermittent operation may occur. Users desire protection against non-annunciated system operation in this mode. This protection may consist of additional circuitry to detect and annunciate the fault. 2.2.3.2 RECEIVER VOLTAGE LEVELS Normal voltage ranges changed due to impedance changes. ORIGINAL TEXT FOLLOWS: 2.2.3.2 Receiver Voltage Levels The differential voltage presented at the receiver input terminals will be dependent upon line length, stub configuration and the number of receivers connected. In the absence of noise, the normal ranges of voltages presented to the receiver terminals (A and B) would be: “HI” +6.5V to 10V “NULL” +2.5V to –2.5V “LO” -6.5V to –13V In practice, these nominal voltages will be perturbed by noise and pulse distortion. Thus, receivers should associate the following voltage ranges with the three states indicated: “HI” +6.5V to 13V “NULL” +2.5V to –2.5V “LO” -6.5V to –13V COMMENTARY Receiver reaction is currently undefined in Specification 429 for voltages that fall in the range just above and below the “NULL” range. Respective equipment Characteristics should be referenced for desired receiver response in this range. However, it is desirable that all DITS receivers will discontinue operation when the voltage levels fall into the undefined regions. Manufacturers are urged, as new equipment is developed, to “design in” the rejection capability. The opinion is held by some people that conditions on transmission lines will be encountered which will require receivers to operate with less than the SUPPLEMENT 5 TO ARINC SPECIFICATION 429 – Page 3 above-defined minimum difference of 4.0V between the NULL and HI and NULL and LO states. Receiver designers are encouraged to investigate the possibilities and problems of working with a minimum difference of 1 volt between these states and to report their findings. Receiver input common mode voltages (terminal A to ground and terminal B to ground) are not specified because of the difficulties of defining ground with any satisfactory degree of precision. Receiver manufacturers are encouraged to work with the differential input voltage (line A to line B) and not line-to-ground voltages. 2.3.1.5.4 FINAL WORDS Text added to define checksum. ORIGINAL TEXT FOLLOWS: 2.3.1.5.4 Final Words The final word of each record contains error control information. Bit nos. 1 through 8 contain the file label. Bit nos. 9 through 29 contain an error control checksum computed from the states of bit nos. 9 through 31 of each intermediate word of the record. Bit nos. 30 and 31 of this word contain the code identifying it as a final word. Bit no. 32 is encoded to render word parity odd. 2.3.4 ERROR DETECTION/CORRECTION Obsolete text deleted. ORIGIANL TEXT FOLLOWS: 2.3.4 Error Detection/Correction The last bit of each word should be encoded such that word parity is rendered odd to allow error detection in receivers. Note that the parity calculation encompasses all 31 label and information bits of the word. The Mark 33 DITS contains no provisions for message retransmission, the inclusion of redundant bits in words or other means of error correction. Fig. 3-1: RADIO SYSTEMS MANAGEMENT WORD FORMATS Bits 3 and 7 of transponder word changed to “0”. (editorial) Bit 11 and 12 assigned to ILS category designation. Control Panel Function Matrix added to transponder word. ORIGINAL MATERIAL ON NEXT PAGE: 2.4.2 INFORMATION RATES Text added to describe transmission of labels with multiple SDI codes. ORIGINAL TEXT FOLLOWS: 2.4.2 Information Rates The minimum and maximum transmit intervals for each item of information transferred by the Mark 33 DITS are specified in the tables of Attachment 2. COMMENTARY There are no values given for refresh rates in this Specification. However, it is desirable that data be refreshed at least once per transmission. Those data actually requiring long processing times or a large number of samples are the only types not expected to be refreshed with every transmission. Discretes contained within data words should be transferred at the bit rate and repeated at the update rate of the primary data. Words dedicated to discretes should be repeated continuously at the rates defined in Attachment 2. COMMENTARY The time intervals between successive transmissions of a given BCD word specified in table 1 of Attachment 2 to this document are, in general, too short for the signal to be of use in driving a display device directly. If the signal was so used, the least significant character of the display would change too rapidly for human perception. Considerations other than human factors demand the time intervals specified. Thus, display designers should incorporate into their devices means for selecting those words to be used for updating the display from the greater quantity delivered. SUPPLEMENT 5 TO ARINC SPECIFICATION 429 – Page 4 Fig. 3-1: RADIO SYSTEMS MANAGEMENT WORD FORMATS (cont’d) ILS Function LABEL ILS Frequency PARITY (odd) SIGN/STATUS MATRIX 10MHz (0 ) 1MHz (9 ) 0.1MHz (3 ) 0.01MHz (0 ) SPAR E SPAR E SPAR E SPAR E RESERVED (SDI) Bit No. 32 31 30 29 28 27 26 25 24 23 22 21 20 19 Example 1 0 0 0 0 0 1 0 0 1 0 0 1 1 ATTACHMENT 1: LABEL CODES The following labels have been given new assignments: 073 02, 073 A2, 112 02, 130 1A, 131 2D, 132 1A, 133 1A, 151 02, 154 02, 164 02, 164 03, 174 03, 205 1A, 207 0A, 211 1A, 215 1A, 242 1A, 245 0A, 256 0A, 260 31, 262 0A, 263 0A, 264 0A, 265 0A, 270 1A, 270 1E, 270 30, 271 06, 271 1A, 271 1E, 272 1A, 274 0A, 275 2B, 300 1A, 301 1A, 303 1A, 304 1A, 305 1A, 306 1A, 307 1A, 325 1A, 340 1A, 340 2D, 341 1A, 342 1A, 344 1A, 345 1A, 346 1A, 350 1A, 351 1A, 352 1A, 353 1A, 354 1A. Label 242** was deleted. Label 316 04 changed form “Wind Angle” to “Wind Direction (True)”. ATTACHMENT 1: EQUIPMENT CODES New assignments were made for 0A and 2D. Note added to 1A. 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 10 0 0 SUPPLEMENT 5 TO ARINC SPECIFICATION 429 – Page 5 ATTACHEMENT 2: DATA STANDARDS Data standards were added for new labels. The following table lists the parameters for which the existing data standards have changed. An asterisk beside a particular value designates that a new value is suggested. LABEL 004 165 205 210 215 242 313 314 317 317 320 320 323 323 324 324 325 325 360 360 361 361 365 365 375 376 EQPT ID (HEX) 01 07 06 06 06 06 04 04 04 05 04 05 04 05 04 05 04 05 04 05 04 05 04 05 05 05 PARAMETER NAME Runway Distance to Go Radio Height Mach True Airspeed Impact Pressure Total Pressure Track Angle True True Heading Track Angle Magnetic Track Angle Magnetic Magnetic Heading Magnetic Heading Flight Path Acceleration Flight Path Acceleration Pitch Angle Pitch Angle Roll Angle Roll Angle Potential Vertical Speed Potential Vertical Speed Altitude (Inertial) Altitude (Inertial) Inertial Vert. Vel. (EFI) Inertial Vert. Vel. (EFI) Along Heading Accel. Cross Heading Accel. UNITS RANGE Feet Feet mMach* Knots mb mb Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 g g Deg/180 Deg/180 Deg/180 Deg/180 Ft/min Ft/min Feet Feet Ft/min Ft/min g g 0-79900 ± 0-7999.9 4096* 2048* 512* 2045* ± 180o ± 180 o ± 180 o ± 180 o ± 180 o ± 180 o 2* 2* ± 180 o ± 180 o ± 180 o ± 180 o 16384* 16384* 131,072 131,072 16384* 16384* 4 4 SIG. DIG/ BITS 3 5 13* 13* 9* 11* 12* 12* 12* 12* 12* 12* 14* 14* 14 14 14 14 10* 10* 18* 18 10* 10* 12 12 POS. SENSE RESOL 100.0 0.1 0.5* 0.25* 1.0* 1.0* 0.05 o 0.05 o 0.05 o 0.05 o 0.05 o 0.05 o 0.0001* 0.0001* 0.01 o 0.01 o 0.01 o 0.01 o 16* 16* 0.5* 0.5 16* 16* 0.001 0.001 MIN. TR. INT. 200* 100* 62.5 62.5 62.5 62.5 25 25 25 25 25 25 10 10 25* 25* 25* 25* 25 25 32.25* 31.25* 20 20 25* 25* MAX. TR. INT. 400* 200* 125 125 125 125 50 50 50 50 50 50 20 20 50* 50* 50* 50* 50 50 62.5* 62.5* 40 40 50* 50* Note [2]: Guidance added for transmission intervals of labels with multiple SDI codes. ORIGINAL TEXT FOLLOWS: [2] Transmit intervals and the number of parameters to be transmitted are prime factors in bus loading. The interval for transmission of parameters should fall between the minimum and maximum specified intervals and nominally should be near the center of the range at equal intervals between transmissions. When heavy bus loading dictates a shift from the center of the range, the shift should be toward the maximum transmit interval. TABLE 3.1: INTERVAL DISCRETES – LABEL 270 Discrete word formats revised. SUPPLEMENT 5 TO ARINC SPECIFICATION 429 – Page 6 ORIGINAL TEXT FOLLOWS: Table 3.1: Inertial Discretes – Label 270 Notes: [1] Attitude invalid is equivalent to IRS failure. [2] Bit 14 “1” condition indicates that the “Magnetic Heading” outputs are no longer being computer and have the characteristics of a “free DG” which is subject to control by a “Set Heading” input to the IRU. (See Section 3.2.4 for further explanation). TABLE 3.4: AIR DATA DISCRETES Discrete word #1 format changed. Discrete word #2 added. ORIGINAL TEXT FOLLOWS: Table 3.4: Air Data Discretes – Label 270 SUPPLEMENT 5 TO ARINC SPECIFICATION 429 – Page 7 ATTACHMENT 6 – GENERAL WORD FORMATS AND ENCODING EXAMPLES Examples revised to agree with adopted data standards changes. (editorial) AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 6 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: January 22, 1982 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: December 9, 1981 SUPPLEMENT 6 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces the assignment of octal labels and hexadecimal equipment identifiers, the addition of guidance for label selection, a revision of failure warning annunciation in discrete words, deletion of the weight & balance words, editorial revisions to the label tables and addition of EEC discrete word formats. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c6” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-6 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.1.5.1 BCD, NUMERIC, DISCRETE, AIM DATA AND FILE TRANSFER WORDS Commentary revised to reflect use of failure warning flags in discrete words. ORIGINAL TEXT FOLLOWS: COMMENTARY Definitions Invalid Data – is defined as any data generated by a source system whose fundamental characteristic is the inability to convey reliable information for the proper performance of a user system. There are two categories of invalid data namely, “No Computed Data” and “Failure Warning”. No Computes Data – is a particular case of data invalidity where the source system is unable to compute reliable data for reasons other than system failure. This inability to compute reliable data is caused exclusively be a definite set of events or conditions whose boundaries are uniquely defined in the system characteristic. When such a condition exists, the source system should annunciate its outputs to be invalid by setting the sign/status matrix of the affected words to the “NCD” code, as defined in sections2.1.5.1 and 2.1.5.2. The system indicators may or may not be flagged depending on system requirements. Failure Warning – is a particular case of data invalidity where the system monitors have detected one or more failures. These failures are uniquely characterized by boundaries defined in the system characteristic. When such a condition exists, the source system should annunciate its outputs to be invalid by either ceasing to supply the affected words to the data bus (the case of BCD data and ILS-LRRA installations with provisions for the interruption of AFS BNR data – see ARINC characteristics 707 and 710) or by setting the sign/status matrix of the affected words to the “Failure Warning” code (BNR case), as defined in sections 2.1.5.1 and 2.1.5.2. The system indicators should always be flagged during a “Failure Warning” condition. 2.1.5.2 BNR NUMERIC DATA WORDS Commentary for failure warning revised. ORIGINAL TEXT FOLLOWS: COMMENTARY Definitions Invalid Data – is defined as any data generated by a source system whose fundamental characteristic is the inability to convey reliable information for the proper performance of a user system. There are two categories of invalid data, namely, “No Computed Data” and “Failure Warning”. No Computed Data – is a particular case of data invalidity where the source system is unable to compute reliable data for reasons other than system failure. This inability to compute reliable data is caused exclusively by a definite set of events or conditions whose boundaries are uniquely defined in the system characteristic. When such a condition exists the source system should annunciate its outputs to be invalid by setting the sign/status matrix of the affected words to the “NCD” code, as defined in sections 2.1.5.1 and 2.1.5.2. The system indicators may or may not be flagged depending on system requirements. Failure Warning – is a particular case of data invalidity where the system monitors have detected one or more failures. These failures are uniquely characterized by boundaries defined in the system characteristic. When such a condition exists, the source system should annunciate its outputs to be invalid by either ceasing to supply the affected words to the data bus (the case of BCD data and ILS-LRRA Installations with provisions for the interruption of AFS BNR data – see ARINC Characteristics 707 and 710) or by setting the SUPPLEMENT 6 TO ARINC SPECIFICATION 429 – Page 3 sign/status matrix of the affected words to the “Failure Warning” code (BNR case), as defined in sections 2.1.5.1 and 2.1.5.2. The system indicators should always be flagged during a“Failure Warning” conditions. Fig. 3.1 RADIO SYSTEMS MANAGEMENT WORD FORMATS Assignments for bits 12, 15 and 17 removed from table for note 1 of ATC transponder word (editorial). ATTACHMENT 1: LABEL CODES The following labels have been given new assignments: 021 02, 041 02, 042 02, 043 02, 066 02, 071 33, 072 2F, 072 33, 074 33, 075 02, 077 02, 114 2F, 115 2F, 130 2F, 131 2F, 132 33, 133 2F, 155 33, 156 33, 157 33, 160 33, 161 33, 241 2C, 244 33, 250 2B, 252 2F, 260 33, 261 33, 262 02, 262 33, 263 33, 264 2F, 264 33, 265 33, 267 0A, 267 33, 270 2F, 270 3A, 271 2F, 271 3A, 273 2F, 272 2F, 273 33, 274 2F, 274 33, 275 2F, 315 02, 340 2F, 341 2F, 342 2F, 344 2F, 344 33, 345 2F, 346 2F, 350 2F, 351 2E, 351 2F, 352 2E, 352 2F, 353 2F, 354 2F, 375 33, 376 33. The following labels have been deleted: 060 32, 061 32, 062 32, 063 32, 064 32. Editorial changes were made to provide for consistency between Attachment 1 and Attachment 2. “Predictive” deleted from 207 0A. ATTACHMENT 1: EQUIPMENT CODES New assignments were made for 0D, 2E, 2F, 3A, 3B, 33, and 34. Nomenclature modified for 2C and 32. ATTACHMENT 2: DATA STANDARDS Data standards were added for new labels. Editorial changes made. Resolutions revised for 315 04, 315 05, 316 04, 321 04, 321 05, 322 04, 334 04, and 334 05 to match ARINC 704 and 705. EEC discrete words added. ATTACHMENT 6: GENERAL WORD FORMATS AND CODING EXAMPLES Format added for label 262 02. Bit 12 corrected in DME distance word (editorial). Example added for GMT binary word. APPENDIX 5: LABEL SELECTION GUIDANCE Appendix added. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 7645 USA SUPPLEMENT 7 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: January 3, 1983 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: November 4, 1982 SUPPLEMENT 7 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces new label assignments, data standards and equipment identification codes, and means for transmitting data with reduced accuracy. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c-7” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-7 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.1.5.1 BCD, NUMERIC, DISCRETE, AIM DATA AND FILE TRANSFER WORDS Note [6] added. 