pdf

EEWorld电子资料:IRFP450

  • 1星
  • 日期: 2018-09-03
  • 大小: 102.22KB
  • 所需积分:1分
  • 下载次数:0
  • favicon收藏
  • rep举报
  • 分享
  • free评论
标签: 芯片资料

芯片资料

EEWorld电子资料:IRFP450

文档内容节选

Data Sheet January 2002 IRFP450 14A 500V 0400 Ohm NChannel Power MOSFET This NChannel enhancement mode silicon gate power eld effect transistor is an advanced power MOSFET designed tested and guaranteed to withstand a specied level of energy in the breakdown avalanche mode of operation All of these power MOSFETs are designed for applications such as switching regulators switching convertors motor drivers relay drivers and drivers for high power bipolar swit......

Data Sheet January 2002 IRFP450 14A, 500V, 0.400 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. Formerly developmental type TA17435. Ordering Information PART NUMBER PACKAGE BRAND IRFP450 TO-247 IRFP450 NOTE: When ordering, use the entire part number. Packaging Features • 14A, 500V • r DS(ON) = 0.400 Ω • Single Pulse Avalanche Energy Rated • SOA is Power Dissipation Limited • Nanosecond Switching Speeds • Linear Transfer Characteristics • High Input Impedance • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol G D S JEDEC STYLE TO-247 SOURCE DRAIN GATE DRAIN (TAB) ©2002 Fairchild Semiconductor Corporation IRFP450 Rev. B IRFP450 Absolute Maximum Ratings o = 25 C, Unless Otherwise Specified T C C T GS Ω) = 20k = 100 (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V Drain to Gate Voltage (R Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I DS DGR D D Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I DM Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V GS Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P D Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E AS Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T STG J Maximum Temperature for Soldering , T Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T pkg IRFP450 UNITS 500 500 14 8.8 56 ± 20 180 1.44 860 -55 to 150 300 260 V V A A A V W o W/ C mJ o C o C o C CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. o = 25 C, Unless Otherwise Specified T C Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient R θ JC R θ JA Free Air Operation ©2002 Fairchild Semiconductor Corporation NOTE: 1. T = 25 J o C to 125 o C. Electrical Specifications PARAMETER Drain to Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current On-State Drain Current (Note 2) Gate to Source Leakage Current On Resistance (Note 2) Forward Transconductance (Note 2) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge (Gate to Source + Gate to Drain) Gate to Source Charge Gate to Drain “Miller” Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Drain Inductance SYMBOL BV DSS V GS(TH) I DSS I D(ON) I GSS r DS(ON) g fs t d(ON) t r t d(OFF) t f Q g(TOT) Q gs Q gd C ISS C OSS C RSS L D Internal Source Inductance L S TEST CONDITIONS = 0V (Figure 10) = 250 A, V µ GS = V DS , I D GS = 250 µ A DS DS = Rated BV DSS , V GS = 0V = 0.8 x Rated BV DSS , V x r DS(ON)MAX GS , V = 0V, T = 125 J = 10V GS I D V V V V V I D V DS > I D(ON) ± = 20V GS = 7.9A, V ≥ 50V, I DS = DD = 17.4 L D 250V, I Ω o C MIN 500 2.0 - - 14 - - 9.3 = 10V (Figures 8, 9) GS = 7.9A (Figure 12) ≈ D V R Essentially Independent of Operating Temperature MOSFET Switching Times are = 10V, R 14A, V = 6.1 GS GS , Ω ≈ 14A, V D = 10V, I = 0.8 x Rated BV = 1.5mA (Figure 14) Gate Charge is V GS I G(REF) Essentially Independent of OperatingTemperature DSS DS V DS = 25V, V GS = 0V, f = 1MHz (Figure 11) Measured from the Contact Screw on Header Closer to Source and Gate Pins to Center of Die Modified MOSFET Symbol Showing the Internal Device Inductances Measured from the Source Lead, 6.0mm (0.25in) from Header to Source Bonding Pad G D LD LS S TYP MAX UNITS - - - - - - 0.3 13.8 16 45 68 41 82 12 42 2000 400 100 5.0 12.5 - 4.0 25 250 - ± 100 0.4 - 27 66 100 60 130 - - - - - - - V V µ µ A A A nA Ω S ns ns ns ns nC nC nC pF pF pF nH nH - - 0.70 30 o C/W o C/W IRFP450 Rev. B - - - - - - - - - - - - - - Source to Drain Diode Specifications PARAMETER Continuous Source to Drain Current Pulse Source to Drain Current (Note 3) SYMBOL I SD I SDM Source to Drain Diode Voltage (Note 2) Reverse Recovery Time Reverse Recovery Charge V SD t rr Q RR IRFP450 TEST CONDITIONS MIN TYP MAX UNITS Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Rectifier D G SD T = 25 J T = 150 J T = 150 J o C, I o C, I o C, I SD SD = 14A, V GS = 13A, dI = 13A, dI S = 0V (Figure 13) µ /dt = 100A/ µ /dt = 100A/ s s SD SD - - - - - - - - 1300 7.4 14 56 A A 1.4 - - V ns µ C NOTES: 2. Pulse test: pulse width 3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3). 