pdf

【美信】MAX8939 手机系统电源管理方案

  • 1星
  • 日期: 2018-05-29
  • 大小: 2.81MB
  • 所需积分:1分
  • 下载次数:0
  • favicon收藏
  • rep举报
  • 分享
  • free评论
标签: MAX8939美信

【美信】MAX8939 手机系统电源管理方案

文档内容节选

General Description The MAX8939MAX8939AMAX8939B power manage ment ICs contain the necessary supplies and features for supporting cell phone designs based on the Intel Mobile Communications IMC 61XX 3G platform Designed to power all peripheral components in the platform the ICs also provide the necessary signals to control the 61XX baseband processor The integrated lithiumion Li charger is protected up to 28V input and features a protected output voltage for supply of a USB tran......

General Description The MAX8939/MAX8939A/MAX8939B power manage- ment ICs contain the necessary supplies and features for supporting cell phone designs based on the Intel Mobile Communications (IMC) 61XX 3G platform. Designed to power all peripheral components in the platform, the ICs also provide the necessary signals to control the 61XX baseband processor. The integrated lithium-ion (Li+) charger is protected up to 28V input and features a protected output voltage for supply of a USB transceiver. Proprietary thermal- regulation circuitry limits the die temperature during fast-charging or when the ICs are exposed to high ambi- ent temperatures, allowing maximum charging current without damaging the ICs. A dedicated current regulator is included for driving a charge indicator LED. Four programmable low-noise, low-dropout linear regu- lators (LDOs) provide the supply for noise sensitive peripherals. A high power vibrator driver is I2C program- mable in 70 PWM levels and 4 output voltages. The ICs also offer two step-up converters; one high power, low voltage (5V) to supply an external audio amplifier or camera flash, and a high voltage (28V) supply for the display and keyboard backlight. Two integrated 25mA current regulators provide independent ramp-up and ramp-down control, programmable through I2C. The MAX8939/MAX8939A/MAX8939B are highly integrated ICs that require very few external components and are avail- able in a compact 2.5mm x 3.0mm, 0.65mm max height wafer level package (WLP). Applications Companion Chip for Cell Phones/Smartphones Features S Step-Up Converter 700mA Guaranteed Output Current I2C Programmable Output 3.5V to 5.0V in 16 Steps Over 90% Efficiency On-Chip FET and Synchronous Rectifier Fixed 2MHz PWM Switching Small 2.2µH to 10µH Inductor S WLED Boost Converter 28V Max Step-Up Output Voltage 60mA Output Current Integrated nMOS Power Switch Over 90% Efficiency Fixed 2MHz Switching Small 4.7µH to 10µH Inductor Two 25mA Individually Programmable Current Regulators I2C Programmable Output Current (50µA to 25.25mA) with 128-Step Pseudo Log Dimming Individually Programmable Ramp (Up/Down) Timers Low Dropout (150mV max) S Linear One-Cell Li+ Battery Charger No External MOSFET, Reverse Blocking Diode, or Current-Sense Resistor Programmable Fast-Charge Current (1.5ARMS max for the MAX8939 or 850mARMS max for the MAX8939A/MAX8939B) Programmable Top-Off Current Threshold Proprietary Die Temperature Regulation