2.1.5.2 BNR NUMERIC DATA WORDS Note [6] added. ATTACHMENT 1 – LABEL CODES The following labels have been given new assignments: 046 33, 047 33, 114 3F, 115 3F, 127 33, 130 30, 130 3F, 131 30, 131 33, 132 30, 133 3F, 164 3B, 173 3B, 174 3B, 175 33, 212 3B, 242 3B, 244 3B, 245 3B, 246 3B, 247 3B, 252 3F, 264 3F, 270 30, 270 33, 270 3B, 270 3F, 271 30, 271 33, 271 3B, 271 3F, 272 3B, 272 3F, 273 3B, 273 3F, 274 3B, 274 3F, 275 3B, 275 3F, 311 3B, 214 3B, 325 2F, 325 3F, 340 33, 340 3F, 341 3F, 342 3B, 342 3F, 344 3F, 345 3F, 346 33, 346 3F, 347 30, 350 3F, 351 3F, 352 3F, 353 3F, 354 3F, 377 30. The terminology has been modified for the following labels: 072 33, 074 33, 132 33, 244 33, 262 33, 263 33, 264 33, 265 33. Station identifiers deleted on engine related parameters. ATTACHMENT 1 – EQUIPMENT CODES Code 2F changed from “EEC (Full Authority)” to “Full Authority EEC-A”. Code 30 assigned as “Airborne Separation Assurance System”. Description of Code OD changed to “AIDS Data Management Unit (DMU)” Code 3F assigned as “Full Authority EEC_B”. ATTACHMENT 2 – DATA STANDARDS Data standards were added for new labels. Data standards added for the following existing labels: 270 3A, 271 3A, 270 2F-275 2F, 350 2F,-354 2F. Note added to label 072 33. Digits of label 014 changed from 3 to 4 (previously adopted). Range of label 014 changed from 359 to 359.9 (previously adopted). Significant bits of label 321 changed from 12 to 11 (typo). Note [4] added. Note [5] added. Note flag [5] added to following labels: 074 2C, 075 2C, 247 2C 250 2C, 256 2C, 257 2C, 260 2C, 262 2C. ATTACHMENT 6 – GENERAL WORD FORMATS AND ENCODING EXAMPLES Formats for engine serial number words added. Formats for ASAS words added. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 8 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: December 3, 1984 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: November 4, 1983 SUPPLEMENT 8 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces new label assignments, revised data standards, expanded text describing SDI codes and makes note of a change in the resolution of the Magnetic Heading label incorporated in Supplement 7. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c-8” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-8 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 2.1.4 SOURCE DESTINATION IDENTIFIER Text added to clarify use of SDI on combined source/sink equipment. ORIGINAL TEXT FOLLOWS: 2.1.4 Source/Destination Identifier Bit nos. 9 and 10 of numeric data words should be reserved for a data source/destination identification function. They are not available for this function in alpha/numeric (ISO Alphabet No. 5) data words (See Section 2.3.1.3 of this document) or when the resolution needed for numeric (BNR/BCD) data necessitates their use for valid data. The source/destination identifier function may find application when specific words need to be directed to a specific system of a multi-system installation or when the source system of a multi-system installation needs to be recognizable from the word content. When it is used, a source equipment should encode its aircraft installation number in bit nos. 9 and 10 as shown in the table below. A sink equipment should recognize words containing its own installation number code and words containing code “00”, the “all-call” code. Bit No. 10 9 0 0 0 1 1 0 1 1 Installation No. See Note Below 1 2 3 Note: In certain specialized application of the SDI function the all-call capability may be forfeited so that code “00” is available as an “installation no. 4” identifier. When the SDI function is not used, binary zeros or valid data should be transmitted in bit nos. 9 and 10. COMMENTARY This document does not address the practical question of how the SDI bits will be set in those multi-installation systems in which the source/destination function is desired. One way would be to use program pins on the individual installation black boxes which would be wired to set up the appropriate code. The ARINC Characteristics devoted to the individual systems will define the method actually to be used. ATTACHMENT 1 – LABEL CODES The following labels have been given new assignments: 012 25, 060 3C, 061 3C, 062 3C, 063 3C, 064 3C, 137 2F, 137 3F, 140 25, 141 25, 142 25, 151 27, 152 27, 153 27, 154 27, 155 27, 156 27, 157 27, 160 27, 161 27, 162 27, 163 27, 164 25, 164 27, 165 27, 170 C5, 173 25, 270 25, 271 C5, 272 C5, 273 C5, 274 25, 275 25, 313 25, 314 25, 317 25, 320 25, 324 25, 325 25, 330 2F, 330 3F, 331 2F, 332 2F, 332 3F, 333 3F, 334 2F, 334 3F, 350 25, 351 25, 352 25, 353 25, 370 C5. ATTACHMENT 1 - EQUIPMENT CODES Code 3C assigned to Tire Pressure System. ATTACHMENT 2 – DATA STANDARDS Table 1 had been modified in Supplement 7 to reflect the resolution of label 014 as 0.1, rather than 1.0, which had been incorrectly introduced in a previous Supplement. This change is hereby noted. Data standards added for new labels. Data standards revised for labels 115 2F, 115 3F, 325 2F, 325 3F. ATTACHMENT 6 – GENERAL WORD FORMATS Tire pressure SDI bit coding added. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 9 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: April 30, 1985 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: October 11, 1984 SUPPLEMENT 9 TO ARINC SPECIFICATION 429 - Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces new label assignments and equipment identification codes. This Supplement also corrects a word format bit error introduced in a previous Supplement. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c9” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-9 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. ATTACHMENT 1 – LABEL CODES The following labels have been given new assignments: 075 3E, 076 3E, 103 1B, 104 1B, 105 1B, 106 1B, 107 1B, 130 35, 131 35, 132 35, 203 18, 270 1B, 270 35, 270 3E, 270 4A, 271 18, 271 35, 272 18, 272 35, 273 18, 273 35, 274 18, 274 35, 275 18, 275 4A, 276 18, 300 3D, 336 1A, 337 1A, 347 18, 347 35, 350 18, 350 35, 350 3E, 370 04, and 370 05. ATTACHMENT 1 – EQUIPMENT CODES Codes 3D, 3E, 4A, 4B, 4C and 90-9F given new assignments. ATTACHMENT 2 – DATA STANDARDS Data standards entered for new labels. Range for labels 012 and 170 changed to 7999. ATTACHMENT 6 – GENERAL WORD FORMATS AND ENCODING EXAMPLES Label 150 and 323 examples corrected. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 10 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: November 17, 1986 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: November 7, 1985 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 2 A PURPOSE OF THIS SUPPLEMENT This Supplement introduces new label assignments, equipment identification codes and revised data standards. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c-10” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-10 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced for reference. 3.1.4 FREQUENCY RANGES AND SWITCHING FUNCTIONS Note 6 deleted on DME Frequency Word. Attachment 1 – Label Codes The following labels have been given new assignments: 072 02, 075 0B, 076 0B, 077 0B, 176 5A, 177 5A, 200 5A, 201 5A, 202 5A, 203 5A, 204 5A, 205 5A, 206 18, 213 8D, 227 7E, 241 4D, 242 09, 242 10, 242 11, 242 12, 244 8D, 247 4D, 251 1A, 255 2F, 255 3F, 256 4D, 270 0B, 272 3A, 272 5A, 273 5A, 274 5A, 275 5A, 276 2F, 276 3F, 335 2F, 336 2F, 336 3F, 356 XX, 371 00. Labels for ARINC Characteristic 737 WBT and ARINC Characteristic 738 ADIRS added. Attachment 1 – Equipment Codes The following codes have been given new assignments: 0B, 35, 36, 37, 38, 4D, 4E, 5A, 5B, 5C, 5D, 5E, 5F, 6A, 6B, 6C, 6D, 6E, 6F, 7A, 7B, 7C, 7D, 7E, 7F, 8A, 8B, 8C, 8D, AD, C3. Attachment 2 – Data Standards Data standards entered for new labels. Data standards revised for the following labels: 060 36, 061 3C, 062 3C, 063 3C, 064 3C, 150 31, 176 03, 176 29, 270 3A, 270 2F, 270 3F, 271 2F, 271 3F, 272 2F, 272 3F, 273 2F, 273 3F, 274 2F, 274 3F, 275 2F, 275 3F, 350 2F, 350 3F, 351 2F, 351 3F, 352 2F, 352 3F, 353 2F, 353 3F, 354 2F, 354 3F. Labels 060 37-064 3C significant bits changed from 9 to 10 and range changed from 512 to 1024. Following note added to words (labels 270 3B-275 3B): Typical discrete functions are shown in the above tables. Slight variations of bit usage may arise according to the specific application. Label 203 35 changed to 203 18 (typographical error). Transmit interval range added to label 150 31. Labels 176 03 and 176 29 resolutions changed from 0.05 to 0.5 (typographical error). Original bit assignments for remaining labels listed in following pages. Attachment 6 – General Word Formats and Encoding Examples Example added for label 251 1A, 077 0B and 206 18. For TPIS word formats: Wheel #519 label corrected to read “060”. SDI labels clarified. For BTMS word formats: Wheel #10, #11, #12 labels corrected to read “116”. Bit 27 assigned to a value of “1024”. SDI labels clarified. Special expanded format word example added for label 260 31. Attachment 9A – General Aviation Labels and Data Standards New attachment added. Attachment 9B – General Aviation Word Examples New attachment added. Attachment 9C – General Aviation Equipment Identifiers New attachment added. SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 3 Table 3.11 Propulsion Discrete Interface Unit – Labels 270 3A and 271 3A Label 270 3A Bit No. Function 1 2 3 4 Label 5 6 7 8 9 SDI 1 0 Left Engine Right Engine 10 SDI 0 1 11 PDIU Status Flag 12 T2 / P2 Probe Heat 13 TLA Interlock Fault 14 Idle Select 15 Air/Ground Switch 16 Opposite Engine Status 17 Spare 18 Spare 19 N2 Mode Trim Release (PROV) 20 Spare 21 Spare 22 Spare 23 Maintenance Test (Provisional) 24 Ground Test Power 25 Spare 26 T/R Indication Power Failed (PROV) 27 T/R Not Stowed 28 T/R Deployed Indication 29 Engine Fire Warning 30 SSM 31 SSM 32 Parity (Odd) Bit Status 1 0 X X X X X X X X Failed HEAT OFF FAULT MINIMUM GROUND SHUT DOWN RELEASED ON ON FAILED NOT STOWED DEPLOYED ON OK HEAT ON OK APPROACH AIR RUNNING X X FIXED X X X OFF OFF X OK STOWED NOT DEPLOYED OFF Notes 1 2 1 1 1 1 1 1 1 = RETURN TO SPARE 2 = CHANGE SPARE TO DEFINITION ON NEXT PAGE SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 4 Table 3.12 EEC Status – Labels 270 2F, 270 3F, 271 2F, 271 3F, 272 2F, 272 3F, 273 2F, 273 3F, 274 2F, 274 3F, 275 2F, 275 3F Label 270 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD Spare Data Entry Plug Auto Mode Channel Manually Selected N2 Droop Control Mode Reverser System Failed Channel Controlling Status Bleed Fall-Safe Open TCA Valve Failed Closed Spare Overspeed Self-Test Failed Channel Incapable (Failed) Abnormal Start SVA Fall-Safe Starter Cutout Command Oil Overtemperature SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Notes X X X X 2 Failed Normal 1 Selected Not Selected 3 Selected Not Selected 3 Engaged Not Engaged Failed OK Controlling Not Controlling Fall-Safe Operational 3 Failed OK X 2 Failed OK 3 Incapable Capable Abnormal OK (Provision) 3 Fall-Safe 3 Cutout Not Cutout Overtemp OK 1 1 = RETURN TO SPARE 2 = CHANGE SPARE TO DEFINITION ON NEXT PAGE 3 = CHANGE DEFINITION TO DEFINITION ON NEXT PAGE Label 270 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD Spare Data Entry Plug Auto Mode Channel Manually Selected N2 Droop Control Mode Reverser System Failed Channel Controlling Status Bleed Fall-Safe Open TCA Valve Failed Closed Spare Overspeed Self-Test Failed Channel Incapable (Failed) Abnormal Start SVA Fall-Safe Starter Cutout Command Oil Overtemperature SSM SSM Parity (Odd) SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 5 Bit Status 1 0 X X X X X X X X Failed Selected Selected Engaged Failed Controlling Fall-Safe Failed Failed Incapable Abnormal Fall-Safe Cutout Overtemp X X X X Normal Not Selected Not Selected Not Engaged OK Not Controlling Operational OK X OK Capable OK (Provision) Not Cutout OK Notes 2 1 3 3 3 2 3 3 3 1 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 6 Label 271 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD Reverser Deploy Command Turbine Cooling Air Valve Solenoid Oil Cooler Bypass Valve Solenoid Cowl Vent Solenoid Breather Compartment Ejector Sol. Spare Spare Spare Spare Autostar Relay TLA Interlock Actuator Command Spare Reverser Group Relay Spare Spare Spare Spare SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Notes X X X ON OFF ON OFF ON OFF 3 ON OFF 1 ON OFF 1 X 2 X X X ON OFF (Provision) 1 Block Fwd Block Rev ON OFF (Provision) 1 X 2 X 2 X 2 X 2 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 7 Label 271 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD Reverser Deploy Command Turbine Cooling Air Valve Solenoid Oil Cooler Bypass Valve Solenoid Cowl Vent Solenoid Breather Compartment Ejector Sol. Spare Spare Spare Spare Autostar Relay TLA Interlock Actuator Command Spare Reverser Group Relay Spare Spare Spare Spare SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X ON ON ON ON ON ON Block Fwd ON X X X OFF OFF OFF OFF OFF X X X X OFF (Provision) Block Rev OFF (Provision) X X X X Notes 3 1 1 2 1 1 2 2 2 2 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 8 Label 272 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD N1 Loop N2 Loop N2 Topping Loop PB Topping Loop PB Topping Loop Minimum EPR Loop Acceleration Schedule Loop Deceleration Schedule Loop T4.9 Topping Loop Back Up Mode Spare Spare Spare Spare Spare Spare SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Engaged Engaged Engaged Engaged Engaged Engaged Engaged Engaged Engaged Engaged X X X Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged X X X X X X Notes 1 2 Label 272 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD N1 Loop N2 Loop N2 Topping Loop PB Topping Loop PB Topping Loop Minimum EPR Loop Acceleration Schedule Loop Deceleration Schedule Loop T4.9 Topping Loop Back Up Mode Spare Spare Spare Spare Spare Spare SSM SSM Parity (Odd) SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 9 Bit Status 1 0 X X X X X X X X Engaged Engaged Engaged Engaged Engaged Engaged Engaged Engaged Engaged Engaged X X X Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged Not Engaged X X X X X X Notes 1 2 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 10 Label 273 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD P4.9 Interface Failed PB Interface Failed P2 (Pamb) Interface Failed* C3C Interface Failed T2 Interface Failed T4.9 Interface Failed Tfuel Interface Failed A/D Interface Failed RES/LVDT Interface Failed SVA Interface Failed N1 Interface Failed N2 Interface Failed P4.9 Sensor Prom Failed P2 (Pamb) Sensor Prom Failed* PB Sensor Prom Failed Background is not Executing SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Not Executing X X X OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK Executing * Primary channel uses P2, Secondary channel uses Pamb. Notes 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 11 Label 273 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD P4.9 Interface Failed PB Interface Failed P2 (Pamb) Interface Failed* C3C Interface Failed T2 Interface Failed T4.9 Interface Failed Tfuel Interface Failed A/D Interface Failed RES/LVDT Interface Failed SVA Interface Failed N1 Interface Failed N2 Interface Failed P4.9 Sensor Prom Failed P2 (Pamb) Sensor Prom Failed* PB Sensor Prom Failed Background is not Executing SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Not Executing X X X OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK Executing * Primary channel uses P2, Secondary channel uses Pamb. Notes 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 12 Label 274 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD Parity Test Hardware Fault ROM Checksum Failure Ram Test Failure Instruction Test Failure High Speed Cross Link Failure Foreground Software Execution Watch Dog Timer Fault Watch Dog/Parity Counter Latch EAROM Failure ROM Parity Error Caused Reset RAM Parity Error Caused Reset Watchdog Timer Error Caused Reset Status Buffer or Watchdog/Parity Loss of Clock Caused Reset SDD Output #1 W/A SDD Output #2 W/A SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Error Failed Failed Failed Failed Incorrectly Error Latched Failed Yes Yes Yes Failed Yes Failed Failed X X X OK OK OK OK OK Correctly OK Not Latched OK No No No OK No OK OK Notes 3 3 3 3 3 3 1 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 13 Label 274 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD Parity Test Hardware Fault ROM Checksum Failure Ram Test Failure Instruction Test Failure High Speed Cross Link Failure Foreground Software Execution Watch Dog Timer Fault Watch Dog/Parity Counter Latch EAROM Failure ROM Parity Error Caused Reset RAM Parity Error Caused Reset Watchdog Timer Error Caused Reset Status Buffer or Watchdog/Parity Loss of Clock Caused Reset SDD Output #1 W/A SDD Output #2 W/A SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Error Failed Failed Failed Failed Incorrectly Error