4. V = 25oC, L = 7.9mH, RG = 25Ω, peak IAS = 14A. J ≤ s, duty cycle 2%. = 50V, starting T ≤ 300 DD µ Typical Performance Curves Unless Otherwise Specified I I I R E L P T L U M N O T A P S S D R E W O P I I 1.2 1.0 0.8 0.6 0.4 0.2 0 0 15 12 ) A ( T N E R R U C N A R D I , D I 50 100 150 TC, CASE TEMPERATURE (oC) 9 6 3 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE CASE TEMPERATURE 1 0.1 10-2 E C N A D E P M I L A M R E H T , C J θ Z 0.5 0.2 0.1 0.05 0.02 0.01 SINGLE PULSE 10-3 10-5 PDM t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC + TC 10-4 10-3 10-2 0.1 1 10 t1, RECTANGULAR PULSE DURATION (s) FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE ©2002 Fairchild Semiconductor Corporation IRFP450 Rev. B Typical Performance Curves Unless Otherwise Specified (Continued) IRFP450 ) A ( T N E R R U C N A R D I , D I 103 102 10 1 TJ = MAX RATED SINGLE PULSE 1 10 0.1 OPERATION IN THIS AREA IS LIMITED BY rDS(ON) ) A ( T N E R R U C N A R D I , D I 10µs 100µs 1ms 10ms DC 102 103 20 16 12 8 4 0 0 VDS, DRAIN TO SOURCE VOLTAGE (V) VGS = 10V VGS = 6.0V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 5.5V VGS = 5.0V VGS = 4.5V VGS = 4.0V 50 200 VDS, DRAIN TO SOURCE VOLTAGE (V) 150 100 ) A ( T N E R R U C N A R D I , D I FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS 20 16 12 8 4 0 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 6.0V VGS = 10V VGS = 5.5V VGS = 5.0V VGS = 4.0V VGS = 4.5V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDS ≥ 50V TJ = 150oC TJ = 25oC 102 10 1 0.1 ) A ( T N E R R U C N A R D I , D I 12 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 6 9 15 10-2 0 2 8 VGS, GATE TO SOURCE VOLTAGE (V) 6 4 FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS 250 10 PULSE DURATION = 2µs DUTY CYCLE = 0.5% MAX VGS = 10V VGS = 20V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 7.9A I 2.4 E 3.0 C R U O S O T N A R D D E Z L A M R O N E C N A T S S E R N O 1.8 1.2 0.6 I I ) S ( I E C N A T S S E R E T A T S N O - , ) ( N O S D r 10 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0 10 20 30 40 50 60 70 ID, DRAIN CURRENT (A) , ) ( N O S D r NOTE: Heating effect of 2µs is minimal. 0 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE ©2002 Fairchild Semiconductor Corporation IRFP450 Rev. B Typical Performance Curves Unless Otherwise Specified (Continued) IRFP450 ID = 250µA 10000 ) F p ( I E C N A T C A P A C , C 8000 6000 4000 2000 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD CISS COSS CRSS I 1.15 E 1.25 C R U O S O T N A R D D E Z L A M R O N E G A T L O V N W O D K A E R B 0.95 1.05 0.85 I , ) ( N O S D r 0.75 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 0 1 2 5 10 2 VDS, DRAIN TO SOURCE VOLTAGE (V) 5 102 FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VOLTAGE vs JUNCTION TEMPERATURE ) S ( E C N A T C U D N O C S N A R T , s f g 20 16 12 8 4 0 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDS ≥ 50V TJ = 25oC TJ = 150oC 4 8 12 16 20 ID, DRAIN CURRENT (A) ) A I ( T N E R R U C N A R D O T E C R U O S , D S I PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 102 5 2 10 TJ = 150oC TJ = 25oC 5 2 1 5 2 0.1 0 0.5 2.0 VSD, SOURCE TO DRAIN VOLTAGE (V) 1.0 1.5 2.5 FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE 20 ID = 14A ) V 16 ( E C R U O S O T E T A G , S G V VDS = 400V VDS = 250V VDS = 100V 12 8 4 0 0 25 50 75 100 125 Qg, GATE CHARGE (nC) FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE ©2002 Fairchild Semiconductor Corporation IRFP450 Rev. B
更多简介内容