Control 4.1V to 10V Input Voltage Range (MAX8939) 4.1V to 6.25V Input Voltage Range (MAX8939A/ MAX8939B) with Input Overvoltage Protection Up to 28V Low-Dropout Voltage (300mV at 500mA) Input Power-Source Detection Output Input Overvoltage Protected 4.75V Output (SAFE_OUT) from IN Charge Current Monitor Output Indicator LED Hardware Input Enable 5s Watchdog Feature During Charge S Four Low-Noise LDOs 1x 400mA, 2 x 200mA and 1x 100mA Output Current High 65dB (typ) PSRR Low Noise (45µVRMS typ) 1.7V to 3.2V Programmable Output Voltage Low Quiescent Current (25µA typ) 400mA LDO with Hardware Enable Input S Vibrator Driver Guaranteed 200mA Output Current Programmable Output Voltage 1.3V to VINVIB Repetition Frequency 23.8kHz PWM Speed Control in 70 steps Active Stop Brake S Control Interface for 61XX Baseband MAX8939/MAX8939A/MAX8939B Control Through I2C RESET_IN Reset Input Charger Detect PWR_ON_CMP Output IRQ Interrupt Output S 2.9V to 5.5V Supply Voltage Range S Thermal Shutdown Ordering Information PART TEMP RANGE PIN-PACKAGE MAX8939EWV+T -40NC to +85NC MAX8939AEWV+T -40NC to +85NC MAX8939BEWV+T -40NC to +85NC 30 WLP (0.5mm pitch) 30 WLP (0.5mm pitch) 30 WLP (0.5mm pitch) +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. Typical Operating Circuit appears at end of data sheet. 19-5843; Rev 5; 12/12 ABSOLUTE MAXIMUM RATINGS BATT, OUT1, SAFE_OUT, and INVIB to AGND ....-0.3V to +6.0V CHG_IN, OUT2, LED1, and LED2 to AGND .........-0.3V to +30V LED3 and CHG_MON to AGND .... -0.3V to (VSAFE_OUT + 0.3V) COMP2, IRQ, RESET_IN, COMP1, SCL, SDA, CHG, PWR_ON_CMP, REF, LDO1, LDO2, LDO3, LDO4, and LDO1_EN to AGND .................... -0.3V to (VBATT + 0.3V) OUTVIB to AGND ..................................-0.3V to (VINVIB + 0.3V) PGND1 and PGND2 to AGND .............................-0.3V to +0.3V Note 1: LX1 has internal clamp diodes to PGND1 and OUT1. LX2 has internal clamp diodes to PGND2 and OUT2. Applications WLP (derate 24.4mW/NC above +70NC)..........................1.9W Operating Temperature ...................................... -40NC to +85NC Junction Temperature .....................................................+150NC Storage Temperature Range ............................ -65NC to +150NC Soldering Temperature (reflow) ......................................+260NC LX1, LX2 Current (Note 1) .............................................1.7ARMS Continuous Power Dissipation (TA = +70NC) that forward bias these diodes should take care not to exceed the IC package power dissipation limit. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 2) WLP Junction-to-Ambient Thermal Resistance (qJA) ..........41°C/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-lay- er board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (Note 3) (VBATT = 3.7V, VCHG_IN = 5.0V, circuit of Figure 1, TA = -40NC to +85NC, unless otherwise noted. Typical values are at TA = +25NC.) PARAMETER BATT BATT Operating Voltage BATT Shutdown Supply Current BATT Standby Supply Current BATT Biasing Supply Current Undervoltage Lockout (UVLO) Threshold Undervoltage Lockout Hysteresis THERMAL SHUTDOWN Threshold