Latched Failed Yes Yes Yes Failed Yes Failed Failed X X X OK OK OK OK OK Correctly OK Not Latched OK No No No OK No OK OK Notes 3 3 3 3 3 3 1 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 14 Label 275 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD Lamp (1,2 &/or 3) W/A Failed Other Channels Depower Discrete PB Sensor Failed PT4.9 Sensor Failed PT2 (Pamb)* Sensor Failed EEC Temperature Status Bit Status 1 0 X X X X X X X X Failed Disagree Failed Failed Failed High X X X OK Agree OK OK OK OK Spare (all “o” states) SSM SSM Parity (Odd) [3] Primary channel uses PT2, Secondary channel uses Pamb. Notes 3 3 3 3 3 2 2 2 2 2 2 2 2 2 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 15 Label 275 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD Lamp (1,2 &/or 3) W/A Failed Other Channels Depower Discrete PB Sensor Failed PT4.9 Sensor Failed PT2 (Pamb)* Sensor Failed EEC Temperature Status Spare (all “o” states) SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X Failed Disagree Failed Failed Failed High X X X OK Agree OK OK OK OK CHANGE * Primary channel uses PT2: Secondary channel uses Pamb. Notes 3 3 3 3 3 2 2 2 2 2 2 2 2 2 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 16 Table 3.13 EEC Maintenance – Labels 350 2F, 350 3F, 351 2F, 351 3F, 352 2F, 352 3F, 353 2F, 353 3F, 354 2F, 354 3F Label 350 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD N1 Failed N2 Failed TT2 Failed TT4.9 Failed Tfuel Failed Toll Failed Wf Resolver Failed SVA LVDT Failed Bleed Prox Input Failed ACC #1 LVDT Failed ACC #2 LVDT Failed Reverser LVDT Failed AOC LVDT Failed Spare LVDT Failed TLA Resolver Failed Oil Overtemperature SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X X X X Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Overtemp OK Notes 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 Label 350 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD N1 Failed N2 Failed TT2 Failed TT4.9 Failed Tfuel Failed Toll Failed Wf Resolver Failed SVA LVDT Failed Bleed Prox Input Failed ACC #1 LVDT Failed ACC #2 LVDT Failed Reverser LVDT Failed AOC LVDT Failed Spare LVDT Failed TLA Resolver Failed Oil Overtemperature SSM SSM Parity (Odd) SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 17 Bit Status 1 0 X X X X X X X X X X X Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Overtemp OK Notes 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 18 Label 351 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD Left ADC Inputs Failed Right ADC Inputs Failed Wf T/M W/A Failed SVA T/M W/A Failed BLD T/M W/A Failed ACC #1 T/M W/A Failed ACC #2 T/M W/A Failed AOC T/M W/A Failed Spare T/M W/A Failed Wf Track Check Failed SVA Track Check Failed Bld Track Check Failed ACC #1 Track Check Failed ACC #2 Track Check Failed AOC Track Check Failed Spare Track Check Failed SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X X X X Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Notes 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 1 Label 351 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD Left ADC Inputs Failed Right ADC Inputs Failed Wf T/M W/A Failed SVA T/M W/A Failed BLD T/M W/A Failed ACC #1 T/M W/A Failed ACC #2 T/M W/A Failed AOC T/M W/A Failed Spare T/M W/A Failed Wf Track Check Failed SVA Track Check Failed Bld Track Check Failed ACC #1 Track Check Failed ACC #2 Track Check Failed AOC Track Check Failed Spare Track Check Failed SSM SSM Parity (Odd) SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 19 Bit Status 1 0 X X X X X X X X X X X Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Notes 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 1 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 20 Label 352 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD Spare Spare Spare Spare Spare Spare TCA Valve No. 1 TCA Valve No. 2 Channel Select Discrete PDIU SDD Input Failed N1 Sensor Failed* Pb Pneumatic Line* P4.9 Pneumatic Line* TT4.9 Thermocouple Harness* PDIU Status T/L Forward Interlock SSM SSM Parity (Odd) *Primary channel only. Bit Status 1 0 X X X X X X X X Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed X X X X X X X X X OK OK OK OK OK (Provision) OK (Provision) OK (Provision) OK (Provision) OK OK Notes 1 1 2 2 2 3 3 3 3 3 3 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 21 Label 352 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD Spare Spare Spare Spare Spare Spare TCA Valve No. 1 TCA Valve No. 2 Channel Select Discrete PDIU SDD Input Failed N1 Sensor Failed* Pb Pneumatic Line* P4.9 Pneumatic Line* TT4.9 Thermocouple Harness* PDIU Status T/L Forward Interlock SSM SSM Parity (Odd) * Primary channel only. Bit Status 1 0 X X X X X X X X Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed X X X X X X X X X OK OK OK OK OK (Provision) OK (Provision) OK (Provision) OK (Provision) OK OK Notes 2 2 2 2 2 3 3 3 3 3 3 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 22 Label 353 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Label Function SDI SDI PAD PAD PAD N1 Crosscheck Failed N2 Crosscheck Failed PB Crosscheck Failed PT4.9 Crosscheck Failed TT2 Crosscheck Failed TT4.9 Crosscheck Failed Tfuel Crosscheck Failed Toil Crosscheck Failed Wf Resolver Crosscheck Failed SVA Resolver Crosscheck Failed Bld Prox Input Crosscheck Failed ACC #1 LVDT Crosscheck Failed ACC #2 LVDT Crosscheck Failed Reverser LVDT Crosscheck Failed AOC LVDT Crosscheck Failed TLA Resolver Crosscheck Failed SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X X X X Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Notes 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 23 Label 353 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD N1 Crosscheck Failed N2 Crosscheck Failed PB Crosscheck Failed PT4.9 Crosscheck Failed TT2 Crosscheck Failed TT4.9 Crosscheck Failed Tfuel Crosscheck Failed Toil Crosscheck Failed Wf Resolver Crosscheck Failed SVA Resolver Crosscheck Failed Bld Prox Input Crosscheck Failed ACC #1 LVDT Crosscheck Failed ACC #2 LVDT Crosscheck Failed Reverser LVDT Crosscheck Failed AOC LVDT Crosscheck Failed TLA Resolver Crosscheck Failed SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X X X X Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Failed OK Notes 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 24 Label 354 2F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD REV Command Solenoid W/A Failure TCA Solenoid W/A Failure Spare Solenoid W/A Failure Spare Solenoid W/A Failure Spare Relay W/A Failure Spare Solenoid W/A Failure BCE Solenoid W/A Failure Spare Solenoid W/A Failure Oil Bypass Solenoid W/A Failure Hot Start Relay W/A Failure TLA Lockout Relay W/A Failure Spare Relay W/A Failure Spare Essen. Sol. Current Sense Failure Critical & Noncritical Current Sense Failure Spare SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X X X X Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK X Failure OK Failure OK Notes 3 3 1 1 1 3 1 1 3 1 3 1 1 3 3 SUPPLEMENT 10 TO ARINC SPECIFICATION 429 – Page 25 Label 354 3F Bit No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function Label SDI SDI PAD PAD PAD REV Command Solenoid W/A Failure TCA Solenoid W/A Failure Spare Solenoid W/A Failure Spare Solenoid W/A Failure Spare Relay W/A Failure Spare Solenoid W/A Failure BCE Solenoid W/A Failure Spare Solenoid W/A Failure Oil Bypass Solenoid W/A Failure Hot Start Relay W/A Failure TLA Lockout Relay W/A Failure Spare Relay W/A Failure Spare Essen. Sol. Current Sense Failure Critical & Noncritical Current Sense Failure Spare SSM SSM Parity (Odd) Bit Status 1 0 X X X X X X X X X X X Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK Failure OK X Failure OK Failure OK Notes 3 3 1 1 1 3 1 1 3 1 3 1 1 3 3 AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 11 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: July 22, 1988 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: June 15, 1988 SUPPLEMENT 11 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces new label assignments and equipment identification codes. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c-11” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should be inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-11 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revisions, any text originally contained in the Specification is reproduced or reference. 2.1.5.1 BCD Numeric, Discrete, Aim Data, and File Transfer Words SSM bit patterns separated from main figure. FIGURE 3-1 RADION SYSTEMS MANAGEMENT WORD FORMATS HF COM frequency control words added. ATTACHMENT 1 – LABEL CODES 070 002, 070 0CC, 071 002, 071 0CC, 072 002, 072 0CC, 073 0CC, 074 002, 100 0BB, 101 0BB, 103 0BB, 104 0BB, 105 0BB, 106 0BB, 107 002, 114 0CC, 115 0BC, 115 0CC, 116 0CC, 117 0CC, 126 002, 127 002,143 041, 143 241, 144 041, 144 341, 150 002, 152 041, 153 002, 153 041, 162 0DE, 173 0BD, 200 002, 202 002,203 002, 204 002, 205 002, 205 0B9, 206 0CC, 207 002, 207 0B9, 211 002, 213 002, 213 08D, 220 002, 220 017, 220 024, 220 07E, 221 002, 221 017, 221 024, 221 07E, 222 002, 222 017, 222 024, 222 07E, 223 002, 223 017, 223 024, 223 07E, 224 002, 224 017, 224 024, 224 07E, 225 002, 226 0XX, 230 002, 230 017, 230 024, 230 07E, 241 002, 242 011, 243 0XX, 244 011, 244 08D, 245 002, 246 002, 246 006, 246 009, 247 002, 247 009, 247 0EB, 250 002, 250 12B, 252 0EB, 253 002, 254 002, 254 012, 255 002, 255 012, 255 08E, 256 002, 256 027, 257 002, 257 027, 263 002, 263 010, 264 002, 264 010, 265 002, 267 002, 271 002, 274 0C5, 275 002, 276 001, 276 002, 276 003, 300 039, 300 040, 301 002, 301 039, 301 040, 302 002, 302 039, 302 040, 303 002, 304 039, 304 040, 305 039, 305 040, 306 039, 306 040, 307 039, 307 040, 314 002, 316 002, 322 002, 341 002, 342 002, 343 01A, 350 00B, 350 027, 350 040, 350 241, 350 341, 351 00B, 351 029, 354 002, 355 027, 360 002. Label 076 008 changed from “Ellipsoidal Altitude” to “GPS Height Above Referenced Ellipsoid”. ATTACHMENT 1 – EQUIPMENT CODES The following codes have been given new assignments: 039, 040, 041, 08E, 08F, 0AA, 0AB, 0AC, 0AE, 0AF, 0BA, 0BB, 0BC, 0BD, 0BE, 0BF, 0C2, 0CA, 0CB, 0CC, 0CD, 0CE, 0CF, 0DA, 0DB, 0DC, 0DD, 0DE, 0DF, 0EA, 0FF, 10A, 10B, 10C, 10C, 10D, 10E, 10F, 110, 12A, 12B, 136, 141, 241, 341. ATTACHMENT 2 – DATA STANDARDS Data Standards entered for new labels: Label 076 008 changed from “Ellipsoidal Altitude” to “GPS Height Above Referenced Ellipsoid”. Data Standards revised for following labels: 076 00B, 077 00B, 270 00B ATTACHMENT 6 Example revised for label 077 00B. Example for label 260 removed. Example for label 260 031 expanded to include 260 002. Format for label 270 00B added. Format for label 274 0C5 added. Format for label 350 027 added. Code for 747 NR corrected in diagram of TPIS word. Equipment ID word expanded to accommodate threecharacter identifier. ATTACHMENT 9 – GENREAL AVIATION EQUIPMENT IDENTIFIERS Code 08C added to list. Codes for Loran and Omega changed from 08A/08B to 05A/05B, respectively. NOTE: Due to the large number of changes Created by this Supplement, it is NOT available separately to update 429-11. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 12 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: July 1, 1990 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: October 25, 1989 SUPPLEMENT 12 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT The Supplement introduces the Williamsburg bit-oriented file data transfer protocol which supports the transfer of binary and character data. The previous AIM and character-oriented file transfer protocol sections are moved to Appendix 6. The Sign Status Matrix (SSM) information is revised and reorganized. In addition, this Supplement introduces new label assignments and equipment identification codes. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper contains descriptions of the changes introduced into the Specification by this Supplement, and, where appropriate, extracts from the original text for comparison purposes. The second part consists of replacement white pages for the Specification, modified to reflect these changes. The modified and added material on each replacement page is identified with “c-12” symbols in the margins. Existing copies of Specification 429 may be updated by simply inserting the replacement white pages they replace. The goldenrod pages should e inserted inside the rear cover of the Specification. Copies of the Specification bearing the number 429-12 already contain this Supplement and thus do not require revisions by the reader. C. CHANGES TO SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is entitled by the section number and title currently employed in the Specification, or by the section number and title that will be employed when the Supplement is eventually incorporated. In each case there is included a brief description of the addition or change and, for other than very minor revision, any text originally contained into the Specification reproduced for reference. 2.1.3 Information Identifier This section contains editorial corrections to comply with changes introduced in Supplement 11. 2.1.5 Sign/Status Matrix This section was revised and reorganized. The changes include moving the AIM and file transfer SSM definitions to Appendix 6, adding failure reporting to the discrete word truth table (Section 2.1.5.3) and moving the description of status priorities to Section 2.1.5. 2.3.1 Digital Language The contents of Sections 2.3.1.4 through 2.3.1.5.7 were moved to Appendix 6. The AIM Data and File Data Transfer section headings were retained for reference purposes. Section 2.3.1.5. File Data Transfer, provides the reason for moving the original file transfer protocol and introduces the Williamsburg protocol. 2.5 Bit-Oriented Communications Protocol This new section was added to describe a bit-oriented data transfer protocol. The new protocol was developed to accommodate the interface of the ACARS Management Unit (MU) and the Satellite Data Unit (SDU). 