首页资源分类其它科学普及 > 锁相环工作原理-保证看完就懂,不懂退钱

锁相环工作原理-保证看完就懂,不懂退钱

已有 445025个资源

下载专区

文档信息举报收藏

标    签:锁相环工作原

分    享:

文档简介

              锁相环工作原理锁相环工作原理       锁相环路是一种反馈电路,锁相环的英文全称是Phase-LockedLoop,简称PLL。其作用是使得电路上的时钟和某一外部时钟的相位同步。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。   在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。    锁相环路是一个相位反馈自动控制系统。它由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。其组成方框图如下所示。[pic] 锁相环路的基本方框图锁相环的工作原理:  1. 压控振荡器的输出经过采集并分频;  2. 和基准信号同时输入鉴相器;  3. 鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;  4. 控制VCO,使它的频率改变;  5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。    锁相环可用来实现输出和输入两个信号之间的相位同步。当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。这时,压控振荡器按其固有频率fv进行自由振荡。当有频率为fR的参考信号输入时,uR和uv同时加到鉴相器进行鉴相。如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去u……             

文档预览

锁相环工作原理    锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。其作用是使得电路上的时钟和某一外部时钟的相位同步。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。     在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地 80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。      锁相环路是一个相位反馈自动控制系统。它由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。其组成方框图如下所示。   锁相环路的基本方框图 锁相环的工作原理: 1. 压控振荡器的输出经过采集并分频; 2. 和基准信号同时输入鉴相器; 3. 鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压; 4. 控制VCO,使它的频率改变; 5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。      锁相环可用来实现输出和输入两个信号之间的相位同步。当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。这时,压控振荡器按其固有频率fv进行自由振荡。当有频率为fR的参考信号输入时,uR 和uv同时加到鉴相器进行鉴相。如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fR,环路锁定。环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。这时我们就称环路已被锁定。      环路的锁定状态是对输入信号的频率和相位不变而言的,若环路输入的是频率和相位不断变化的信号,而且环路能使压控振荡器的频率和相位不断地跟踪输入信号的频率和相位变化,则这时环路所处的状态称为跟踪状态。      锁相环路在锁定后,不仅能使输出信号频率与输入信号频率严格同步,而且还具有频率跟踪特性,所以它在电子技术的各个领域中都有着广泛的应用。 锁相环的组成和工作原理 #1 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。 鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:       (8-4-1)      (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压uD为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。即uC(t)为:      (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:       即                        (8-4-4) 则,瞬时相位差θd为         (8-4-5) 对两边求微分,可得频差的关系式为      (8-4-6) 上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,uc(t)随时间而变。 因压控振荡器的压控特性如图8-4-3所示,该特性说明压控振荡器的振荡频率ωu以ω0为中心,随输入信号电压uc(t)的变化而变化。该特性的表达式为      (8-4-6) 上式说明当uc(t)随时间而变时,压控振荡器的振荡频率ωu也随时间而变,锁相环进入“频率牵引”,自动跟踪捕捉输入信号的频率,使锁相环进入锁定的状态,并保持ω0=ωi的状态不变。 8.4.2锁相环的应用 1.锁相环在调制和解调中的应用 (1)调制和解调的概念 为了实现信息的远距离传输,在发信端通常采用调制的方法对信号进行调制,收信端接收到信号后必须进行解调才能恢复原信号。 所谓的调制就是用携带信息的输入信号ui来控制载波信号uC的参数,使载波信号的某一个参数随输入信号的变化而变化。载波信号的参数有幅度、频率和位相,所以,调制有调幅(AM)、调频(FM)和调相(PM)三种。 调幅波的特点是频率与载波信号的频率相等,幅度随输入信号幅度的变化而变化;调频波的特点是幅度与载波信号的幅度相等,频率随输入信号幅度的变化而变化;调相波的特点是幅度与载波信号的幅度相等,相位随输入信号幅度的变化而变化。