pdf

深度学习基础(Fundamentals of Deep Learning)

  • 1星
  • 日期: 2018-11-07
  • 大小: 17.53MB
  • 所需积分:1分
  • 下载次数:170
  • favicon收藏
  • rep举报
  • 分享
  • free评论
标签: 电子

最早发现的基本粒子。带负电,电量为1.602189×10-19库仑,是电量的最小单元。质量为9.10953×10-28克。 常用符号e表示。1897年由英国物理学家约瑟夫·约翰·汤姆生在研究阴极射线时发现。一切原子都由一个带正电的原子核和围绕它运动的若干电子组成。

深度学习基础(Fundamentals  of  Deep  Learning)

文档内容节选

C o m plim e nts of Fundamentals of Deep Learning DESIGNING NEXTGENERATION ARTIFICIAL INTELLIGENCE ALGORITHMS Nikhil Buduma Fundamentals of Deep Learning Designing Next Generation Artificial Intelligence Algorithms This Preview Edition of Fundamentals of Deep Learning Chapters 13 is a work in progress The final book is expected to release on oreillycom and through other retailers in December 2016 Nikhil Buduma Beijing Beijing Boston Boston Farnham Sebastopol Farnham Sebastopol Tokyo Tokyo......

C o m plim e nts of Fundamentals of Deep Learning DESIGNING NEXT-GENERATION ARTIFICIAL INTELLIGENCE ALGORITHMS Nikhil Buduma Fundamentals of Deep Learning Designing Next Generation Artificial Intelligence Algorithms This Preview Edition of Fundamentals of Deep Learning, Chapters 1–3, is a work in progress. The final book is expected to release on oreilly.com and through other retailers in December, 2016. Nikhil Buduma Beijing Beijing Boston Boston Farnham Sebastopol Farnham Sebastopol Tokyo Tokyo Fundamentals of Deep Learning by Nikhil Buduma Copyright © 2015 Nikhil Buduma. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/ institutional sales department: 800-998-9938 or corporate@oreilly.com. Editors: Mike Loukides and Shannon Cutt Production Editor: Copyeditor: Proofreader: Indexer: Interior Designer: David Futato Cover Designer: Karen Montgomery Illustrator: Rebecca Panzer November 2015: First Edition Revision History for the First Edition 2015-06-12 First Early Release 2015-07-23 Second Early Release See http://oreilly.com/catalog/errata.csp?isbn=9781491925614 for release details. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Deep Learning, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights. 978-1-491-92561-4 [LSI] Table of Contents 1. The Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Building Intelligent Machines 5 The Limits of Traditional Computer Programs 6 The Mechanics of Machine Learning 7 The Neuron 11 Expressing Linear Perceptrons as Neurons 13 Feed-forward Neural Networks 14 Linear Neurons and their Limitations 17 Sigmoid, Tanh, and ReLU Neurons 17 Softmax Output Layers 19 Looking Forward 20 2. Training Feed-Forward Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 The Cafeteria Problem 21 Gradient Descent 23 The Delta Rule and Learning Rates 25 Gradient Descent with Sigmoidal Neurons 27 The Backpropagation Algorithm 29 Stochastic and Mini-Batch Gradient Descent 32 Test Sets, Validation Sets, and Overfitting 34 Preventing Overfitting in Deep Neural Networks 41 Summary 45 3. Implementing Neural Networks in TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 What is TensorFlow? 47 How Does TensorFlow Compare to Alternatives? 48 Installing TensorFlow 49 Creating and Manipulating TensorFlow Variables 51 iii
更多简介内容

推荐帖子

评论

burce0000
正在学习人工智能,谢谢
2019-11-10 13:49:18回复
combat
正在研究这方面的资料,多谢啦
2019-11-04 12:03:22回复
登录/注册

意见反馈

求资源

回顶部

datasheet推荐 换一换

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2021 EEWORLD.com.cn, Inc. All rights reserved
$(function(){ var appid = $(".select li a").data("channel"); $(".select li a").click(function(){ var appid = $(this).data("channel"); $('.select dt').html($(this).html()); $('#channel').val(appid); }) })