3.2 AIM Information Transfer The information previously contained in this section is no longer applicable to ARINC Specification 429. For reference purposes, the section header is retained and the original contents of this section are located in Appendix 6. ATTACHMENT 1 – LABEL CODES The following labels have been given new assignments: 002 115, 013 0B8, 016 0B8, 046 10A, 046 10B, 047 10A, 047 10B, 107 0BB, 110 0BB, 112 0BB, 114 0BB, 114 10A, 114 10B, 127 10A, 127 10B, 130 035, 130 10A130 10B, 131 035, 132 035, 133 10A, 133 10B, 134 10A, 134 10B, 137 10A, 137 10B, 155 10A, 155 10B, 156 10A, 156 10B, 157 10A, 157 10B, 160 10A, 160 10B, 161 10A, 161 10B, 201 115, 203 035, 203 10A, 203 10B, 205 10A, 205 10B, 211 10A, 211 10B, 220 116, 221 116, 222 115, 222 116,223 116, 224 116, 226 035, 230 116, 234 039, 234 040, 235 039, 235 040, 236 039, 236 040, 237 039, 237 040, 244 10A, 244 10B, 256 114, 257 114, 260 10A, 260 10B, 260 114, 261 10A, 261 10B, 261 114, 262 10A, 262 10B, 262 114, 263 10A, 263 10B, 263 114, 264 10A, 264 10B, 264 114, 265 004, 265 038, 265 10A, 265 10B, 265 114, 267 10A, 267 10B, 270 10A, 270 10B, 270 114, 270 115, 271 10A, 271 10B, 271 114, 272 002, 272 10A, 272 10B, 272 114, 273 10A, 273 10B, 273 114, 274 10A, 274 10B, 274 114, 275 10A, 275 10B, 275 114, 276 114, 277 018, 300 10A, 300 10B, 300 TBD, 301 10A, 301 10B, 302 10A, 302 10B, 303 10A, 303 10B, 304 10A, 304 10B, 305 10A, 305 10B, 306 10D, 310 114, 311 114, 312 114, 313 114, 316 10A, 316 10B, 320 035, 321 10A, 321 10B, 322 10A, 322 10B, 323 10A, 323 10B, 324 10A, 324 10B, 325 10A, 325 10B,326 10A, 326 10B, 327 10A, 327 10B, 330 10A, 330 10B, 331 10A, 331 10B, 335 10A, 335 10B, 336 002, 336 10A, 336 10B, 337 002, 337 002, 337 10A, 337 10B, 341 10A, 341 10B, 342 10A, 342 10B, 343 10A, 343 10B, 344 10A, 344 10B, 345 10A, 345 10B, 346 10A, 346 10B, 347 10A, 347 10B, 350 10A, 350 10B, 350 114, 350 115, 351 10A, 351 10B, 351 114, 352 10A, 352 10B, 352 114, 353 10A, 353 10B, 353 114, 354 10A, 354 10B, 357 035, 360 10A, 360 10B, 360 TBD, 361 10A, 361 10B, 362 10A, 362 10B, 362 115, 363 10A, 363 10B, 365 TBD, 372 10A, 372 10B, 373 10A, 373 10B, 374 10A, 374 10B, 374 TBD, 375 10A, 375 10B, 375 TBD. Revised label 130 035 from “Traffic Advisory Range” to “Intruder Range”. Revised label 131 035 from “Traffic Advisory Altitude” to “Intruder Altitude”. Revised label 132 035 from “Traffic Advisory Bearing” to “Intruder Bearing”. SUPPLEMENT 12 TO ARINC SPECIFICATION 429 – Page 3 Removed label 130 030 Traffic Advisory Range. Removed label 131 030 Traffic Advisory Altitude. Removed label 132 030 Traffic Advisory Bearing Estimate. Removed label 270 030 Transponder Discrete. Removed label 347 030 Sector Control. Removed label 347 035 Antenna Control. ATTACHMENT 1 – EQUIPMENT CODES The following codes have been given new assignments: 113, 114,115, 116, 117, 118, 119, 11A, 123, 124, 125, 126, 127, 128, 129, 15A, 15B, 15C, 15D, 15E, 16A, 16B, 16C, 16D, 16E, 17A, 17B, 17C, 18A, 18B, 18C, 18D, 18E, 18F. ATTACHMENT 2 – DATA STANDARDS Tables 1, 2 updated to reflect changes to Attachment 1. Binary Data notes 6, 7 and 8 added. Discrete Data Standards entered for new labels: 272 002, 271 018, 272 018, 273 018, 275 018, 276 018, 277 018, 274 018, 270 035, 271 035, 273 035, 274 035, 275 035, 013 0B8, 016 0B8, 161 10A, 161 10B, 350 114, 351 114, 352 114, 353 114, 270 115, 350 115. ATTACHMENT 6 – GENERAL WORD FORMATS AND ENCODING EXAMPLES Add format for TCAS Intruder Range label 130. Add format for TCAS Intruder Altitude label 131. Add format for TCAS Intruder Bearing label 132. Add format for Transponder Altitude/TCAS Own A/C Altitude label 203. Removed 730 ASAS Sector Control Word example. Removed 730 TCAS Traffic Advisory Range Word example. Removed 730 TCAS Traffic Advisory Altitude Word example. Removed 730 TCAS Traffic Advisory Bearing Estimate word example. ATTACHMENT 9B – GENERAL AVIATION WORD EXAMPLES Add new Company Name Identifier. ATTACHMENT 10 – VARIABLES OF BITORIENTED PROTOCOL Add new Attachment. ATTACHMENT 11 – BIT-ORIENTED DATA FILE TRANSFER WORD FORMATS Add new Attachment. ATTACHMENT 11A – DESTINATION CODES Add new Attachment. ATTACHMENT 11B – STATUS CODES Add new Attachment. ATTACHMENT 11C – ALOHA/ALOHA RESPONSE PROTOCOL WORDS Add new Attachment. ATTACHMENT 12 – FILE TRANSFER EXAMPLE Add new Attachment. ATTACHMENT 12A – FILED MAPPING EXAMPLE Add new Attachment. ATTACHMENT 13 – PROTOCOL DETERMINATION PROCEDURE DIAGRAMS Add new Attachment. ATTACHEMENT 14 – SYSTEM ADDRESS LABELS Add new Attachment. ATTACHMENT 15 – LINK LAYER CRC DATA EXAMPLE Add new Attachment. APPENDIX 6 – FORMER MAINTENANCE, AIM AND FILE TRANSFER TECHNIQUES Add new Appendix. APPENDIX 7 – MATHMATICAL EXAMPLE OF CRC ENCODING/DECODING Add new Appendix. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 13 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: December 30, 1991 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: October 8, 1991 SUPPLEMENT 13 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces changes made to the Williamsburg protocol as a result of its initial implementation. This protocol supports the transfer of binary and character data. In addition, this Supplement introduces new label assignments and equipment identification codes. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper contains descriptions of changes introduced into this Specification by this Supplement. The second part consists of replacement white pages for the Specification, modified to reflect the changes. The modified and added material on each page is identified by a c-13 in the margins. Existing copies of ARINC Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages are inserted inside the rear cover of the Specification. C. CHANGES TO ARINC SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is defined by the section number and the title currently employed in the Specification or by the section name and title that will be employed when the Supplement is eventually incorporated. In each case a brief description of the change or addition is included. AEEC STAFF NOTE: THESE CHANGES APPLY TO ARINC 429, PART 3 ONLY. 2.3.1.5 File Data Transfer An editorial change, correction to section numbering. 2.3.1.5.1 Bit-Oriented Protocol Determination New Section added to describe ALO/ALR protocol process to be used when a bilingual Link Layer protocol system needs to determine necessary bit-oriented interfaces. 2.5 Bit-Oriented communications Protocol Included term “Williamsburg” parenthetically since this terminology well-known in industry. Added commentary to explain non-negotiation or parameters in this protocol. D. Corrected Network Layer definition. 2.5.2 Link Data Unit (LDU) Size and Word Count Added second paragraph to text, since it is a requirement, and removed second paragraph from commentary. 2.5.4 Bit Rate and Word Timing Corrected the commentary to change the more ambiguous term “message” to LDU. 2.5.5.3 Destination Code An editorial change was made. 2.5.6 Response to RTS The last sentence in the second paragraph was reworded and moved to a more appropriate section, 2.5.6.2. 2.5.6.1 Clear to Send (CTS) In the second to last sentence, the word “valid” was added to clarify the Not clear to send condition. The last sentence was added to clarify the resetting of RTS counters. 2.5.6.2 Not Clear to Send (NCTS) The first paragraph was updated to include the information deleted from Section 2.5.6 and to clarify the validity requirements. The second paragraph was updated to describe that and NCTS counter would be reset upon a valid CTS response. The last sentence in the third paragraph was deleted and it’s content expanded in the following commentary of that section. 2.5.6.3 Destination Busy The second paragraph of this section was updated to indicate that a BUSY counter should be reset with a valid CTS response to RTS. 2.5.7 No Response to RTS The first paragraph of this section was updated to describe proper response to RTS. 2.5.9 Unexpected RTS This section was updated to include editorial changes and a description of the correct responses to RTS. The last sentence was deleted as redundant to Section in 2.5.13.1 and in conflict with other possible responses. 2.5.11 Data The fourth paragraph of this section was updated to describe the proper ending of an LDU transmission, and to include the optional NAK response for receipt of an incomplete octet. 2.5.11.3 Character Data Words In the last paragraph, the “note” designator was removed and the text clarified for the transfer of characters with a parity bit. 2.5.13 Negative Acknowledgement (NAK) This section was updated to clarify conditions for sending the NAK word. SUPPLEMENT 13 TO ARINC SPECIFICATION 429 – Page 3 2.5.13.1 Missing SOT word Text was corrected to refer to “reception” instead of “transmission” of a valid SOT word. Also, incorrect text referring to the NAK response timing was deleted. 2.5.13.2 LDU Sequence Number Error The original text was omitted. Sections 2.5.13.1 – 2.5.13.7 were renumbered. 2.5.13.3 Parity Errors A commentary section was added to describe the procedures for receiving words with bad parity. 2.5.13.4 Word Count Errors This section was updated to clarify the NAK response time for word count errors. 2.5.13.5 CRC Errors This section was updated to clarify the NAK response time for CRC errors. 2.5.13.6 Time Out Errors This section was renumbered. 2.5.13.7 Restart Initialization This section was omitted due to potential conflicts with the ALO/ALR procedures. 2.5.14 LDU Transfer Acknowledgement (ACK) Text was revised to include LDU conditions for sink acknowledgement transmission. 2.5.14.1 Duplicate LDU This section was added to describe duplicate LDU occurrences. 2.5.14.2 Auto-Synchronized Files This section was added to describe the method of handling auto-synchronized files. 2.5.15 SYN Word New text was added to describe SYN response times for non-consecutive LDU Sequence numbers. The last paragraph was incorrect and deleted. 2.5.16 Response to ACK/NAK/SYN New text was added to describe actions when NAK and SYN are detected during a transmission. 2.5.19 ALO Response A new section was added and updated to describe ALO responses. ATTACHMENT 10 – VARIABLES OF BIT ORIENTED PROTOCOL Tables 10-1 and 10-3 were N6, and time T12. Options updated to include 07 and 012 in Table events N5, 10-4 were changed to spares for consistency with corresponding text updates. ATTACHMENT 11C – ALOHA/ALOHA RESPONSE PROTOCOL WORD DEFINITION Table 11C-3 was added to clarify protocol version number assignments, and is referenced by “note 1”. “Note 2” was added to describe the GFI field of the ALOHA word. ATTACHMENT 12A – FIELD MAPPING EXAMPLE Bk was changed to B24 in the data word map, “nibble” was changed to “semi-octet”, and semi-octet arrow lengths were shortened to correspond to the proper four and eightbit lengths. APPENDIX 7 – MATHEMATICAL EXAMPLE OF CRC ENDODING/DECODING Format (alignment) changes were made in the polynomial divisions, “(X)” was corrected to “Q(x)”, and the transmission order for the LDU Mapping of the 24-bit example was deleted to avoid possible misinterpretation. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 14 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: January 4, 1993 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: November 4, 1992 SUPPLEMENT 14 TO ARINC SPECIFICATION 429 – Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces changes made to increase the efficiency of data transfer across an ARINC 429 high speed bit-oriented link. This protocol supports the transfer of binary and character data. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper, contains descriptions of changes introduced into this Specification by this Supplement. The second part consists of replacement white pages for the Specification, modified to reflect the changes. The modified and added material on each page is identified by a c-14 in the margins. Existing copies of ARINC 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages are inserted inside the rear cover of the Specification. C. CHANGES TO ARINC SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change and addition is defined by the section number and the title currently employed in the Specification or by the section name and title that will be employed when the Supplement is eventually incorporated. In each case a brief description of the change or addition is included. AEEC STAFF NOTE: THESE CHANGES APPLY TO ARINC 429, PART 3 ONLY. 2.3.1.5 File Data Transfer An editorial change was needed to reference new section. 2.3.1.5.1 Bit-Oriented Protocol Determination This section was expanded to include determination of different version numbers of the bit-oriented protocol, and was moved to Section 2.5.19. 2.5 Bit-Oriented Communication Protocol An editorial change references a new section number. 2.5.4 Bit Rate and Word Timing A maximum word gap of 64 bit-times, (averaged over the LDU transmission) was added to eliminate excessive delay in source transmission time. Note: Sections 2.5.5 through 2.7 have been renumbered and reordered for consistency. 2.5.5 Word type The basic definition of “word type” was corrected to include bits 31-29 in all bit-oriented words of an LDU. 2.5.6 Protocol Words This section was added to specifically define the word type for protocol words. 2.5.6.1 Protocol Identifier This section was added to clarify the definition of bits 2825 for protocol words and to specify the relevant addition for error conditions. 2.5.6.2 Destination Code This section was updated, and a commentary added, to clarify the role of the link layer protocol for upward compatibility with changing network functionality. The requirement for Destination code validation is not a link layer function. 2.5.6.3 Word Count This section was renumbered. 2.5.7 Request to Send (RTS) This section was previously titled “Response to TS”, and has been renumbered. The title was changed for consistency, and an introductory paragraph added to clarify the basic RTS function. 2.5.7.1 Clear to Send (CTS) This section was renumbered. 2.5.7.2 Not Clear to Send (NCTS) This section was renumbered. 2.5.7.3 Destination Busy This section was renumbered, and an introductory replacement paragraph inserted to clarify the “optional” BUSY response, which may be used when a system cannot accept a transmission by the source in a “timely manner”. New commentary equates a “timely manner” to the shorter retry sequence of the NCTS series. 2.5.7.4 No Response to RTS This section was renumbered, and the ALOHA word was included in the logic for error determination. 2.5.10 Start of Transmission (SOT) Timer T13 was added as a requirement on the source to begin transmission of an LDU within a specified interval after receipt of the CTS word from the sink. 2.5.10.1 General Format Identifier (GFI) This section was updated, and commentary added to clarify the role of the GFI in pre-OSI as well as OSI environments. Validation of the GFI code is required by a high level entity (network layer) in both environments to determine the format of the data words to follow. GFI validation is not necessarily a link layer function. SUPPLEMENT 14 TO ARINC SPECIFICATION 429 – Page 3 2.5.11 Data All references to Character Data word formats were deleted. 2.5.11.3 Character Data Words This section was deleted. The Character Data Word format was removed from Supplement 14, as the format is incompatible with those for Full and Partial Data word formats. Currently, both binary and character data are transmitted in octets defined by the other two data word formats. The special character data format is not required. 2.5.12.1 CRC Encoding References to character data words were deleted. The text for equation: M9x) = x16G(x) + R(x) was corrected by moving the “bar” from G(x) to R(x). 2.5.13 Negative Acknowledgement (NAK) NAK word interpretation was changed to remove constraint on source for specific order of file sequencing (i.e. Allows source to restart file with new FSN if necessary). 2.5.14.1 Duplicate LDU This first paragraph was rewritten to clarify. 2.5.14.3 Incomplete File Timer This section was added to allow the sink to discard a partial file of multiple LDUs when the T14 timeout between LDU transmissions is exceeded. It ensures that a source device cannot “lock-up” a sink. 2.5.15 SYN Word The LDU sequence anomalies which generate a SYN response by the sink were clarified. 2.5.16 Response to ACK/NAK/SYN The T16 timer was introduced to replace T10 and T8. Also, the action taken by the source upon receipt of a SYN word was updated, which relaxes requirements to maintain a specific File Sequence ordering by the source. 2.5.19 Protocol Initialization 2.5.19.1 Bit-Oriented Protocol Version, 2.5.19.2 ALOHA Response, and 2.5.19.3 Character-429 Determination This section has been added to replace and expand on the definition of the process to determine the link layer protocol version supported by an interfacing system. These sections replace three sections from Supplement 13. 