pdf

经典全英版Agilent 4263B LCR Meter Operation Manual Manual Change (Agilent 4263B LCR表操作手册手动更改)

  • 1星
  • 日期: 2018-03-20
  • 大小: 2.39MB
  • 所需积分:1分
  • 下载次数:4
  • favicon收藏
  • rep举报
  • 分享
  • free评论
标签: LCR表操作手册Agilent4263B实用工具

给有需要的发烧友,安捷伦LCR表手册。

文档内容节选

Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No NA Jun 2009 Change 1 Add TAR in Test Signal Frequency Accuracy Test Page 938 as follows Test Signal Frequency Accuracy Frequency Uncertainty Hz TAR Limits Hz Result1 Hz Hz 100 120 1 k 10 k 20 k 100 k 001 12 000010 k 00010 k 00020 k 0010 k 000031 000034 00000029 k 0000019 k 0000020 k 000019 k k k k k 3177 355050 3538 5380 10032 5378 Note 1 Result Measurement Nomi......

Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A Jun 2009 Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows. Test Signal Frequency Accuracy Frequency Uncertainty [Hz] TAR Limits [Hz] Result1 [Hz] [Hz] 100 120 1 k 10 k 20 k 100 k ±0.01 ±1.2 ±0.00010 k ±0.0010 k ±0.0020 k ±0.010 k ± 0.00031 ± 0.00034 ± 0.0000029 k ± 0.000019 k ± 0.000020 k ± 0.00019 k k k k k 31.77 3550.50 35.38 53.80 100.32 53.78 Note 1: Result = Measurement – Nominal Frequency Change 2 Add TAR in Test Signal Level Accuracy Test (Page 9-38) as follows. Test Signal Level Accuracy Result1 [V] Signal Level [V] 50 m 50 m 50 m 250 m 250 m 250 m 1 1 1 Frequency [HZ] 100 20 k 100 k 100 20 k 100 k 100 20 k 100 k Limits [V] ±15.0 m ±15.0 m ±15.0 m ±35.0 m ±35.0 m ±35.0 m ±0.11 ±0.11 ±0.11 Uncertainty [V] TAR m m m m m m ± 0.90 m ± 0.078 m ± 0.18 m ± 2.50 m ± 0.35 m ± 1.88 m ± 0.00349 ± 0.00147 ± 0.00108 16.70 193.62 86.62 14.04 102.30 18.66 31.60 74.91 101.92 Note 1: Result = Measurement – Nominal Level Change 3 Add TAR in DC Bias Level Accuracy Test (Page 9-39) as follows. DC Bias Level Accuracy Limits [V] Result1 [V] Uncertainty [V] TAR DC Bias Level [V] 0 1.5 2 ±0.002 ±0.077 ±0.102 Note 1: Result = Measurement – Nominal Level ○C Copyright 2009 Agilent Technologies 23.07 175.51 111.10 ± 0.087 m ± 0.44 m ± 0.92 m Change 4 Add TAR in 0 m Impedance Measurement Accuracy Test (Page 9-40 to 9-42) as follows. Impedance Measurement Accuracy Measurement: Cable length: Measurement time: Test signal level: Status Capacitance 0 m Long 1 V PASS Parameter Standard 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 1 nF 1 nF 1 nF 1 nF 1 nF 1 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 10 nF 100 nF 100 nF 100 nF 100 nF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF Frequency [Hz] 100 k 100 k 1 k 1 k 10 k 10 k 20 k 20 k 100 k 100 k 100 100 1 k 1 k 100 k 100 k 100 100 120 120 1 k 1 k 10 k 10 k 100 k 100 k 1 k 1 k 100 k 100 k 100 100 120 120 1 k 1 k 10 k 10 k 100 k Limits ±0.331 pF ±0.0331 ±0.19 pF ±0.0019 ±0.44 pF ±0.0044 ±1.10 pF ±0.0110 ±1.37 pF ±0.0137 ±0.002 nF ±0.0020 ±0.0012 nF ±0.0012 ±0.0128 nF ±0.0128 ± 0.018 nF ±0.0018 ± 0.018 nF ±0.0018 ± 0.011 nF ±0.0011 ± 0.018 nF ±0.0018 ± 0.128 nF ±0.0128 ± 0.11 nF ±0.0011 ± 1.47 nF ±0.0147 ±0.0018 μF ±0.0018 ±0.0018 μF ±0.0018 ±0.0011 μF ±0.0011 ±0.0026 μF ±0.0026 ±0.0176 μF Result1 Uncertainty pF ± 0.0040 pF ± 0.00043 pF ± 0.0074 pF ± 0.000063 pF ± 0.017 pF ± 0.00023 pF ± 0.021 pF ± 0.000091 pF ± 0.019 pF ± 0.00033 nF ± 0.000098 nF ± 0.000063 nF ± 0.000092 nF ± 0.000064 nF ± 0.00012 nF ± 0.00033 nF ± 0.00065 nF ± 0.000022 nF ± 0.00059 nF ± 0.000022 nF ± 0.00076 nF ± 0.000021 nF ± 0.00067 nF ± 0.000036 nF ± 0.00087 nF ± 0.00022 nF ± 0.0068 nF ± 0.000023 nF ± 0.015 nF ± 0.00026 μF ± 0.000074 μF ± 0.000047 μF ± 0.000073 μF ± 0.000047 μF ± 0.000067 μF ± 0.000032 μF ± 0.00014 μF ± 0.000069 μF ± 0.00018 μF TAR 83.58 78.09 25.79 30.57 26.79 19.15 53.34 121.51 74.59 42.12 20.11 32.10 12.67 19.02 116.20 38.90 28.46 84.00 16.38 85.34 14.17 53.05 27.75 51.18 148.58 60.42 15.62 47.81 102.37 57.89 24.88 38.90 24.49 38.84 15.89 34.29 19.45 38.02 102.72 Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp ○C Copyright 2009 Agilent Technologies 1 μF 100 k D ±0.0176 Note 1: Result = Measurement – Calibrated Value of Standard ± 0.00032 55.73 Measurement: Cable length: Measurement time: Test signal level: Status Standard 10 nF 10 nF 10 nF 10 nF Frequency [Hz] 100 100 100 k 100 k Capacitance 0 m Med 50 mV PASS Parameter Cp D Cp D Limits ± 0.063 nF ±0.0063 ± 0.271 nF ±0.0271 Note 1: Result = Measurement – Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status Standard 10 nF 10 nF 10 nF 10 nF Frequency [Hz] 100 100 100 k 100 k Capacitance 0 m Short 50 mV PASS Parameter Cp D Cp D Limits ± 0.179 nF ±0.0179 ± 0.287 nF ±0.0287 Note 1: Result = Measurement – Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: DC bias: Status Standard 1 μF 1 μF Frequency [Hz] 1 k 1 k Capacitance 0 m Long 1 V On PASS Parameter Cp D Limits ±0.0011 μF ±0.0011 Note 1: Result = Measurement – Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status Standard 100 mΩ 100 mΩ Frequency [Hz] 100 1k Note 1: Result = Measurement – Calibrated Value of Standard Resistance 0 m Long 1 V PASS Parameter R R Limits ±0.52 mΩ ±0.48 mΩ Result1 Uncertainty nF ± 0.00070 nF ± 0.000043 nF ± 0.0023 nF ± 0.00044 TAR 89.93 146.37 119.28 62.83 Result1 Uncertainty nF ± 0.011 nF ± 0.00072 nF ± 0.00081 nF ± 0.00069 Result1 Uncertainty μF ± 0.000066 μF ± 0.000033 TAR 16.27 25.02 356.95 41.99 TAR 16.28 34.30 Result1 mΩ mΩ Uncertainty ± 0.030 mΩ ± 0.030 mΩ TAR 17.76 16.31 Measurement: Cable length: Resistance 0 m ○C Copyright 2009 Agilent Technologies Note 1: Result = Measurement – Calibrated Value of Standard Limits ±0.62 mΩ Result1 mΩ Uncertainty ± 0.033 mΩ TAR 19.12 Result1 mΩ Uncertainty ± 0.13 mΩ TAR 8.91 Measurement time: Test signal level: Status Standard 100 mΩ Frequency [Hz] 100 Measurement: Cable length: Measurement time: Test signal level: Status Med 500 mV PASS Parameter R Resistance 0 m Short 500 mV PASS Parameter R Standard 100 mΩ Frequency [Hz] 100 Limits ±1.10 mΩ Note 1: Result = Measurement – Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status DC Resistance 0 m Long 1 V PASS Standard Parameter Limits Result1 100 mΩ 100 kΩ R R ±0.97 mΩ ±0.87 kΩ Note 1: Result = Measurement – Calibrated Value of Standard Uncertainty ± 0.039 mΩ mΩ mΩ ± 0.013 kΩ TAR 25.06 67.56 ○C Copyright 2009 Agilent Technologies Change 5 Add TAR in 1 m Impedance Measurement Accuracy Test (Page 9-43) as follows. Measurement: Cable length: Measurement time: Test signal level: Status Capacitance 1 m Long 1 V PASS Parameter Result1 Standard 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 100 pF 1 nF 1 nF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF 1 μF Frequency [Hz] 1 k 1 k 10 k 10 k 20 k 20 k 100 k 100 k 100 100 100 100 1 k 1 k 10 k 10 k 100 k 100 k Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Cp D Limits ±0.19 pF ±0.0019 ±0.48 pF ±0.0048 ±1.10 pF ±0.0110 ±1.37 pF ±0.0137 ±0.002 nF ±0.0020 ±0.0018 μF ±0.0018 ±0.0011 μF ±0.0011 ±0.0026 μF ±0.0026 ±0.0207 μF ±0.0207 Uncertainty pF ± 0.0077 pF ± 0.000063 pF ± 0.012 pF ± 0.00013 pF ± 0.024 pF ± 0.000085 pF ± 0.010 pF ± 0.00016 nF ± 0.000091 nF ± 0.000063 μF ± 0.000075 μF ± 0.000047 μF ± 0.000069 μF ± 0.000033 μF ± 0.00014 μF ± 0.000061 μF ± 0.00016 μF ± 0.00029 TAR 24.59 30.52 40.75 37.17 47.09 130.36 136.75 87.72 21.61 32.10 24.28 38.74 15.58 33.55 19.09 43.04 132.97 73.20 Note 1: Result = Measurement – Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status Standard 100 mΩ 100 mΩ Frequency [Hz] 100 1k Resistance 1 m Long 1 V PASS Parameter R R Result1 mΩ mΩ Uncertainty ± 0.030 mΩ ± 0.031 mΩ TAR 20.44 19.33 Limits ±0.60 mΩ ±0.60 mΩ Note 1: Result = Measurement – Calibrated Value of Standard Measurement: Cable length: Measurement time: Test signal level: Status DC Resistance 1 m Long 1 V PASS Standard Frequency [Hz] Limits Result1 100 mΩ 100 kΩ R R ±1.05 mΩ ±0.87 kΩ Note 1: Result = Measurement – Calibrated Value of Standard Uncertainty ± 0.030 mΩ mΩ mΩ ± 0.014 kΩ TAR 35.88 26.19 ○C Copyright 2009 Agilent Technologies
更多简介内容