推荐帖子

CC2640R2F单载波代码
一、简介 CC2640R2F的SDK中没有单载波发送的代码,根据CC1310的单载波代码进行移植,实测OK。 二、环境 1.IAR8.11 2.SDK:simplelink_cc2640r2_sdk_1_40_00_45 三、参考资料: 1.C:\ti\simplelink_cc13x0_sdk_1_60_00_21\examples\rtos\CC1310_LAUNCHXL\
Jacktang 无线连接
MicropyCli-Micropython项目管理自动化
本帖最后由 dcexpert 于 2020-8-14 20:36 编辑 Micropy Cli是用于在现代IDE(例如VSCode)中编写Micropython代码的项目管理/生成工具。 其主要目标是使创建工作空间的过程自动化,该工作空间具有以下功能: Linting与Micropython兼容 VSCode智能感知 自动补全 依赖管理(WIP) VCS兼容性
dcexpert MicroPython开源版块
功率密度基础技术简介
功率密度在现代电力输送解决方案中的重要性和价值不容忽视。 为了更好地理解高功率密度设计的基本技术,在本文中,我将研究高功率密度解决方案的四个重要方面: 降低损耗 最优拓扑和控制选择 有效的散热 通过机电元件集成来减小系统体积 我还将演示如何与TI合作,使用先进的技术能力和产品来实现这四个方面,帮助您改进并达到功率密度值。 首先,让我们来定义功率密度,并
alan000345 微控制器 MCU
单电源与电源供电关系
这是我设计的准备用来测量±5V的电路单电源供电电压跟随器电路。电路中输入端是接到5V的电压参考源上的。电路电压是“12V隔离电源”。测量电路与供电电路不共地。通过模拟工具验证可以工作,从理论上也没有看出什么毛病。但是我看到很多的设计都是使用双电源供电,所以比较疑惑:是不是这种单电源是不是在靠近-5V时会有问题或者测量精度有影响、在或者对被测对象照成什么影响等等问题。请大家说说这种设计有没有什么问题
bigbat 模拟电子
福利来啦!TI杯电赛芯片推荐列表新鲜出炉!
TI拥有非常丰富的芯片类型,在历年电子设计竞赛中使用广泛。但是芯片选型常常让同学们难以抉择,尤其对于电赛新手们,在前期准备过程中,选择一些常用的并且性能优越的器件进行练习,是获得好成绩的重要基石。   为了帮助同学们更好备赛,做到有的放矢,TI精“芯”挑选,为大家准备了一份2020年TI杯省级电子设计竞赛芯片推荐列表。这份列表集合了TI具有高性能的,在竞赛中常用的电源芯片、精密运放、高
okhxyyo 电子竞赛
msp430g2553电子垃圾复活重利用
刚入门,折腾,在某鱼上买了一堆二手的电子价签,2.13的墨水屏 这块板子的拆机介绍,不重复了,看链接 https://www.mydigit.cn/forum.php?mod=viewthread&tid=169620 因为自己手上的1.3的oled屏坏了,想把这块屏折腾出来做显示 按照网上的说法,先用一个usb转ttl的来试,把rts和dtr接出来利用,没成功(毕竟这种方
bbslucky 微控制器 MCU

评论

登录/注册

意见反馈

求资源

回顶部

datasheet推荐 换一换

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved
$(function(){ var appid = $(".select li a").data("channel"); $(".select li a").click(function(){ var appid = $(this).data("channel"); $('.select dt').html($(this).html()); $('#channel').val(appid); }) })