2.3.1.5.1 Bit-Oriented Protocol Determination 2.5.19 ALO Response, and 2.5.20 Bit Protocol Verification 2.6 Windowed Bit-Oriented Protocol This is a completely new section which contains the system description of the new LLC2-like bit-oriented link layer protocol for 429. It is based on Section 2.5, “BitOriented Communications Protocol”, with expanded text as specified to allow for more efficient use of the 429 high (or low) speed data bus through “windowing”. The definition includes provision for a Link Control Word prior to each LDU. ATTACHMENT 1 – EQUIPMENT CODES New Equipment Code Identifiers were added. ATTACHEMENT 6 – WORD FORMATS AND ENCODING EXAMPLES Example added for label 171. ATTACHMENT 10 – VARIABLES OF BIT ORIENTED PROTOCOL Table 10-1 was updated to include a standard value for N7, the maximum number of LDUs in a window (see Section 2.6 “Windowed Bit-Oriented Protocol”). Table 10-3 deleted Option 6 (O6) for NAK Send Time, and deleted Option 9 (O9) for the Character Data Word, both of which are no longer used. Table 10-4 was revised to include columns for low speed maximum and minimum values. These values were established for timers and as response time design goals for incoming transmissions. Timers T13 through T16 were added. Table 10-5 was added to include a definition of high speed maximum and minimum values for timers and response time design goals. The format is the same as the revised Table 10-4. Timer T10 is not used in the high speed protocol. Table 10-6 was added to include notes to Tables 10-1 through 10-5. ATTACHMENT 11 – BIT-ORIENTED DATA FILE TRANSFER WORD FORMATS Table 11-1A added “spares” for the deleted Character Data Formats and corrected “Protocol Data Word” to read “Protocol Word”. Table 11-4 updated definitions for bits 9 through 24 of the ALO and ALR words, and added the LCW (LDU Control Word) format definition. Table 11-4A was added as a partial replacement for ATTACHMENT 11C and Table 11-4B was added to define the new window definitions for the Windowed BitOriented protocol in Section 2.6. Table 11-6A was revised, changing the former GFI bit pattern (0001) for ISO 8208 to “unassigned”. The bit pattern (0100) for ISO 8473 was changed to a more SUPPLEMENT 14 TO ARINC SPECIFICATION 429 – Page 4 ATTACHMENT 11 – BIT-ORIENTED DATA FILE TRANSFER WORD FORMATS (cont’d) generic ISO 9577 definition. The bit pattern 1110 (hex”E”) is now defined as “ACARS VHF Format”.The “NOTES” in ATTACHMENT 11 have been renumbered to correspond to the new table definitions. ATTACHMENT 11C – ALOHA/ALOHA RESPONSE PROTOCOL WORD DEFINITION This Attachment has been deleted. This information has been moved to Tables 11-4, 11-4A, and 11-4B. ATTACHMENT 13A – ALOHA VERSION DETERMINATION SEQUENCE This Attachment was added to support the ALOHA version determination sequence called out in Section 2.5.19.1.1. ATTACHMENT 14 – SYSTEM ADDERESS LABELS New System Address Labels (SAL) were added. ATTACHMENT 16 – SEQUENCE OF PROTOCOL AND DATA WORDS IN WINDOW TRANSFER This Attachment was added to illustrate the window transfers for new Section 2.6. ATTACHMENT 17 – FLOW DIAGRAM USED TO DETERMINE CHARACTER-ORIENTED VS BITORIENTED PROTOCOL This Attachment was added to illustrate the logic flow that determines whether a character-oriented or bitoriented link layer protocol interface is to be used. AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 15 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: September 1, 1995 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: April 18, 1995 SUPPLEMENT 15 TO ARINC SPECIFICATION 429 - Page 2 A. PURPOSE OF THIS DOCUMENT This Supplement introduces new label assignments, equipment IDs, system address labels and updates to the 429W protocol. B. ORGANIZATION OF THIS SUPPLEMENT The first part of this document, printed on goldenrod paper contains descriptions of changes introduced into this Specification by this Supplement. The second part consists of replacement white pages for the Specification, modified to reflect the changes. The modified and added material on each page is identified by a c-15 in the margins. Existing copies of ARINC Specification 429 may be updated by simply inserting the replacement white pages where necessary and destroying the pages they replace. The goldenrod pages are inserted inside the rear cover of the Specification. C. CHANGES TO ARINC SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is defined by the section number and the title currently employed in the Specification or by the section name and title that will be employed when the Supplement is eventually incorporated. In each case a brief description of the change or addition is included. 2.0 Digital Information Transfer System Standards Numerous changes were made to the protocol throughout this Section. 2.1.5.3 Discrete Data Words The technique for encoding SSM bits in discrete words were revised. ORIGINAL TEXT FOLLOWS: 2.1.5.3 Discrete Data Words A source system should annunciate any detected failure that could cause one or more of the words normally output by that system to be unreliable. Three methods are defined. The first method is to set bit numbers 30 and 31 in the affected word(s) to the “Failure Warning” code defined in the table below. This is the preferred method. Words containing the “Failure Warning” code should continue to be supplied to the data bus during the failure condition. When using the second method, the equipment may stop transmitting the affected word or words on the data bus. The third method applies to data words which are defined such that they contain failure information within the data field. For these applications, refer to the associated ARINC equipment characteristic to determine the proper SSM reporting. The “No Computed Data” code should be annunciated in the affected Discrete Data word(s) when a source system is unable to compute reliable data for reasons other than system failure. When the “Functional Test” code appears as a system output, it should be interpreted as advice that the data in the Discrete Data word contents are the result of the execution of a functional test. DISCRETE DATA WORDS Bit 31 30 0 0 0 1 1 0 1 1 Meaning Verified Data, Normal Operation No Computed Data Functional Test Failure Warning 2.2.2 Modulation The following Commentary was added: “Avionics manufacturers are warned that bus activity monitoring should be implemented with caution. Crossed wiring (interchanging A and B) at one end of the bus, which will cause improper LRU/system operation, may not necessarily be detected by a “simple” bus activity monitor.” 2.2.4.2 Receiver Input Impedance The word “parallel” was changed to “combination”. Figure 3.1 Radio Systems Management Word Formats VHF Com Frequency Word - Bits 7,8,20,23 changed to “0” and bits 15,16,21,28 changed to “1”. ATTACHMENT 1 - LABEL CODES This attachment was updated according to the tables on the following pages. Designation for label 155 027 changed from BCD to BNR. ATTACHMENT 1 - LABEL CODES The following new equipment codes were assigned: 03D, 053, 05A, 0D0, 0E0, 12C, 160, 19F, 13B ATTACHMENT 2 - DATA STANDARDS This attachment was updated according to the tables on the following pages. Newly assigned discrete word formats are included. In word 270 115, bit 12 was changed from “pad” to “Tune”. AUTOTUNE was assigned for “1” and NO AUTOTUNE was assigned to “0”. Word 155 027 moved from Table 1 to Table 2. In Table 2 “SIG DIG” was changed to “SIG BIT”. In Table 2 under label 077, “0--” was changed to “037”. Duplicate 244 08D word removed. SUPPLEMENT 15 TO ARINC SPECIFICATION 429 - Page 3 ATTACHMENT 6 - GENERAL WORD FORMATS AND ENCODING EXAMPLES Table 2 - examples for Flight Director Pitch and Total Air Temp corrected. Examples for the following tables added. Manufacturer Specific Data Word 010101 assigned to Garmin 010110 assigned to ARNAV Systems Bit 11 modified for label 150 to include reference to precision source. Word format for label 077 00B removed (from two places). ATTACHMENT 9B - GENERAL AVIATION WORD EXAMPLES Manufacturer Specific Data Word 010101 assigned to Garmin 010110 assigned to ARNAV Systems ATTACHMENT 10 - VARIABLES OF BIT-ORIENTED PROTOCOL Revised Notes 1 and 4. Table 10-3 BIT-ORIENTED PROTOCOL OPTIONS Added Option 012 Table 10-5 VARIABLES OF HIGH SPEED BITORIENTED PROTOCOL - Revised Time T10 min and max values. ATTACHMENT 11 - BIT-ORIENTED DATA FILE TRANSFER WORD FORMATS Table 11-6A GENERAL FORMAT IDENTIFIER (GFI) Revised “Reserved ISO 9577” to “ISO 9577” ATTACHMENT 11A - DESTINATION CODES Added Cabin Packet Data Function. Corrected Ground Station bit encoding. ATTACHMENT 11B - STATUS CODES Revised description of Code 86. Added entries for Code 8E through 95. ATTACHMENT 14 - SYSTEM ADDRESS LABELS The following labels were added: 170 DFDAU (Mandatory Load Function) 266 Cabin Video System (Airshow) 334 Cabin Telecommunications Unit (CTU) 340 HF Data Radio/Data Unit #1 344 HF Data Radio/Data Unit #2 The following labels were revised: 175 HGA HPA 176 Spare 177 LGA HPA APPENDIX 8 - INTEROPERABILITY OF BITORIENTED LINK LAYER PROTOCOL Appendix added. APPENDIX 9 - SDL DIAGRAMS OF THE WILLIAMSBURG PROTOCOL Appendix added. SUPPLEMENT 15 TO ARINC SPECIFICATION 429 - Page 4 NEW AND REVISED BNR LABEL ASSIGNMENTS LABEL EQ ID PARAMETER BINARY UNITS New New New New Add New New New New Revise Revise Revise Revise Revise Revise Revise New New New New New New New New New New New New New New New New New New New Correction New New DELETE DELETE DELETE Revise Revise Revise 061 002 062 002 063 002 145 002 226 002 233 002 234 002 235 002 236 002 265 002 360 002 370 004 014 005 370 005 205 006 205 01A 034 025 035 025 060 025 061 025 101 025 121 025 145 025 146 025 147 025 155 025 160 025 161 025 162 025 207 025 272 025 273 025 276 025 054 037 074 037 076 037 077 037 107 037 256 037 257 037 347 037 205 038 342 038 342 038 ACMS Information ACMS Information ACMS Information TACAN Control Min Op. Fuel Temp (non-conflicting) ACMS Information ACMS Information ACMS Information ACMS Information Min Buffet Airspeed Flight information g Magnetic Heading g Mach Mach VOR/ILS Frequency DME Frequency S/G HARDWARE PART NO. S/G HARDWARE PART NO. Selected Heading Pitch Limit Discrete Status 2 EFIS Discrete Status 3 EFIS Discrete Status 4 EFIS Discrete Status 5 EFIS Discrete Status 6 EFIS Discrete Status 7 EFIS ADF brg left/right OP, SOFTWARE PART NO. Discrete Data #3 Discrete Data #4 Discrete Status 8 EFIS Zero Fuel Weight (kg) Zero Fuel Weight (lb) Longitudinal C/G Lateral C/G Long, Zero Fuel C/G See Section 3.1.4 Deg Deg/180 Deg/180 Deg/180 kg lb %MAC %MAC Mach EPR Limit N1 Limit %RPM RANGE SIG RESOL MIN TI MAX TI NOTES See Att. 6 See Att. 6 See At. 6 180 220 See Att. 6 See Att. 6 See Att. 6 See Att. 6 See Att. 6 11 See Att. 6 4096 4096 + - 180 12 + - 180 14 125 125 0.05 125 0.01 125 250 250 See Att. 6 See Att. 6 250 250 + - 180 12 0.05 125 250 SDI-01 = left / SDI-10 = right See Att. 6 655360 15 1310720 15 163.84 131.072 17 163.84 14 20 100 200 40 100 200 0.01 100 200 0.01 100 200 4096 4 12 256 14 0.001 150 250 0.015 150 250 NEW AND REVISED BNR LABEL ASSIGNMENTS SUPPLEMENT 15 TO ARINC SPECIFICATION 429 - Page 5 LABEL EQ ID PARAMETER BINARY UNITS RANGE SIG RESOL MIN TI MAX TI NOTES New 227 03D AVM Command See Att. 2 New 270 03D Discrete Data #1 See Att. 2 New 350 03D Maintenance Data #1 See Att. 2 New 353 03D Maintenance Data #4 See Att. 2 New 354 03D N1 Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A/Bit 12-Chan. B New 355 03D N2 Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A/Bit 12-Chan. B New 356 03D N3 Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A/Bit 12-Chan. B New 357 03D BB Vibration Scalar 5.12 9 0.01 Bit 11-Chan. A/Bit 12-Chan. B New 360 03D N1 Rotor Imbalance Angle Deg. +-180 9 1 Bit 11-Chan. A/Bit 12-Chan. B New 361 03D LPT Rotor Imbalance Angle (737 only) Deg. +-180 9 1 New 025 04D Load SEL Control na 204700 11 100 New 156 04D L TANK FAULTS TBD TBD See Att. 2 New 157 04D R TANK FAULTS TBD TBD See Att. 2 New 160 04D C TANK FAULTS TBD TBD See Att. 2 New 161 04D A TANK FAULTS TBD TBD See Att. 2 New 241 04D FQIS SYSTEM DATA See Att. 6 500 1024 See Att. 6 New 254 04D Actual Fuel Quan (teat) Lbs 262144 15 8 500 1000 New 255 04D Fuel Quantity (gal) Gallons 32768 15 1 500 1000 New 256 04D FUEL DISCRETES TBD TBD See Att. 2 New 262 04D T/U CAP-L TANK 1-4 PF 655.35 16 0.01 TBD TBD New 263 04D T/U CAP-L TANK 5-8 PF 655.35 16 0.01 TBD TBD New 264 04D T/U CAP - L TANK 9-12 PF 655.35 16 0.01 TBD TBD New 265 04D T/U CAP - L TANK 13-14 PF 655.35 16 0.01 TBD TBD New 266 04D T/U CAP - C TANK 1-4 PF 655.35 16 0.01 TBD TBD New 267 04D T/U CAP - C TANK 5-8 PF 655.35 16 0.01 TBD TBD New 270 04D T/U CAP - C TANK 9 PF 655.35 16 0.01 TBD TBD New 271 04D T/U CAP - A TANK 1-4 PF 655.35 16 0.01 TBD TBD New 272 04D T/U CAP - A TANK 5-8 PF 655.35 16 0.01 TBD TBD New 273 04D T/U CAP -A TANK 9-11 PF 655.35 16 0.01 TBD TBD New 274 04D T/U CAP - R TANK 1-4 PF 655.35 16 0.01 TBD TBD New 275 04D T/U CAP - R TANK 5-8 PF 655.35 16 0.01 TBD TBD New 276 04D T/U CAP - R TANK 9-12 PF 655.35 16 0.01 TBD TBD New 277 04D T/U CAP - R TANK 13-14 PF 655.35 16 0.01 TBD TBD New 310 04D COMP CAP-TANK PF 327.67 15 0.01 TBD TBD See Att. 6 for SDI encoding New 320 04D DENSITY-TANK LB/GAL 8.191 13 0.001 TBD TBD See Att. 6 for SDI encoding New 324 04D TANK VSO QUANTITY GALS 32767 15 1 TBD TBD See Att. 6 for SDI encoding New 326 04D UPLIFT QUANTITY LBS 1638300 14 100 TBD TBD New 327 04D UPLIFT DENSITY LB/GAL 8.181 13 0.001 TBD TBD New 341 04D I/O S/W REV 1&2 (1) 16 N/A TBD TBD New 342 04D S/W REV-TANK (1) 16 N/A TBD TBD See Att. 6 for SDI encoding New 344 04D FUEL DISCRETES 50 100 See Att. 2 New 345 04D DISCRETES STATUS 1&3 100 200 See Att. 2 New 346 04D CABLE CAP-HI-Z PF 65535 16 1 100 200 See Att. 6 for SDI encoding SUPPLEMENT 15 TO ARINC SPECIFICATION 429 - Page 6 NEW AND REVISED BNR LABEL ASSIGNMENTS New New New New New New New New Revise Revise Delete Revise Revise New New New New New New New New New New New New New New New New New New New New New New New New New New New New New Revise LABEL EQ ID PARAMETER 350 04D 351 04D 352 04D 353 04D 354 04D 355 04D 357 04D 151 05A 176 05A 177 05A 200 05A 201 05A 202 05A 247 05A 250 05A 256 05A 257 05A 260 05A 261 05A 262 05A 270 05A 271 05A 276 05A 300 05A 301 05A 302 05A 303 05A 304 05A 305 05A 306 05A 307 05A 310 05A 311 05A 312 05A 313 05A 314 05A 315 05A 316 05A 317 05A 324 05A 325 05A 356 05A 244 08D MAINT. DATA FQIS 1-3 MAINT. DATA FQIS 1&3 MAINT. DATA FQIS 1-4 MAINT. DATA FQIS 1-4 FQIS TANK ID MAINT. DATA FQIS 2-4 MAINT. DATA FQIS 2-3 LB/KG Control Word Fuel Temperature - Set to Zero Fuel Temp. Left Wing Tank Fuel Temp. Right Wing Tank Fuel Temperature - Set to Zero Total Fuel Preselected Fuel Quantity Fuel Quantity - Left Outer Cell Fuel Quantity Left W/T Tank Fuel Quantity Center Tank Fuel Quantity Right I/C or W/T Tank Fuel Quantity - Right Outer Cell Discrete Data #1 Discrete Data #2 Discrete Data #7 Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Fuel Quantity ACT 1 Fuel Quantity ACT 2 Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Internal Para. For SPARTIAAL Effective Pitch Angle Effective Roll Angle Maintenance Word Fuel Flow Rate BINARY UNITS Deg. C Deg. C RANGE 512 512 SIG 11 11 RESOL 0.25 0.25 MIN TI 100 100 100 100 100 100 100 100 100 MAX TI NOTES 200 See Att. 2 200 See Att. 2 200 See Att. 2 200 See Att. 2 200 See Att. 2, Att. 6 for SDI 200 See Att. 2 200 See Att. 2 See Att. 2 200 200 Deg. C Deg. C lb lb lb lb lb lb lb 512 11 512 11 655360 14 655360 14 131072 15 131072 15 131072 15 131072 15 131072 15 0.25 100 0.25 100 40 100 40 100 4 100 4 100 4 100 4 100 4 100 100 100 100 200 200 200 200 200 Zero for A-321 200 200 200 200 Zero for A-321 200 200 200 lb lb Deg./180 Deg./180 131072 15 131072 15 4 100 200 4 100 200 +-180 14 0.01 +-180 14 0.01 32768 NEW AND REVISED BNR LABEL ASSIGNMENTS SUPPLEMENT 15 TO ARINC SPECIFICATION 429 -Page 7 New New New New New New New New New New New New New New New New New New Revise New New New Revise New New New New New New New New New New New New New New New New New New New New LABEL EQ ID PARAMETER 155 0BB 156 0BB 157 0BB 160 0BB 276 0BB 354 0BB 005 0D0 006 0D0 073 0D0 173 0d0 174 0D0 316 0D0 317 0D0 344 0D0 345 0D0 346 0D0 347 0D0 353 0D0 360 10A 146 112 222 112 101 114 270 115 221 12C 222 12C 223 12C 224 12C 225 12C 114 13A 130 13A 131 13A 134 13A 254 13A 255 13A 264 13A 340 13A 341 13A 344 13A 345 13A 346 13A 347 13A 364 13A 365 13A Maintenance Data #6 Maintenance Data #7 Maintenance Data #8 Maintenance Data #9 Discrete Data #5 Maintenance Data #5 Engine Discrete Engine Discrete Engine Oil Quantity Hydraulic Oil Quantity Hydraulic Oil Pressure Engine Oil Temperature Engine Oil Pressure N2 EGT N1 Fuel Flow Vibration Throttle Rate of Change TACAN Control TACAN Control C/G Target Stored TACAN Control Word Indicated Angle of Attack (Ave.) Indicated Angle of Attack (#1 left) Indicated Angle of Attack (#1 right) Indicated Angle of Attack (#2 left) Indicated Angle of Attack (#2 right) Ambient Pressure Inlet Temperature Inlet Pressure Throttle Lever Angle N1 Cruise N1 Climb Burner Pressure N1 Take Off N1 Reference N2 Speed EGT Trimmed N1 Speed Actual Fuel Flow N1 APR Rating N1 Max Reverse BINARY UNITS RANGE SIG RESOL MIN TI MAX TI NOTES US Pint US Pint PSI Deg. C PSI %RPM Deg. C %RPM Lb/Hr Scalar See Section 3.1.4 Deg/180 % Deg/180 Deg/180 Deg/180 Deg/180 Deg/180 PSIA Deg. C PSIA Deg/180 %N1 Nom %N1 Nom PSIA %N1 Nom %N1 Nom %RPM Deg. C %N1 Nom Lb/Hr %N1 Nom %N1 Nom 128 9 128 9 4096 12 2048 12 4096 14 256 13 2048 12 256 13 32768 12 5.12 8 16 9/9 +-180 12 164 8 +-180 12 +-180 12 +-180 12 +-180 12 +-180 12 32 14 128 11 32 13 +-180 12 256 14 256 14 512 14 256 14 256 14 256 14 2048 12 256 14 32768 14 256 14 256 14 0.25 0.25 1 0.5 0.25 0.03 0.5 0.03 8 0.02 180 0.05 180 0.01 100 25 0.05 31.3 0.05 31.3 0.05 31.3 0.05 31.3 0.05 31.3 0.002 100 0.0625 100 0.004 100 0.05 25 0.015 