超过460,000+ 应用技术资源下载
pdf

【TI】具有篡改检测的副三相电表

  • 1星
  • 日期: 2018-07-12
  • 大小: 2.35MB
  • 所需积分:1分
  • 下载次数:0
  • favicon收藏
  • rep举报
  • 分享
  • free评论
标签: 智能电表TIMCU

具有篡改检测的副三相电表

文档内容节选

Application Report SLAA577EJanuary 2013Revised January 2014 Implementation of a ThreePhase Electronic WattHour Meter Using the MSP430F677x Mekre Mesganaw and Kripasagar Venkat Metering Applications ABSTRACT This application report describes the implementation of a threephase electronic electricity meter using the Texas Instruments MSP430F677x metering processor This application report includes the necessary information with regard to metrology software hardware procedures for this singlechip im......

Application Report SLAA577E–January 2013–Revised January 2014 Implementation of a Three-Phase Electronic Watt-Hour Meter Using the MSP430F677x Mekre Mesganaw and Kripasagar Venkat ................................................................. Metering Applications ABSTRACT This application report describes the implementation of a three-phase electronic electricity meter using the Texas Instruments MSP430F677x metering processor. This application report includes the necessary information with regard to metrology software, hardware procedures for this single-chip implementation. The source code and user interface that are described in this application report can be downloaded from http://www.ti.com/lit/zip/slaa577. WARNING Failure to adhere to these steps and/or not heed the safety requirements at each step may lead to shock, injury, and damage to the hardware. Contents Introduction .................................................................................................................. 2 System Diagrams ........................................................................................................... 3 Hardware Implementation .................................................................................................. 5 Software Implementation ................................................................................................... 7 Energy Meter Demo ....................................................................................................... 17 Results and Calibration ................................................................................................... 26 Schematics ................................................................................................................. 37 List of Figures Typical Per-Phase Connections Inside an Electronic Meter .......................................................... 3 3-Phase 4-Wire Star Connection Using MSP430F677x ............................................................... 4 Simple Capacitive Power Supply for the MSP430 Energy Meter..................................................... 5 Switching-Based Power Supply for the MSP430 Energy Meter ...................................................... 6 Analog Front End for Voltage Inputs ..................................................................................... 6 Analog Front End for Current Inputs ..................................................................................... 7 Foreground Process........................................................................................................ 8 Background Process ...................................................................................................... 11 Phase Compensation Using PRELOAD Register..................................................................... 12 Frequency Measurement................................................................................................. 13 Pulse Generation for Energy Indication ................................................................................ 14 Top View of the Three Phase Energy Meter EVM .................................................................... 17 Top View of the EVM With Components Highlighted................................................................. 18 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 MSP430 is a trademark of Texas Instruments. ZigBee is a trademark of ZigBee Alliance. All other trademarks are the property of their respective owners. SLAA577E–January 2013–Revised January 2014 Submit Documentation Feedback Copyright © 2013–2014, Texas Instruments Incorporated Implementation of a Three-Phase Electronic Watt-Hour Meter Using the MSP430F677x 1 Introduction 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 www.ti.com Top View of the EVM With Test Setup Connections ................................................................. 20 Front View of the EVM With Test Setup Connections................................................................ 20 Source Folder Structure .................................................................................................. 24 Toolkit Compilation in IAR................................................................................................ 24 Metrology Project Build in IAR........................................................................................... 24 LCD Display................................................................................................................ 27 ZigBee Radio............................................................................................................... 27 TI Designed IHD430 ...................................................................................................... 28 GUI Config File Changed to Communicate With Meter .............................................................. 29 GUI Startup Window ...................................................................................................... 29 Results Window............................................................................................................ 30 Calibration Factors Window.............................................................................................. 31 Manual Calibration Window .............................................................................................. 32 Calibration Factors Window.............................................................................................. 33 Meter Features Window .................................................................................................. 34 Energy Measurement Error Across Current With Customized CTs on EVM430-F6779......................... 34 Energy Measurement Error Across Current With High-End CTs ................................................... 35 Schematics (1 of 4)........................................................................................................ 37 Schematics (2 of 4)........................................................................................................ 38 Schematics (3 of 4)........................................................................................................ 39 Schematics (4 of 4)........................................................................................................ 40 List of Tables Header Names and Jumper Settings on the F677x EVM............................................................ 21 Displayed Parameters .................................................................................................... 