推荐帖子

SensorTile.Box套件操作模式之编程模式试用
本帖最后由 lvqy 于 2020-5-19 17:24 编辑 # 试用编程模式 # 下载开发源码 下载了文件:     en.FP-SNS-STBOX1_firmware.zip 解压后,在     STM32CubeFunctionPack_STBOX1_V1.3.0\Projects\STM32L4R9ZI-SensorTile.box\Applications\BLESens
lvqy ST MEMS传感器创意设计大赛专区
快速充电对电池损害的问题
      随着智能手机的屏幕越做越大、分辨率越来越高,手机性能越来越强,手机的续航就成为了不少人抱怨的对象。在电池技术没有很大突破的时候,快速充电技术自然成为了救世主。   很多人其实都不太了解快充,很容易对这种技术产生误解。比如说快充到底安不安全?会不会损害手机电池等等。现在我们就说说快充那些事。   什么是快充?   首先我们要清楚锂离子电池的充放电原理,电池有两极:正极是锂化合物,负
Aguilera 【模拟与混合信号】
TMS320LF2407的天然气发动机控制系统设计
 1 引言   近年来,数字信号处理器(DSP)芯片已经广泛用于自动控制、图像处理、通信技术、网络设备、仪器仪表和家电等领域;DSP为数字信号处理提供了高效而可靠的硬件基础。目前,应用最广泛的DSP芯片是TI(德州仪器)公司的产品,TMS320C2000系列是该公司的适合于数字控制的一种DSP。这种系列DSP芯片具有完美的性能并集成了闪存、高速A/D转换器、高性能的CAN模块等,因此使用它可以降
fish001 【微控制器 MCU】
STM8L和MSP430的低功耗对比
经过实际产品的对比,STM8L的低功耗完胜MSP430。在此记录。欢迎有不同意见发表。 测试环境如下: 1、外部晶振分频得1M 2、一个16位定时器 3、一个按键中断 4、一个串口 波特率:115200 5、一个LED灯   6、电源3.3V 7、主程序运行:按键中断从串口打印“STM8L PK MSP430”,定时器500MS中断将LED取反。
Aguilera 【微控制器 MCU】
编程模式下,从USB虚拟串口输出传感器数据
学习st官方例程STM32CubeFunctionPack_STBOX1_V1.1.0\Projects\STM32L4R9ZI-SensorTile.box\Applications\BLESensors,刷进去后,蓝牙不稳定,连接上后,能显示各个环境传感器数据,但是没过一分钟,蓝牙就连接失败。可能跟手机的蓝牙兼容性不好,索性自己改代码,通过预留的USB虚拟调试串口进行数据查看。 主要修改
sipower ST MEMS传感器创意设计大赛专区
TI AM335 嵌入式硬件设计参考指南 OK335xD
本帖最后由 fish001 于 2020-5-9 22:50 编辑 小提示: 由于下载文件较大,为保障顺利下载,推荐使用下载工具如迅雷、QQ旋风等进行下载。   目 录 注意事项与维护 ............................................................1 技术支持与更新...........................
fish001 【微控制器 MCU】

评论

登录/注册

意见反馈

求资源

回顶部

datasheet推荐 换一换

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved
$(function(){ var appid = $(".select li a").data("channel"); $(".select li a").click(function(){ var appid = $(this).data("channel"); $('.select dt').html($(this).html()); $('#channel').val(appid); }) })