100 0.015 100 0.031 100 0.015 25 0.015 25 0.015 25 0.5 25 0.015 25 2 50 0.015 100 0.015 100 Bit 11-Chan. A/Bit 12-Chan. B SDI1 = L/SD12 = R SDI1 = L/SD12 = B SDI1 = A/SD12 = B SDI1 = L/SD12 = R SDI1 = L/SD12 = R SDI1 = L/SD12 = R SDI1 = L/SD12 = R SDI1 = L/SD12 = R SDI1 = L/SD12 = R SDI1 = L/SD12 = R 220 220 200 50 See Att. 2 62.5 62.5 62.5 62.5 62.5 200 200 200 50 200 200 200 50 50 50 50 50 100 200 200 SUPPLEMENT 15 TO ARINC SPECIFICATION 429 - Page 8 NEW AND REVISED BNR LABEL ASSIGNMENTS LABEL EQ ID PARAMETER New New New New Correction New New New New Revised New Revised Revised New New Revised Revised New New New New New New New New New New New New New New New New New New New New New New New New Revised New 366 13A 367 13A 341 160 147 xxx 171 xxx 214 xxx 316 xxx 375 xxx 376 xxx 021 002 027 002 020 020 021 020 047 020 047 024 155 027 065 037 163 037 243 037 52 037 012 04D 013 04D 017 04D 020 04D 022 04D 023 04D 027 04D 030 04D 135 05A 136 05A 137 05A 140 05A 141 05A 142 05A 143 05A 144 05A 272 05A 273 05A 274 05A 275 05A 047 086 021 0A1 201 IGV Position IGV Request Tank Unit Data TACAN Control Word Manu. Specific Status Word ICAO Aircraft Address (part 1) ICAO Aircraft Address (part 2) GPS Differential Correction Word A GPS Differential Correction Word B Selected EPR TACAN Selected Course Selected Vertical Speed Selected EPR VHF Com Frequency VHF Com Frequency MLS Selected GP Angle Gross Weight Zero Fuel Weight (lb) Zero Fuel Weight (kg) Long. Zero Fuel CG QTY-LD SEL (LB) QTY - FLT DECK (LB) TOTAL-FLT DECK (LB) TNK-LD SEL(LB) QTY-LD SEL (KG) QTY-FLT DECK (KG) TOTAL-FLT DECK (KG) TNK-LD SEL(KG) ACT 1 Fuel Quan. Display ACT 2 Fuel Quan. Display Center+ACT+ACT FQ Display Actual Fuel Quan. Display Preselected Fuel Quan. Display Left Wing Fuel Quan. Display Center Wing Fuel Quan. Display Right Wing Fuel Quan. Display Fuel Density Sensor Values Left Wing Tank Sensor Values Center Wing Tank Sensor Values Right Wing Tank VHF Com Frequency Selected EPR 112 TACAN Distance BINARY UNITS Deg./180 Deg./180 RANGE +-180 +-180 SIG 12 12 RESOL 0.05 0.05 MIN TI 100 100 MAX TI 200 200 NOTES 100 200 See Att. 6 See Att. 6 EPR Degrees Ft/Min EPR See Chap. 3 See Chap. 3 Degrees Lbs KG %MAC Lbs Lbs Lbs Lbs KG KG KG KG KG/LB KG/LB KG/LB KG/LB KG/LB KG/LB KG/LB LG/LB KG/M3 pF pF pF See Chap. 3 EPR N.M. 0-3 4 0-359 3 0-6000 4 0-3 4 0-19999 0-19999 5 0-19999 5 0-100.00 5 0-79999 19 0-79999 19 0-79999 19 0-79999 19 0-79999 19 0-79999 19 0-79999 19 0-79999 19 0-9999 16 0-9999 16 0-9999 16 0-9999 16 0-9999 16 0-9999 16 0-9999 16 0-9999 16 0-9999 16 0-100 13 0-100 13 0-100 13 0-3 4 0-399.99 5 0.001 100 1 167 1 100 0.001 100 100 100 100 1 100 1 100 0.01 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0.0001 100 0.1 100 0.1 100 0.1 100 100 0.001 100 0.01 190 See ARINC 743A See ARINC 743A 200 333 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 210 AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 21401 – 7645 USA SUPPLEMENT 16 TO ARINC SPECIFICATION 429 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) Published: September 27, 2001 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: November 14, 2000 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 - Page 2 A. PURPOSE OF THIS SUPPLEMENT This Supplement introduces new label assignments, equipment IDs, and System Address Labels (SAL) to ARINC Specification 429. B. ORGANIZATION OF THIS SUPPLEMENT The material in Supplement 16 is integrated into ARINC Specification 429 to form an updated version of the standard. Changes introduced by Supplement 16 are identified using change bars and are labeled by a “c-16” symbol in the margin. C. CHANGES TO ARINC SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is defined by the section number and the title currently employed in the Specification or by the section name and title that will be employed when the Supplement is eventually incorporated. In each case a brief description of the change or addition is included. ATTACHMENT 1-1 - LABEL CODES Attachment 1-1 was updated to include new label assignments, of these new assignments 35 labels were revised and 3 label assignment deletions. A summary of label codes added by Supplement 16 is reproduced as Attachment 1-16 to this Supplement. The deleted labels are: Label Code PARAMETER 053 Track Angle Magnetic 217 Average Static Pressure 231 Total Air Temperature ATTACHMENT 1-2 - EQUIPMENT CODES Attachment 1-2 was updated to include new equipment codes: 122 Ground Auxiliary Power Unit (A320/319/321) 12D Logic Drive Control Computer (B747/B767) 12E Cargo Control Logic Unit (B767) 12F Cargo Electronics Interface Unit (B767) 13B Audio Entertainment System (AES) Controller (Boeing) 13F Camera Interface Unit (A340/B777) 130 Load Management Unit (LMU) Airbus 140 Supersonic Air Data Computer (Honeywell) 142 ADS-B Link Display Processor Unit (LPDU) 143 Vertical/Horizontal Gyro (Litton) 167 Air Traffic Service Unit (Airbus) 168 Integrated Standby Instrument System (A340/330, A320/319/321) 169 Data Link Control and Display Unit (A340/330) 200 Versatile Integrated Avionics Unit (B717/MD-10) 201 Electronic Spoiler Control Unit (B717) 202 Brake Control Unit (B717) 203 Pneumatic Overheat Detection Unit (B717) 204 Proximity Switch Electronics Unit (B717) 205 APU Electronic Control Unit (B717) 206 Aircraft Interface Unit (MD-10) 207 Fuel Quantity Gauging Unit (MD-10) ATTACHMENT 2 - DATA STANDARDS Attachment 2 was updated to reflect new data standards. The basis of the changes introduced in Supplement 16 are reproduced as Attachment 1-16 to this Supplement. ATTACHMENT 4 - INPUT/OUTPUT CIRCUIT STANDARDS Text was added to identify the drawing as defining total system characteristics. EQ ID EQUIPMENT TYPE 055 Multi-Mode Receiver (MMR) (755) 056 GNSS Navigation Landing Unit (GNLU) (756) 057 Cockpit Voice Recorder (CVR) (757) 058 Communication Management Unit Mark 2 (758) 060 GNSS Navigation Unit (GNU) (760) 061 Satellite Terminal Unit (STU) (761) 0BB Flap Control Unit (B747-400)/Flap Slat Electronics Unit (B767-400) 108 Electronic Engine Control (EEC) Channel A (B737700) 109 Electronic Engine Control (EEC) Channel B (B737700) ATTACHMENT 6 - GENERAL WORD FORMATS AND ENCODING EXAMPLES The text describing Label 150 bit 11 was revised to reflect the contents of ARINC Characteristic 743A, GNSS Sensor. The text describing Label 214 and Label 216 was revised to reflect the contents of ARINC Characteristic 758, Communications Management Unit. ATTACHMENT 8 - OUTPUT SIGNAL TIMING TOLERANCES The text was modified to define pulse rise and fall times. SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 3 ATTACHMENT 11 - SYSTEM ADDRESS LABELS The following System Address Labels were added: SAL OCTAL SYSTEM LABEL 157 CVR 210 FCMC Com A340-500/600 211 FCMC Mon A340-500/600 212 FCMC Int A340-500/600 225 HUD 241 APM-MMR 242 MMR 244 ILS 245 MLS 246 AHRS 251 VDR #1 252 VDR #2 253 VDR #3 310 GPWS 311 GNLU 1 312 GNLU 2 313 GNLU 3 314 GNU 1 315 GNU 2 316 GNU 3 321 AUTOTHROTTLE COMPUTER 322 FCC 1 323 FCC 2 324 FCC 3 325 APU 326 APU CONTROLLER 327 Mode Control Panel (MCP) 330 FMC 3 331 ATC TRANSPONDER 332 DADC 362 Passenger Services System (PSS) 767-300,400 363 Cabin Service System (CSS) 747-400 364 Audio Entertainment System (AES) Boeing 366 Multicast 367 Bridge APPENDIX E – GUIDELINES FOR LABEL ASSIGNMENTS Labels 171, 172, 214 and 216 were removed from spare labels (item 3). SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 4 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 001 001 002 002 012 012 017 020 021 022 023 024 027 027 033 033 033 034 034 035 035 035 036 036 036 041 041 042 042 043 043 052 052 053 053 053 054 054 056 056 061 061 061 062 062 062 063 063 063 064 065 066 070 070 070 071 072 073 074 Data BCD BCD BCD BCD BCD BCD BCD Discrete Discrete Discrete Discrete Discrete BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BCD BNR BNR BCD BNR BNR BNR BNR BCD BCD BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR Eqpt. ID (Hex) Parameter 056 Distance To Go 060 Distance To Go 056 Time To Go 060 Time To Go 056 Ground Speed 060 Ground Speed 055 Selected Runway Heading 06D Landing Gear Position Infor & System Status 06D Landing Gear Position Infor & System Status 06D Landing Gear Position Infor & System Status 06D Landing Gear Position Infor & System Status 06D Landing Gear Position Infor & System Status 056 TACAN Selected Course 060 TACAN Selected Course (Bcd) 055 Landing System Mode/Frequency 056 ILS Frequency 060 ILS Frequency 056 VOR/ILS Frequency 060 VOR/ILS Frequency #1 055 Paired DME Frequency 056 DME Frequency 060 DME Frequency #1 055 MLS Channel Selection 056 MLS Frequency Channel 060 MLS Frequency/Channel 056 Set Latitude 060 Set Latitude 056 Set Longitude 060 Set Longitude 056 Set Magnetic Heading 060 Set Magnetic Heading 004 Body Pitch Accel 038 Body Pitch Accel 004 Track Angle Magnetic 004 Body Roll Accel 038 Body Roll Accel 004 Body Yaw Accel 038 Body Yaw Accel 056 ETA (Active Waypoint) 060 ETA (Active Waypoint) 00B Pseudo Range 056 ACMS Information 060 ACMS Information 00B Pseudo Range Fine 056 ACMS Information 060 ACMS Information 00B Range Rate 056 ACMS Information 060 ACMS Information 00B Delta Range 00B SV Position X 00B SV Position X Fine 00B SV Position Y 056 Reference Airspeed (Vref) 060 Reference Airspeed (Vref) 00B SV Position Y Fine 00B SV Position Z 00B SV Position Z Fine 00B UTC Measure Time Units Range Sig Bits Resolution MIN TX Degrees The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 0-359.9 4 0.1 90 90 90 90 90 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 MHz Deg/Sec2 Deg/Sec2 Degree Deg/Sec2 Deg/Sec2 Deg/Sec2 Deg/Sec2 Meters Meters M/S Meters Meters Meters Meters Meters Meters Meters Seconds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 1008-135.9 4 0.05 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 500-600 3 1 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ± 64 15 0.002 50 Hz ± 64 15 0.002 50 Hz 1 3 1 250 ± 64 15 0.002 50 Hz ± 64 15 0.002 50 Hz ± 64 15 0.002 50 Hz ± 64 15 0.002 50 Hz The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±268435456 20 256 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 256 11 0.125 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±4096 20 0.0039 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±4096 20 0.0039 200 ±67108864 20 64 200 64 14 0.0039 200 ±67108864 20 64 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 64 14 0.0039 200 ±67108864 20 64 200 64 14 0.0039 200 10.0 20 9.536743µs 200 MAX TX 100 100 100 100 100 117 Hz 117 Hz 500 117 Hz 117 Hz 117 Hz 117 Hz 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 5 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 074 074 074 075 075 076 076 076 077 077 077 077 100 100 101 102 102 102 103 103 103 104 104 105 105 105 106 106 107 107 110 111 112 114 114 115 115 116 116 116 116 117 117 117 117 120 120 120 121 121 121 122 122 124 125 125 125 125 Data BNR BNR BNR Discrete BNR BNR Discrete BNR Discrete BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR Discrete BCD BCD BCD BCD Eqpt. ID (Hex) Parameter 056 Zero Fuel Weight 060 Zero Fuel Weight 114 Zero Fuel Weight 008 Maximum Hazard Alert Level Output 114 Aircraft Gross Weight 00B GNSS Altitude (Msl) 008 Hazard Azimuth Output 114 Aircraft Longitudinal Center Of Gravity 008 Hazard Range Output 056 Target Airspeed 060 Target Airspeed 114 Zero Fuel Center Of Gravity 056 Selected Course #1 060 Selected Course #1 00B HDOP 00B VDOP 056 Selected Altitude 060 Selected Altitude 00B GNSS Track Angle 056 Selected Airspeed 060 Selected Airspeed 056 Selected Vertical Speed 060 Selected Vertical Speed 055 Selected Runway Heading 056 Selected Runway Heading 060 Selected Runway Heading 060 Selected Mach 056 Selected Mach 056 Selected Cruise Altitude 060 Selected Cruise Altitude 00B GNSS Latitude 00B GNSS Longitude 00B GNSS Ground Speed 056 Desired Track 060 Desired Track 056 Waypoint Bearing 060 Waypoint Bearing 00B Horizontal GLS Deviation Rectilinear 055 Horizontal GLS Deviation Rectilinear 056 Cross Track Distance 060 Cross Track Distance 00B Vertical GLS Deviation Rectilinear 055 Vertical GLS Deviation Rectilinear 056 Vertical Deviation 060 Vertical Deviation 00B GNSS Latitude Fine 056 Range to Altitude 060 Range To Altitude 00B GNSS Longitude Fine 056 Horizontal Command Signal 060 Horizontal Command Signal 056 Vertical Command Signal 060 Vertical Command Signal 00B Digital Time Mark 00B UTC 002 Universal Coordinate Time 056 Universal Coordinated Time (UTC) 060 Universal Coordinated Time (UTC) Units Range Sig Bits Resolution MIN TX Pounds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 1310680 15 40 100 Pounds 1310680 15 Feet ±131072 20 40 100 0.125 200 Percent 163.83% 14 0.01% 100 Percent N/A N/A Degrees Degrees Degrees Degrees Knots Feet Feet Feet Feet Degrees Degrees Hr:Min Hr-Min The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 163.83% 14 0.01% 100 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 1024 15 0.031 200 1024 15 0.031 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±108° 15 0.0055° 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ± 180 11 0.1 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±108° 20 0.000172° 200 ±108° 20 0.000172° 200 4096 15 0.125 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ± 24000 18 .00915 ± 24000 18 00915 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ± 1024 14 .0625 ± 1024 14 .0625 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 0.000172° 11 8.38-E-8° 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 0.000172° 11 8.38-E-8° 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 200 23:59.9 5 0.1 Min 200 0-23.59.9 4 0.1 100 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 MAX TX 400 200 1200 200 200 1200 1200 1200 1200 1200 1200 100 100 100 100 1200 1200 1200 1200 200 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 6 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 126 126 130 133 136 137 140 140 141 141 142 143 144 145 146 147 150 150 150 150 151 151 151 151 152 152 153 153 154 154 154 154 155 155 156 156 157 157 157 160 160 161 161 162 162 162 163 163 164 164 165 165 165 166 166 167 Eqpt. Data ID (Hex) Parameter BNR BNR BNR BNR BNR BNR BNR Discrete BNR Discrete Discrete Discrete Discrete Discrete Discrete Discrete BNR BNR BNR Discrete BNR BNR BNR Discrete BNR Discrete BNR Discrete BNR BNR BNR Discrete BNR Discrete BNR Discrete SAL BNR BCD BNR Discrete BNR Discrete BNR Discrete BNR BNR Discrete BNR Discrete BNR BNR Discrete BNR Discrete BNR 056 060 00B 00B 00B 140 00B 114 00B 114 114 114 114 114 114 114 00B 056 060 114 055 056 060 114 055 114 055 114 055 056 060 114 055 114 055 114 055 114 055 114 055 114 055 114 140 055 114 055 114 00B 055 114 00B 114 002 Vertical Deviation (Wide) Vertical Deviation (Wide) Aut Horiz Integ Limit Aut Vert Integ Limit Vertical Figure Of Merit Flap Angle UTC Fine Pump Contactor States UTC Fine Fractions Pump Contactor and Pushbutton States Pump Push Button and LP Switch State Pump LP Switch State and FCMC Commands Valve Feedback Valve Feedback Valve Feedback Valve Feedback UTC Universal Coordinated Time Universal Coordinated Time FCMC Valve Commands MLS AZ Deviation Localizer Bearing (True) Localizer Bearing (True) FCMC Valve Commands MLS GP Deviation Overhead Panel Switch/ Pushbutton & Refuel Panel Battery Power Supply Switch States MLS Selected Azimuth Level States MLS Max Selectable GP Runway Heading (True) Runway Heading (True) Level States and Low Warning and Transfer Indications MLS Selected Glide Path XFR Pump Faults & Wing Imbalance Warning MLS Basic Data Wd 1 Refuel Panel Switch States System Address Label For CVR MLS Basic Data Wd 2 Trim Tank Probe Capacitance MLS Basic Data Wd 3 Valve Feedback MLS Basic Data Wd 4 Indicated Pump Status MLS Basic Data Wd 5 Indicated Pump Status Density Altitude MLS Basic Data Wd 6 Indicated Pump Status MLS ABS GP Angle Indicated Pump Status Vertical Velocity MLS ABS Azimuth Angle Indicated Valve Status North/South Velocity Indicated Valve Status EPU Estimate Position Uncertainty/ (ANP) Actual Navigation Performance Units Range Sig Bits Resolution MIN TX NM Feet Feet Degrees Seconds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 16 17 1.2E-4 200 32, 768 18 0.125 200 32, 768 18 0.125 200 180 12 0.05 62.5 1 20 0.953674µs 200 Seconds 0.9536743µs 10 0.9313225ns 200 Hr:Min:S ±23:59:59 17 1.0 sec 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 mV ± 2400 15 0.0732 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 mV ± 2400 15 0.0732 Degrees Degrees 0-359 9 1 ±51.1 9 1 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 Degrees ±51.1 9 0.01 N/A N/A N/A N/A N/A N/A N/A N/A pf 0-400 14 0.