26 Energy Measurement Error With Customized CTs on EVM430-F6779 (%)....................................... 35 Energy Measurement Error With High-End CTs (%) ................................................................. 36 1 2 Introduction The MSP430F677x devices are the latest metering system-on-chip (SoC) that belongs to the MSP430F67xx family of devices. This family of devices belongs to the powerful 16-bit MSP430F6xx platform, which brings in many new features and provides flexibility to support robust poly-phase metrology solutions. These devices find their application in energy measurement and have the necessary architecture to support them. The F677x has a powerful 25-MHz CPU with MSP430CPUX architecture. The analog front-end consists of up to seven independent 24-bit ΣΔ analog to digital converters (ADC) based on a second-order sigma- delta architecture that supports differential inputs. The sigma-delta ADCs (ΣΔ24_B) operate independently and are capable of 24-bit results. They can be grouped together for simultaneous sampling of voltages and currents on the same trigger. In addition, it also has an integrated gain stage to support gains up to 128 for amplification of low-output current sensors. A 32-bit x 32-bit hardware multiplier on this chip can be used to further accelerate math intensive operations during energy computation. The software energy library supports calculation of various parameters for up to three-phase energy measurement. The key parameters calculated during energy measurements are: RMS current and voltage, active and reactive power and energies, power factor, and frequency. The library also provides the option to obtain raw samples of voltages and currents for advanced metering data such as harmonic analysis and total harmonic distortion (THD). The application report has complete metrology source code provided as a zip file (http://www.ti.com/lit/zip/slaa577). Implementation of a Three-Phase Electronic Watt-Hour Meter Using the MSP430F677x SLAA577E–January 2013–Revised January 2014 Submit Documentation Feedback Copyright © 2013–2014, Texas Instruments Incorporated www.ti.com 2 System Diagrams Figure 1 shows typical connections for one-phase electronic electricity (energy/e-) meters in real life applications. For poly-phase meters, the connection in Figure 1 is duplicated for each phase. The ac voltages supported are 120 V/230 V at 50/60 Hz with the associated currents. The labels Line (L) and Neutral (N) are interchangeable and are indicative of ac mains voltage source from the energy utilities. System Diagrams Figure 1. Typical Per-Phase Connections Inside an Electronic Meter The following sections provide more information on the current and voltage sensors, ADCs, and other features. Figure 2 shows a block diagram of the high level interface used for a three-phase energy meter application using the F677x. A three-phase four-wire star connection to the ac mains is shown in this case. Current sensors are connected to each of the current channels and a simple voltage divider is used for corresponding voltages. The CT has an associated burden resistor that must be connected at all times to protect the measuring device. The choice of the CT and the burden resistor is done based on the manufacturer and current range required for energy measurements. The CTs can be easily replaced by Rogowski coils with minimal changes to the front-end. The choice of voltage divider resistors for the voltage channel is selected to ensure the mains voltage is divided down to the normal input ranges that are valid for the ΣΔ24. See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) and the device-specific data sheet for these values. SLAA577E–January 2013–Revised January 2014 Submit Documentation Feedback Copyright © 2013–2014, Texas Instruments Incorporated Implementation of a Three-Phase Electronic Watt-Hour Meter Using the MSP430F677x 3 System Diagrams www.ti.com Figure 2. 3-Phase 4-Wire Star Connection Using MSP430F677x Other signals of interest in Figure 2 are the PULSE LEDS. They are used to transmit active and reactive energy pulses used for accuracy measurement and calibration. In addition, the pulses are used to transmit the active power consumed for each individual phase. 4 Implementation of a Three-Phase Electronic Watt-Hour Meter Using the MSP430F677x Copyright © 2013–2014, Texas Instruments Incorporated SLAA577E–January 2013–Revised January 2014 Submit Documentation Feedback www.ti.com 3 Hardware Implementation This section describes the hardware for the design of a working 3-phase energy meter that uses the F677x. Hardware Implementation 3.1 Power Supply The MSP430™ family of devices comprises ultralow-power microcontrollers from Texas Instruments. These devices support a number of low-power modes and also have low-power consumption during active mode when the CPU and other peripherals are active. The low-power feature of this device family allows design of the power supply to be simple and inexpensive. The power supply allows the operation of the energy meter powered directly from the mains. The next sections describe the various power supply options that are available to users to support their design. 3.1.1 Resistor Capacitor (RC) Power Supply Figure 3 shows a capacitor power supply that provides a single output voltage of 3.3 V directly from the mains of 120/230 V RMS ac at 50/60 Hz. Figure 3. Simple Capacitive Power Supply for the MSP430 Energy Meter Appropriate values of resistors (R92, R93, and R94) and capacitors (C39, C46, and C50) are chosen based on the required output current drive of the power supply. Voltage from mains is directly fed to a RC based circuit followed by a rectification circuit to provide a dc voltage for the operation of the MSP430. This dc voltage is regulated to 3.3 V for full-speed operation of the MSP430. The design equations for the power supply are given in the application report Improved Load Current Capability for Cap-Drop Off-Line Power Supply for E-Meter (SLVA491). The above configuration allows all three phases to contribute to the current drive, which is approximately three times the drive available from only one phase. If even higher output drive is required, the same circuitry can be used followed by an NPN output buffer. Another option would be to replace the above circuitry with a transformer-based or switching-based power supply. 3.1.2 Switching Power Supply Figure 4 shows a switching-based power supply that provides a single output voltage of 3.3 V directly from the ac mains at 100 V to 230 V RMS. In the configuration shown, the meter is powered as long as there is ac voltage on Phase C, corresponding to pad LINE 3 on the hardware and P3+1 on the schematic. The internal circuitry of a switching power supply is omitted from this application report. For the drive of the power supply, refer to the documentation of the power supply module. SLAA577E–January 2013–Revised January 2014 Submit Documentation Feedback Copyright © 2013–2014, Texas Instruments Incorporated Implementation of a Three-Phase Electronic Watt-Hour Meter Using the MSP430F677x 5
更多简介内容