调幅波和调频波的示意图如图8-4-4所示。 上图的(a)是输入信号,又称为调制信号;图(b)是载波信号,图(c)是调幅波和调频波信号。 解调是调制的逆过程,它可将调制波uO还原成原信号ui。 2.锁相环在调频和解调电路中的应用 调频波的特点是频率随调制信号幅度的变化而变化。由8-4-6式可知,压控振荡器的振荡频率取决于输入电压的幅度。当载波信号的频率与锁相环的固有振荡频率ω0相等时,压控振荡器输出信号的频率将保持ω0不变。若压控振荡器的输入信号除了有锁相环低通滤波器输出的信号uc外,还有调制信号ui,则压控振荡器输出信号的频率就是以ω0为中心,随调制信号幅度的变化而变化的调频波信号。由此可得调频电路可利用锁相环来组成,由锁相环组成的调频电路组成框图如图8-4-5所示。 根据锁相环的工作原理和调频波的特点可得解调电路组成框图如图8-4-6所示。 3.锁相环在频率合成电路中的应用 在现代电子技术中,为了得到高精度的振荡频率,通常采用石英晶体振荡器。但石英晶体振荡器的频率不容易改变,利用锁相环、倍频、分频等频率合成技术,可以获得多频率、高稳定的振荡信号输出。 输出信号频率比晶振信号频率大的称为锁相倍频器电路;输出信号频率比晶振信号频率小的称为锁相分频器电路。锁相倍频和锁相分频电路的组成框图如图8-4-7所示。 图中的N大于1时,为分频电路;当0 锁相环最基本的结构如图6.1所示。它由三个基本的部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。   鉴相器是个相位比较装置。它把输入信号Si(t)和压控振荡器的输出信号So(t)的相位进行比较,产生对应于两个信号相位差的误差电压Se(t)。     环路滤波器的作用是滤除误差电压Se(t)中的高频成分和噪声,以保证环路所要求的性能,增加系统的稳定性。     压控振荡器受控制电压Sd(t)的控制,使压控振荡器的频率向输入信号的频率靠拢,直至消除频差而锁定。 锁相环是个相位误差控制系统。它比较输入信号和压控振荡器输出信号之间的相位差,从而产生误差控制电压来调整压控振荡器的频率,以达到与输入信号同频。在环路开始工作时,如果输入信号频率与压控振荡器频率不同,则由于两信号之间存在固有的频率差,它们之间的相位差势必一直在变化,结果鉴相器输出的误差电压就在一定范围内变化。在这种误差电压的控制下,压控振荡器的频率也在变化。若压控振荡器的频率能够变化到与输入信号频率相等,在满足稳定性条件下就在这个频率上稳定下来。达到稳定后,输入信号和压控振荡器输出信号之间的频差为零,相差不再随时间变化,误差电压为一固定值,这时环路就进入“锁定”状态。这就是锁相环工作的大致过程。     以上的分析是对频率和相位不变的输入信号而言的。如果输入信号的频率和相位在不断地变化,则有可能通过环路的作用,使压控的频率和相位不断地跟踪输入频率的变化。     锁相环具有良好的跟踪性能。若输入FM信号时,让环路通带足够宽,使信号的调制频谱落在带宽之内,这时压控振荡器的频率跟踪输入调制的变化。     对于锁相环的详细分析可参阅有关锁相技术的书籍。在此仅说明锁相环鉴频原理。可以简单地认为压控振荡器频率与输入信号频率之间的跟踪误差可以忽略。因此任何瞬时,压控振荡器的频率ωv(t)与FM波的瞬时频率ωFM(t)相等。 FM波的瞬时角频率可表示为   假设VCO具有线性控制特性,其斜率Kv(压控灵敏度)为(弧度/秒·伏),而VCO在Sd(t)=0时的振荡频率为ωo’,则当有控制电压时,VCO的瞬时角频率为    令上两式相等,即ωv(t)≈ωFM(t),可得   其中ωo为FM波的载频,ωo’为压控振荡器的固有振荡频率,两者皆为常数。因此上式第一项为直流项,可用隔直元件消除,或者开始时已经把压控振荡器的频率调整为ωo=ωo’。因此上式还可进一步写成   可见,锁相环输出,除了常系数Kf/Kv之外,近似等于原调制波形f(t),因而达到频率解调的目的。     同理,锁相环也可用于解调PM信号,此时只需在输出端接入一个积分器就可以了。     通过合理选择环路参数(主要是环路滤波器的参数)可以在满足解调要求的条件下使闭环带宽尽可能窄,以便抑制噪声。因此锁相环具有良好的噪声性能。当接收信号电平微弱,噪声成为主要考虑因素时,采用PLL解调器可以改善解调性能,它可用于各种移动FM电台、微波接力系统、卫星通信系统以及电视、遥测等系统中,它与普通鉴频器相比,门限改善可达6dB,所以PLL解调器又称为门限扩张解调器或低门限解调器。 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 2.锁相环的工作原理 锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。 鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:       (8-4-1)      (8-4-2) 式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压uD为: 用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。即uC(t)为:      (8-4-3) 式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:       即                        (8-4-4) 则,瞬时相位差θd为         (8-4-5) 对两边求微分,可得频差的关系式为      (8-4-6) 上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,uc(t)随时间而变。 因压控振荡器的压控特性如图8-4-3所示,该特性说明压控振荡器的振荡频率ωu以ω0为中心,随输入信号电压uc(t)的变化而变化。该特性的表达式为      (8-4-6) 上式说明当uc(t)随时间而变时,压控振荡器的振荡频率ωu也随时间而变,锁相环进入“频率牵引”,自动跟踪捕捉输入信号的频率,使锁相环进入锁定的状态,并保持ω0=ωi的状态不变。

Top_arrow
回到顶部
EEWORLD下载中心所有资源均来自网友分享,如有侵权,请发送举报邮件到客服邮箱bbs_service@eeworld.com.cn 或通过站内短信息或QQ:273568022联系管理员 高员外,我们会尽快处理。