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Feet 131072 16 2 250 N/A N/A N/A N/A Degrees ± 41 15 0.00125 Feet/Min ±32768 15 1.0 200 Degrees ± 82 16 0.00125 Knots ±4096 15 0.125 200 NM 0-128 16 0.00195 MAX TX 1200 1200 1200 200 1200 1200 1200 500 1200 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 7 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 167 170 171 171 171 172 173 174 174 176 176 176 176 177 177 177 177 177 200 200 200 201 201 201 202 202 202 203 203 204 204 204 204 205 206 206 206 207 210 210 211 211 211 211 212 212 212 212 212 213 213 215 215 215 215 217 217 Eqpt. Data ID (Hex) Parameter Discrete Discrete BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BCD BCD BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR SAL BNR BNR BNR SAL BNR BNR BNR BNR SAL BNR BNR BNR BNR BNR BNR BNR BNR 114 114 002 056 060 055 00B 055 00B 0AD 038 114 00B 0AD 038 055 114 056 060 114 114 140 142 114 140 142 114 140 056 060 114 140 140 056 060 140 140 140 0AD 140 142 056 060 140 142 140 142 OAD O38 006 140 0AD 002 Indicated Valve Status Wing Imbalance And FQI Failure Warning RNP Reduced Navigation Performance Current RNP Current RNP Subsystem Identifier Localizer Deviation East/West Velocity Glide Slope Deviation GLONASS Satellite Deselection W #1 Static Pressure Left, Uncorrected, mb Left Static Pressure Uncorrected, mb Left Outer Tank Fuel Temp & Advisory Warn GLONASS Satellite Deselection W #2 Static Pressure Right, Uncorrected, mb Right Static Pressure, Uncorrected, mb Distance To Runway Threshold Inner Tank 1 Fuel Temp & Advisory Warning Drift Angle Drift Angle Inner Tank 2 Fuel Temp & Advisory Warning Inner Tank 3 Fuel Temp & Advisory Warning Mach Maximum Operation (Mmo) Projected Future Latitude Inner Tank 4 Fuel Temp & Advisory Warning Mach Rate Projected Future Latitude Fine Trim Tank Fuel Temp & Advisory Warning Altitude Baro Altitude Baro Altitude Right Outer Tank Fuel Temp & Advisory Warning Baro Corrected Altitude Mach Computed Airspeed Computed Airspeed Computed Airspeed (CAS) Airspeed Maximum Operating (VMO) True Airspeed FCMC Com A340-500/600 Total Air Temperature Indicated Total Air Temp (TAT) Projected Future Longitude FCMC M on A340-500/600 Alititude Rate Alititude Rate Altitude Rate Projected Future Longitude Fine FCMC Int A340-500/600 Static Air Temp (SAT) Vertical Time Interval Impacted Pressure, Uncorrected, mb Impacted Pressure, Uncorrected, mb Impacted Pressure, Uncorrected, mb Impact Pressure Subsonic Average Static Pressure Geometric Vertical Rate Units Range Sig Bits Resolution MIN TX NM 0-128 16 0.001953 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 DDM Knots DDM mb mb Degree C mb mb Nmiles Degree C Degree C Degree C Mach Degrees Degree C M/minute Degrees Degree C Feet Degree C ± 0.4 12 0.0001 ±4096 15 0.125 200 ± 0.8 12 0.0002 17 2048 18 0.008 20 2048 18 0.008 20 ±512 11 0.025 17 2048 18 0.008 20 2048 18 0.008 20 1024 16 0.007812 ±512 11 0.025 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±512 11 0.025 ±512 11 0.025 4.096 12 0.001 62.5 ± 180 20 0.000172 150 ±512 11 0.025 4.096 12 0.001 62.5 .000172 11 2-E-32 Cir 150 ±512 11 0.025 131072 17 1 31.25 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±512 11 0.025 Feet Mach Knots Knots Knots 131072 17 1 31.25 4.096 16 0.0000625 62.5 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 1024 14 0.0625 62.5 1024 12 .025 62.56 2048 15 0.0625 62.5 Degree C Degree C Degrees 512 512 ± 180 12 0.125 250 11 0.25 250 20 0.000172 150 Ft/Min Degrees The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 32768 11 16 31.25 .000172 11 2E -32 Cir 150 Degree C 512 11 Minute 265 min 10 mb 512 16 mb 512 14 mb 512 14 mb 512 14 mb 2048 18 Ft/Min 20000 11 0.25 250 .25 mile 500 0.008 20 0.03125 62.5 0.03125 62.5 0.03125 62.5 0.008 20 16 MAX TX 1200 200 200 200 200 125 400 125 400 62.5 62.5 125 125 125 125 500 500 400 62.5 400 500 2000 40 125 125 125 200 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 8 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 217 217 217 220 220 220 221 221 221 222 222 222 223 223 223 224 224 224 225 225 225 225 226 227 227 230 231 231 232 232 232 232 232 233 233 233 234 234 235 235 236 236 237 237 237 237 241 241 241 241 242 242 242 242 242 242 243 Eqpt. Data ID (Hex) Parameter BNR BNR BNR BNR BNR BNR BNR BNR SAL BNR BNR BNR Discrete Discrete BCD BCD BCD File Format DISC Discrete BCD BNR BNR BCD BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR SAL BNR BNR BNR SAL BNR File Format BNR BNR DISC 006 038 140 056 060 140 056 060 140 056 060 140 056 060 140 056 060 140 056 060 140 00B 019 053 114 0AD 114 002 055 056 060 114 056 060 114 056 060 056 060 056 060 00B 002 056 060 056 060 140 0AD 002 056 060 140 055 Static Pressure, Corrected (In. Hg) Static Pressure, Average, Corrected (In. Hg) Static Pressure Corrected (In. Hg) MCDU #1 Address Label MCDU #1 Address Label Baro Corrected Altitude #2 MCDU #2 Address Label MCDU #2 Address Label Angle Of Attack Indicated Average MCDU #3 Address Label MCDU #3 Address Label Angle Of Attack, Indicated #1 Left Printer #1 Address Label Printer #1 Address Label Angle Of Attack, Indicated #1 Right Printer #2 Address Label Printer #2 Address Label Angle Of Attack, Indicated #2 Left System Address Label For HUD Minimum Maneuvering Air Speed Minimum Maneuvering Air Speed Angle Of Attack, Indicated #2 Right Data Loader Responses CFDS Bite Command Summary For HFDR CFDS Bite Command Word For HFDU Left Outer Probes Capacitance Total Air Temperature Inner 2 Tank Probe Capacitance Active Intent Data Block GLS Airport ID Active Intent Data Block Active Intent Data Block Inner 4 Tank Probe Capacitance ACMS Information ACMS Information Right Outer Probe Capacitance ACMS Information ACMS Information ACMS Information ACMS Information ACMS Information ACMS Information Horizontal Uncertainty Level ACMS Information ACMS Information ACMS Information System Address Label For APM-MMR Min. Airspeed for Flap Extension Min. Airspeed for Flap Extension Angle Of Attack, Corrected System Address Label for MMR Total Pressure, Uncorrected, mb Modified Intent Data Block Modified Intent Data Block Modified Intent Data Block Total Pressure GLS Runway Selection Units Range Sig Bits Resolution MIN TX Inches Hg Inches Hg Inches Hg Feet Degrees Degrees Degrees Degrees 64 16 0.001 20 64 16 0.001 20 64 16 0.001 62.5 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131072 17 1 31.25 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 180 12 0.05 31.25 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 180 12 0.05 31.5 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 180 12 0.05 31.5 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 180 12 0.05 31.5 Degrees The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 180 12 0.05 31.5 200 pf 0-400 14 0.1 Degree C 512 12 20 200 pf 0-400 14 0.1 The Same Parameters as the FMS EQ ID 002 pf 0-400 14 0.1 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 pf 0-400 14 0.1 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 Nm 16 17 0.000122 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 Degrees The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 180 12 0.05 31.5 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 mb 2048 16 0.03125 62.5 MAX TX 200 200 125 62.5 62.5 62.5 62.5 62.5 62.5 1200 1200 62.5 125 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 9 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 244 244 245 245 245 245 245 245 246 246 246 246 246 247 247 247 247 247 250 250 251 252 253 254 254 255 255 256 256 256 256 256 257 257 257 257 257 260 260 260 260 261 261 261 262 262 262 263 263 263 263 264 264 264 264 265 265 265 Eqpt. Data ID (Hex) Parameter SAL BNR SAL BNR BNR BNR BNR BNR SAL BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR SAL SAL SAL Discrete BNR Discrete BNR BLOCK BNR BNR BNR BNR BLOCK BNR BNR BNR BNR BCD BCD BCD BNR BCD BCD BNR BNR BNR BNR BLOCK BNR BNR BNR BLOCK BNR BNR BNR BNR BNR BNR 140 0AD 038 056 060 140 038 056 060 140 00B 056 060 114 140 0AD 114 055 140 055 140 055 056 060 114 140 055 056 060 114 140 00B 056 060 114 056 060 114 056 060 114 055 056 060 114 055 056 060 114 056 060 114 System Address Label for ILS Angle Of Attack, Normalized System Address Label For MLS Average Static Pressure mb, Uncorrected Average Static Pressure mb, Uncorrected Minimum Airspeed Minimum Airspeed Static Pressure, Uncorrected System Address Label for AHRS Average Static Pressure mb, Corrected General Max Speed (Vcmax) General Max Speed (Vcmax) Static Pressure, Corrected Horizontal Figure Of Merit Control Minimum Speed (Vcmin) Control Minimum Speed (Vcmin) Fuel On Board Airspeed Minimum Vmc Indicated Side Slip Angle or AOS Preselected Fuel Quantity System Address Label VDR #1 System Address Label VDR #2 System Address Label VDR #3 GBAS ID Altitude Rate GBAS Airport ID Impact Pressure MLS Station ID #1 Time For Climb Time For Climb Left Outer Tank Fuel Quantity Equivalent Airspeed MLS Station ID #2 Time For Descent Time For Descent Inner Tank 1 Fuel Quantity Total Pressure (High Range) Date Date/Flight Leg Date/Flight Leg Collector Cell 1 and 2 Fuel Quantity Flight Number (BCD) Flight Number (BCD) Fuel On Board At Engine Start Documentary Data Documentary Data Center Tank Fuel Quantity Ground Station/Approach Min. Airspeed For Flap Retraction Min. Airspeed For Flap Retraction Collector Cell 3 And 4 Fuel Quantity Ground Station/Approach Time To Touchdown Time To Touchdown Spare Min. Buffet Airspeed Min. Buffet Airspeed Inner Tank 3 Fuel Quantity Units Range Sig Bits Resolution MIN TX Ratio mb mb 2 11 0.001 62.5 2048 18 0.008 20 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 2048 16 0.03125 62.5 mb NM Pounds Knots Deg/180 Pounds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 2048 16 0.03125 62.5 16 18 6.1 E-5 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 655320 13 40 512 11 0.25 62.5 ±180 14 0.01 31.3 655320 13 40 Ft/Min 131072 13 16 31.25 mb 4096 17 0.03125 62.5 Pounds Knots The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 1024 14 0.0625 62.5 Pounds mb dd:Mo:Yr Pounds Pounds Pounds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 4096 17 0.03125 62.5 dd:mm:yr 6 1 day 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 Pounds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 Pounds The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 MAX TX 125 200 125 125 1200 125 200 200 62.5 200 125 125 125 1200 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 10 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 266 267 267 267 270 270 270 270 270 270 270 270 270 270 270 270 270 270 271 271 271 271 271 271 271 272 272 272 272 272 273 273 273 274 275 275 275 275 276 276 276 276 276 276 276 277 277 301 301 302 302 303 303 310 310 310 Eqpt. Data ID (Hex) Parameter BNR BNR BNR BNR Discrete Discrete Discrete Discrete Discrete DISC Discrete Discrete DISC DISC DISC Discrete Discrete Discrete Discrete DISC Discrete DISC Discrete Discrete Discrete Discrete Discrete DISC Discrete Discrete DIS DISC Discrete Discrete Discrete Discrete DISC Discrete Discrete Discrete Discrete Discrete Discrete DISC Discrete Discrete Discrete SAL BNR BNR 114 056 060 114 024 039 041 050 053 055 056 058 060 060 060 114 140 142 041 055 056 060 114 140 142 053 056 060 114 140 00B 055 114 114 038 056 060 114 024 041 050 056 058 060 114 004 114 056 060 056 060 056 060 056 060 Inner Tank 2 Fuel Quantity Max. Maneuver Airspeed Max. Maneuver Airspeed Inner Tank 4 Fuel Quantity MU Output Data Word, Communication Link Status MCDU Normal Discrete Word SDU To ACARS MU/CMU Status Word VDR Status Word HFDL Status Word MLS Discrete Status Discretes Output Status Word #1 Intent Status Status Discretes Discrete Data #1 Unusable, and Empty Warning Discrete Data # 1 Aircraft Category (Disc Data 1) SDU To ACARS MU/CMU Join /Leave Message MMR Discrete Discrete Data #2 Discrete Data #2 Fuel Transfer Indication Discrete Data # 2 Altitude Filter Limits (Disc Data 2) HFDL Slave (Disc Data 3) Discrete Data #3 Discrete Data #3 Fuel Transfer Indication Discrete Data # 3 GNSS Sensor Status GNSS Status Memos And Status Fuel Transfer Indications IR Discrete Word #2 Discrete Data #6 Discrete Data #6 Miscellaneous Warning MU Output Data Word, Pin Program Status SDU To EICAS/ECAM/EDU For Dual SATCOM VDR Mode Command Discrete Data #7 Output Status Word #2 Discrete Data #7 Miscellaneous Discrete IRS Maintenance Discrete Fuel Transfer and CG Status Application Dependent Application Dependent Application Dependent Application Dependent Application Dependent Application Dependent System Address Label for GPWS Present Position Latitude Present Position Latitude Units Pounds Pounds N/A Range Sig Bits Resolution MIN TX 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 250 5000 250 500 250 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 MAX TX 500 15000 500 2000 500 1200 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 11 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 310 311 311 311 311 312 312 312 312 313 313 313 313 314 314 315 315 315 316 316 316 317 317 320 320 320 321 321 321 322 322 322 323 323 323 323 324 324 324 324 325 325 326 327 330 331 332 335 335 335 340 340 340 340 341 341 341 Data BNR SAL BNR BNR BNR SAL BNR BNR BNR SAL BNR BNR BNR SAL BNR SAL BNR BNR SAL BNR BNR BNR BNR BNR BNR BNR SAL BNR BNR SAL BNR BNR SAL BNR BNR BNR SAL BNR BNR BNR SAL BNR SAL SAL SAL SAL SAL BNR BNR BNR BNR BNR BNR BNR BNR BNR BNR Eqpt. ID (Hex) Parameter 114 Right Outer Tank Fuel Quantity System Address Label for GNLU 1 056 Present Position Longitude 060 Present Position Longitude 114 Trim Tank Fuel Quantity System Address Label for GNLU 2 056 Ground Speed 060 Ground Speed 114 Additional Center Tank (Act 1) Fuel Quantity System Address Label For GNLU 3 056 Track Angle True 060 Track Angle True 114 Additional Center Tank (Act 2) Fuel Quantity System Address Label For GNU 1 114 Rear Center Tank (RCT) Fuel Quantity System Address Label For GNU 2 056 Wind Speed 060 Wind Speed System Address Label For GNU 3 056 Wind Direction (True) 060 Wind Direction (True) 056 Track Angle Magnetic 060 Track Angle Magnetic 05A Fuel Quantity Act 3 056 Magnetic Heading 060 Magnetic Heading System Address Label for Autothrottle Computer 056 Drift Angle 060 Drift Angle System Address Label for FCC 1 056 Flight Path Angle 060 Flight Path Angle System Address Label For FCC 2 002 Geometric Altitude 056 Geometric Altitude 060 Geometric Altitude System Address Label For FCC 3 056 Estimated Position Uncertanity 060 Estimated Position Uncertanity 114 Effective Pitch Angle System Address Label For APU 114 Effective Roll Angle System Address Label For APU Controller SAL Mode Control Pane (MCP) System Address Label For FMC 3 System Address Label For ATC Transponder System Address Label For DADC 002 Track Angle Rate 056 Track Angle Rate 060 Track Angle Rate 004 Inertial Yaw Rate 004 Track Angle Grid 005 Inertial Yaw Rate 140 Pressure Ratio (Pt/Ps) 004 Grid Heading 038 Grid Heading 140 Pressure Ratio (Ps/Pso) Units Pounds Pounds Pounds Pounds Pounds Feet Degrees Degrees Deg/Sec Deg/Sec Degree Deg/Sec Ratio Degree Degree Ratio Range Sig Bits Resolution MIN TX 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 131068 15 4 131068 15 4 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 50000 17 1 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 ±180 13 0.02 ±180 13 0.02 32 11 0.015 10 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 128 13 0.015 10 ± 180 15 0.0055 20 Hz 128 13 0.015 10 16 14 0.001 62.5 ± 180 15 0.0055 20 Hz ± 180 15 0.0055 20 Hz 4 12 0.001 62.5 MAX TX 20 20 110 Hz 20 125 110 Hz 110 Hz 125 SUPPLEMENT 16 TO ARINC SPECIFICATION 429 PART 1 – Page 12 ATTACHMENT 1-16 SUPPLEMENT 16 UPDATES TO LABEL CODES Code No. (Octal) 342 350 350 350 350 350 350 350 350 350 350 350 351 351 351 351 351 351 352 352 352 352 353 353 354 354 355 355 357 357 360 360 360 362 363 364 366 367 370 370 375 375 376 376 Eqpt. Data ID (Hex) Parameter