推荐帖子

智能电表检测的注意事项
智能电能表在我国得到了较广泛的应用,直接面对最终的用户。其计量的准确性不仅关系到电力企业的经济效益,而且也与用电客户的经济利益息息相关,所以为了更好的提高智能电能表的质量,对电能表进行必要的检测必不可少。智能电表的检测要注意以下三个方面:一、加强智能电能表的质量监管在智能电能表进行检测时,则需要对其检定室内的环境进行评估,确保检定室内内的磁场、湿度和温度等都能达到检测的要求,而对于检测过程中存在问
湖南集社 【测试/测量】
智能电网和智能电表提出的大背景是什么?
       国家电网公司公布了今后10年坚强智能电网的建设规划到2020年,我国将基本建成坚强智能电网。2009年年底,国家电网公司公布了首批智能电表招标结果,单三相两类电表共有23家企业(单相中标企业16家,三相中标企业11家)分享了这批近300万只订单。这次招标是国电即将大规模启动的千亿元级智能电网招标工程的第一步,一场由智能电表招标引出的智能电网大蛋糕切分问题,这次智能电表的招标可以算是
jameswangsynnex 电源技术
Freescale 的智能电表产品方案
          笔者在上海参加FTF ,听中国电力科学院首席专家胡学浩中国智能电网发展战略部署和实践的报告,智能电网就是SMART GRID ,中国建设坚强智能电网意义重大,具体实施是三步走。笔者对智能电网的智能电表, 电动车充电站还有智能用电小区很感兴趣, 最感兴趣的还是智能电网发展推动智能电表市场。再听听韩国电力科学院院长MOON 的报告,具体实施也是三步走。       去Frees
jameswangsynnex 电源技术
Freescale 上海FTF见闻之智能电网和智能电表
  笔者在上海参加FTF ,听中国电力科学院首席专家胡学浩中国智能电网发展战略部署和实践的报告,智能电网就是SMART GRID ,中国建设坚强智能电网意义重大,具体实施是三步走。笔者对智能电网的智能电表, 电动车充电站还有智能用电小区很感兴趣, 最感兴趣的还是智能电网发展推动智能电表市场。再听听韩国电力科学院院长MOON 的报告,具体实施也是三步走。    去Freescale的展台看看
jameswangsynnex 【NXP Kinetis MCU】
新型设计方法改善智能电表的性能
       成熟的智能电网建成后,智能电表具有自动查询、远程抄表功能,还可以实现自动拉闸断电。但目前国内智能电表主要还是以PLC方式进行联网传输数据,暂未采用RF通信方式。本文探讨智能电表在设计上有哪些突破,在功能上还有哪些待完善的地方。   1 智能电表在设计上的突破   如图1所示,在智能电网用电信息采集系统中,智能电表介于电力用户和信息采集现场终端之间,主要完成电力用户用电信息的提
Aguilera 【DSP 与 ARM 处理器】
智能电表外置微型断路器方案设计
智能电表外置微型断路器方案设计 转自:deyisupport 作者:华东区工程师 Johnny Guo, Daniel Fang, Martin Yu 随着智能电网建设的推进,智能电能表费控系统作为量大面广的基础,受到国家电网公司和南方电网公司的重视。为进一步提高电能表费控系统的可靠性,加强电能表外置断路器的质量控制,确保电力系统智能管理、智能服务的安全稳定运行,国家电网公司和南方电网
okhxyyo 【模拟与混合信号】

评论


个人中心

意见反馈

求资源

回顶部

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

EEWorld电子技术资料下载——分享有价值的资料

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved
$(function(){ var appid = $(".select li a").data("channel"); $(".select li a").click(function(){ var appid = $(this).data("channel"); $('.select dt').html($(this).html()); $('#channel').val(appid); }) })