BNR 140 Air Density Ratio Discrete 004 IRS Maintenance Discrete Discrete 018 Maintenance Data #1 Discrete 019 CFDS Bite Fault Summary Word For HFDR Discrete 024 MU Output Data Word Failure Status Discrete 038 IRS Maintenance Word #1 Discrete 050 VDR Fault Summary Word Discrete 053 CFDS Bite Fault Summary Word For HFDU DISC 055 ILS Maintenance Word Discrete 058 Maintenance Word #1 BCD 114 Fuel Density Discrete 140 Maintenance Data # 1 Discrete 024 MU Output Data Word, Failure Status Discrete 038 IRS Maintenance Word #2 DISC 055 MMR Maintenance Word Discrete 058 Maintenance Word #2 BCD 114 Inner Tank 1 Probe Capacitance Discrete 140 Maintenance Data # 2 DISC 055 MLS Bite Status Discrete 058 Maintenance Word BCD 114 Center, ACT & RCT Probe Capacitance Discrete 140 Maintenance Data # 3 Flight Count Discrete 038 IRS Maintenance Word #3 BCD 114 Inner Tank 3 Probe Capacitance 056 Maintenance Data #5 060 Maintenance Data #5 DIS 00B GNSS Fault Summary Discrete 038 IRS Maintenance Word #4 ISO-5 056 ISO Alphabet #5 Message ISO-5 060 ISO Alphabet #5 Message BNR 056 Flight Information BNR 060 Flight Information BNR 142 RAIM Status Word SAL System Address Label For PSS SAL System Address Label For CSS SAL System Address Label For AES SAL System Address Label For Multicast SAL System Address Label For Bridge BNR 00B GNSS Height WGS-84 (Hae) BNR 00B GNSS Height BNR 004 Along Hdg Accel BNR 038 Along Hdg Accel BNR 004 Cross Hdg Accel BNR 038 Cross Hdg Accel Units Ratio Range 4 Sig Bits Resolution MIN TX 12 0.001 250 kg/l 0-.999 4 0.01 250 pf 0-400 14 0.1 250 pf 0-400 14 524287 0.1 250 pf 0-400 14 0.1 The Same Parameters as the FMS EQ ID 002 - 21 200 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 The Same Parameters as the FMS EQ ID 002 NM 16 13 0.00195 Feet ±131,072 20 Feet ±131,072 20 Gs 4 18 Gs 4 18 Gs 4 18 Gs 4 18 0.125 0.125 1.53E-5 1.53E-5 1.53E-5 1.53E-5 200 50 Hz 50 Hz 50 Hz 50 Hz MAX TX 500 500 500 500 1200 1200 1200 110Hz 110Hz 110Hz 110Hz AERONAUTICAL RADIO, INC. 2551 Riva Road Annapolis, Maryland 24101-7465 SUPPLEMENT 17 TO ARINC SPECIFICATION 429 P1 MARK 33 DIGITAL INFORMATION TRANSFER SYSTEM (DITS) PART 1 FUNCTIONAL DESCRIPTION, ELECTRICAL INTERFACE, LABEL ASSIGNMENTS AND WORD FORMATS Published: May 17, 2004 Prepared by the Airlines Electronic Engineering Committee Adopted by the Airlines Electronic Engineering Committee: May 5, 2004 SUPPLEMENT 17 TO ARINC SPECIFICATION 429P1 – Page 2 A. PURPOSE OF THIS DOCUMENT This Supplement introduces new label assignments, equipment IDs, system address labels and updates to ARINC Specification 429. B. ORGANIZATION OF THIS SUPPLEMENT The material in Supplement 17 is integrated into ARINC Specification 429 to form an updated version of the standard. Changes introduced by Supplement 17 are identified using change bars and are labeled by a “c-17” symbol in the margin. C. CHANGES TO ARINC SPECIFICATION 429 INTRODUCED BY THIS SUPPLEMENT This section presents a complete tabulation of the changes and additions to the Specification introduced by this Supplement. Each change or addition is defined by the section number and the title currently employed in the Specification or by the section name and title that will be employed when the Supplement is eventually incorporated. In each case a brief description of the change or addition is included. 3.1.4.6 VHF Communications The Frequency Range and Frequency Selection Increments were revised to reflect 8.33 kHz spacing. ATTACHMENT 1-1 LABEL CODES This Attachment was updated according to ARINC 429 New and Revised Label Assignments Table on page 3. A Note was added to label 377 to clarify the SSM. ATTACHMENT 1-2 - EQUIPMENT CODES The following Equipment Codes were added: EQ ID EQUIPMENT TYPE 061 High-Speed Data Unit (HSDU) 0C4 A429W SDU Controller 11E Integrated Static Probe 120 Multifunctional Air Data Probe 144 CDTI Display Unit 14A Slide Slip Angle (SSA) 171 Electronic Flight Bag 1E2 ADS-B LDPU Controller Table 6-24 was revised to correctly identify SPI. In addition, bit 17 was revised to indicate Hijack Mode. Table 6-39 (ICAO Address) will be removed from Part I and added to Part II Tables 6-49, 6-50, and 6-51 were added by this Supplement. ATTACHMENT 10 – MANUFACTURER-SPECIFIC STATUS Bits 9 and 10 were revised to indicate SDI and Note B was added. Company identification was added for RYAN. ATTACHMENT 11 - SYSTEM ADDRESS LABELS The following System Address Labels were added or revised: SAL OCTAL SYSTEM LABEL 156 CVR #2 174 HGA/IGA HPA 175 HGA/HPA Starboard 177 LGA HPA 247 High-Speed Data (HSDU #1) 250 High-Speed Data (HSDU #2) 254 Network Server System 255 Electronic Flight Bag Left 256 Electronic Flight Bag Right 345 Remote Data Concentrator APPENDIX E – GUIDELINES FOR LABEL ASSIGNMENTS Item 2 was revised to clarify the confusion on the SSM for label 377 Equipment Identification. ATTACHMENT 2 - DATA STANDARDS This Attachment was updated according to ARINC 429 New and Revised Label Assignments Table on page 3. ATTACHMENT 6 – GENERAL WORD FORMATS AND ENCODING EXAMPLES Table 6-17 was revised to correct the error in the SSM. LABEL Data EQ ID PARAMETER UNITS RANGE SIG Bits RESOL MIN MAX TX TX SUPPLEMENT 17 TO ARINC SPECIFICATION 429P1 - Page 3 ARINC 429 NEW AND REVISED LABEL ASSIGNMENTS New 101 Binary 05A FQIC Lbs 4- 65532 14 4 900 1100 New 124 Binary 1E2 Horizontal Alarm Limit Meters 0 – 8190 13 1meter 800 1200 New 124 Binary 0A5 Client Device for GNSS Receiver Meters 8192 13 1 meter 200 New 127 Binary 1E2 Vertical Alarm Limit Meters 0 – 255 8 1 meter 800 1200 Revised 141 Binary 00B UTC Fine Fractions Seconds 0.9536743µs 10 0.931225ns 200 1200 New 152 Binary 038 Cabin Pressure mB 2048 16 0.03125 62.5 125 New 152 Binary 0AD Cabin Pressure mB 2048 18 0.008 20 200 Revised 155 Discrete 05A FQIC 900 1100 New 156 SAL CVR #2 Revised 171 Manufacturer-Specific Status New 171 BINARY 0A5 Vertical Alarm limit (VAL) and SBAS System Identifier Meters 256 8 1 meter 200 Revised 214 Discrete xxx ICAO Aircraft Address Part 1 Revised 216 Discrete xxx ICAO Aircraft Address Part 2 New 247 SAL High-Speed Data Unit #1 (HSDU #1) New 250 SAL High-Speed Data Unit #2 (HSDU #2) New 254 SAL Network Server System (NSS) New 255 SAL Electronic Flight Bag – Left New 256 SAL Electronic Flight Bag – Right New 261 Binary 144 Range Ring Radius NM 512 15 1/64 NM 800 1200 New 262 Binary 144 Display Range NM 512 14 1/32 NM 800 1200 New 270 Discrete 144 Display Mode 800 1200 New 271 Discrete 144 Altitude Filter Setting 800 1200 New 272 Discrete 144 Target Selection Word 800 1200 New 272 Discrete 005 Air Data AHARS 250 500 New 276 Discrete 058 VDR Mode 250 500 deleted 320 Binary 05A Fuel Quantity ACT 3 New 345 SAL Remote Data Concentrator New 350 Discrete 144 CDTI Fault Summary Word 800 1200 New 357 Discrete 05A Part Number (manufacturer-Specific) New 377 Discrete xxx Equipment Identification ARINC Project Initiation/Modification 05/19/04 ARINC IA Project Initiation/Modification (APIM) Guidelines for Submittal (Wednesday, May 19, 2004) 1. ARINC Industry Activities Projects and Work Program A project is established in order to accomplish a technical task approved by one or more of the committees (AEEC, AMC, FSEMC) Projects generally but not exclusively result in a new ARINC standard or modify an existing ARINC standard. All projects are typically approved on a calendar year basis. Any project extending beyond a single year will be reviewed annually before being reauthorized. The work program of Industry Activities (IA) consists of all projects authorized by AEEC, AMC, or FSEMC (The Committees) for the current calendar year. The Committees establish a project after consideration of an ARINC Project Initiation/Modification (APIM) request. This document includes a template which has provisions for all of the information required by The Committees to determine the relative priority of the project in relation to the entire work program. All recommendations to the committees to establish or reauthorize a project, whether originated by an airline or from the industry, should be prepared using the APIM template. Any field that cannot be filled in by the originator may be left blank for subsequent action. 2. Normal APIM Evaluation Process Initiation of an APIM All proposed projects must be formally initiated by filling in the APIM template. An APIM may be initiated by anyone in the airline community, e.g., airline, vendor, committee staff. Staff Support All proposed APIMs will be processed by committee staff. Each proposal will be numbered, logged, and evaluated for completeness. Proposals may be edited to present a style consistent with the committee evaluation process. For example, narrative sentences may be changed to bullet items, etc. When an APIM is complete, it will be forwarded to the appropriate Committee for evaluation. The committee staff will track all ongoing projects and prepare annual reports on progress. Committee Evaluation and Acceptance or Rejection The annual work program for each Committee is normally established at its annual meeting. Additional work tasks may be evaluated at other meetings held during the year. Each committee (i.e., AMC, AEEC, FSEMC) has its own schedule of annual and interim meetings. 69_APIM-VerJ.doc Page 1 ARINC Project Initiation/Modification 05/19/04 The committee staff will endeavor to process APIMs and present them to the appropriate Committee at its next available meeting. The Committee will then evaluate the proposal. Evaluation criteria will include: • Airline support – number and strength of airline support for the project, including whether or not an airline chairman has been identified • Issues – what technical, programmatic, or competitive issues are addressed by the project, what problem will be solved • Schedule – what regulatory, aircraft development or modification, airline equipment upgrade, or other projected events drive the urgency for this project Accepted proposals will be assigned to a subcommittee for action with one of two priorities: • High Priority – technical solution needed as rapidly as possible • Routine Priority – technical solution to proceed at a normal pace Proposals may have designated coordination with other groups. This means that the final work must be coordinated with the designated group(s) prior to submittal for adoption consideration. Proposals that are not accepted may be classified as follows: • Deferred for later consideration - the project is not deemed of sufficient urgency to be placed on the current calendar of activities but will be reconsidered at a later date • Deferred to a subcommittee for refinement – the subcommittee will be requested to, for example, gain stronger airline support or resolve architectural issues • Rejected – the proposal is not seen as being appropriate, e.g., out of scope of the committee 3. APIM Template The following is an annotated outline for the APIM. Proposal initiators are requested to fill in all fields as completely as possible, replacing the italicized explanations in each section with information as available. Fields that cannot be completed may be left blank. When using the Word file version of the following template, update the header and footer to identify the project. 69_APIM-VerJ.doc Page 2 ARINC Project Initiation/Modification 05/19/04 ARINC IA Project Initiation/Modification (APIM) Name of proposed project APIM #: _____ Name for proposed project. Suggested Subcommittee assignment Identify an existing group that has the expertise to successfully complete the project. If no such group is known to exist, a recommendation to form a new group may be made. Project Scope Describe the scope of the project clearly and concisely. The scope should describe “what” will be done, i.e., the technical boundaries of the project. Example: “This project will standardize a protocol for the control of printers. The protocol will be independent of the underlying data stream or page description language but will be usable by all classes of printers.” Project Benefit Describe the purpose and benefit of the project. This section should describe “why” the project should be done. Describe how the new standard will improve competition among vendors, giving airlines freedom of choice. This section provides justification for the allocation of both IA and airline resources. Example: “Currently each class of printers implements its own proprietary protocol for the transfer of a print job. In order to provide access to the cockpit printer from several different avionics sources, a single protocol is needed. The protocol will permit automatic determination of printer type and configuration to provide for growth and product differentiation.” Airlines supporting effort Name, airline, and contact information for proposed chairman, lead airline, list of airlines expressing interest in working on the project (supporting airlines), and list of airlines expressing interest but unable to support (sponsoring airlines). It is important for airline support to be gained prior to submittal. Other organizations, such as airframe manufacturers, avionics vendors, etc. supporting the effort should also be listed. Issues to be worked Describe the major issues to be addressed by the proposed ARINC standard. Recommended Coordination with other groups Draft documents may have impact on the work of groups other than the originating group. The APIM writer or, subsequently, The Committee may identify other groups which must be given the opportunity to review and comment upon mature draft documents. 69_APIM-VerJ.doc Page 3 ARINC Project Initiation/Modification 05/19/04 Projects/programs supported by work If the timetable for this work is driven by a new airplane type, major avionics overhaul, regulatory mandate, etc., that information should be placed in this section. This information is a key factor in assessing the priority of this proposed task against all other tasks competing for subcommittee meeting time and other resources. Timetable for projects/programs Identify when the new ARINC standard is needed (month/year). Documents to be produced and date of expected result The name and number (if already assigned) of the proposed ARINC standard to be either newly produced or modified. Comments Anything else deemed useful to the committees for prioritization of this work. Meetings The following table identifies the number of meetings and proposed meeting days needed to produce the documents described above. Activity Document a Document b Mtgs # of mtgs # of mtgs Mtg-Days # of mtg days # of mtg days For IA staff use Date Received___________ IA staff assigned: __________________________________ Potential impact: ____ (A. Safety B. Regulatory C. New aircraft/system D. Other) Forward to committee(s) (AEEC, AMC, FSEMC): _________ Date Forward:___________ Committee resolution: ____ (0. Withdrawn 1. Authorized 2. Deferred 3. More detail needed 4. Rejected) Assigned Priority: ____ Date of Resolution:___________________ A. – High (execute first) B. – Normal (may be deferred for A.) Assigned to SC/WG ________________________________________ 69_APIM-VerJ.doc Page 4 ARINC Standard – Errata Report 1. Document Title ARINC Specification 429P1-17: Mark 33 Digital Information Transfer System (DITS) Part 1, Functional Description, Electrical Interface, Label Assignments and Word Formats 2. Reference Page Number: Section Number: Date of Submission: 3. Error (Reproduce the material in error, as it appears in the standard.) 4. Recommended Correction (Reproduce the correction as it would appear in the corrected version of the material.) 5. Reason for Correction (State why the correction is necessary.) 6. Submitter (Optional) (Name, organization, contact information, e.g., phone, email address.) Note: Items 2-5 may be repeated for additional errata. All recommendations will be evaluated by the staff. Any substantive changes will require submission to the relevant subcommittee for incorporation into a subsequent Supplement. Please return comments to fax +1 410-266-2047 or standards@arinc.com 70_ARINC Errata.doc 5/19/2004
更多简介内容

评论

下载专区


TI最新应用解决方案

工业电子 汽车电子 个人消费电子

$(function(){ var appid = $(".select li a").data("channel"); $(".select li a").click(function(){ var appid = $(this).data("channel"); $('.select dt').html($(this).html()); $('#channel').val(appid); }) })