Hysteresis REFERENCE Reference Output Voltage Reference Supply Rejection LOGIC AND CONTROL INPUTS Input Low Level Input High Level Logic-Input Current 2 CONDITIONS MIN TYP MAX UNITS All outputs off, I2C disabled, VSCL = VSDA= VRESET_IN = 0V All outputs off, VSCL = VSDA = VRESET_IN = 1.8V, I2C ready I2C ready, one or more outputs on TA = +25NC TA = +85NC TA = +25NC TA = +85NC BATT rising 2.9 2.6 0.4 0.4 5 5 60 2.75 100 +160 20 1.200 0.2 SDA, SCL, LDO1_EN, CHG, and RESET_IN SDA, SCL, LDO1_EN, CHG, and RESET_IN SDA, SCL, LDO1_EN, CHG, and RESET_IN, 0 < VIN < 5.5V TA = +25NC TA = +85NC 1.40 -1 0.1 5.5 1 1 10 2.9 0.4 +1 V FA FA FA V mV NC NC V mV V V FA ELECTRICAL CHARACTERISTICS (Note 3) (continued) (VBATT = 3.7V, VCHG_IN = 5.0V, circuit of Figure 1, TA = -40NC to +85NC, unless otherwise noted. Typical values are at TA = +25NC.) PARAMETER CONDITIONS MIN TYP MAX UNITS IPWR_ON_CMP = 2mA IIRQ = 2mA ISDA = 6mA LOGIC AND CONTROL OUTPUTS IRQ (Open-Drain Output) Output Low Voltage PWR_ON_CMP (Open-Drain Output) Output Low Voltage SDA Output Low Level I2C SERIAL INTERFACE (VSCL = VSDA = 3V) (Figure 15) Clock Frequency Bus-Free Time Between START and STOP Hold Time Repeated START Condition SCL Low Period SCL High Period Setup Time Repeated START Condition SDA Hold Time SDA Setup time Maximum Pulse Width of Spikes that Must Be Suppressed by the Input Filter of Both DATA and CLK Signals Setup Time for STOP Condition CHG_IN Input Operating Range CHG_IN Current CHG_IN Leakage Current from CHG_IN to BATT tHD_DAT tSU_DAT tBUF tHD_STA tLOW tHIGH tSU_STA tSU_STO VCHG_IN = 28V, VBATT = 4V, MAX8939A/MAX8939B VCHG_IN = 28V, VBATT = 0V, MAX8939A/MAX8939B Reverse Leakage Current from BATT to CHG_IN CHG_IN Trip Point Input Undervoltage Threshold (UV) Input Overvoltage Threshold (OVP) Input Supply Current Shutdown Input Current VCHG_IN = 0V, VBATT = 0 to 4.2V, MAX8939A/ MAX8939B VCHG_IN - VBATT, rising VCHG_IN - VBATT, falling VCHG_IN - VBATT, hysteresis MAX8939, VCHG_IN rising, 500mV hysteresis (typ) MAX8939A/MAX8939B, VCHG_IN rising, 900mV hysteresis (typ) MAX8939, VCHG_IN rising, 200mV hysteresis (typ) MAX8939A/MAX8939B, VCHG_IN rising, 200mV hysteresis (typ) ICHG_IN - IBATT = 90mA Charger disabled 0.4 0.4 0.4 V V V 400 kHz 1.3 0.6 1.3 0.6 0.6 0 100 0.6 4.1 400 200 3.9 3.9 10.2 6.25 50 600 21 300 100 200 4.0 4.0 10.6 6.5 750 10 1000 80 10 400 4.1 4.1 11 6.75 1500 500 Fs Fs Fs Fs Fs Fs ns ns Fs V FA FA FA mV V V FA FA 3 ELECTRICAL CHARACTERISTICS (Note 3) (continued) (VBATT = 3.7V, VCHG_IN = 5.0V, circuit of Figure 1, TA = -40NC to +85NC, unless otherwise noted. Typical values are at TA = +25NC.) CONDITIONS MIN TYP MAX UNITS VCHG_IN = 3.7V, VBATT = 3.6V 0.4 0.8 I ISAFE_OUT = 15mA, VCHG_IN = 5V, TA = 0NC to +85NC ISAFE_OUT = 15mA, VCHG_IN = 10V, TA = 0NC to +85NC Monitoring voltage to charge current - fast-charge current = 450mA (Note 4) Overall range 450mA charge current - fast-charge current = 450mA (Note 4) VCHG_IN = 5V, TA = 0NC to +85NC TA = +25NC TA = -40NC to +85NC IBATT = 90mA, TA = -40NC to +85NC IBATT = 90mA, VBATT programmed to 4.2V IBATT = 90mA, TA = +25NC VSET = 11b VSET = 00b VSET = 01b VSET = 10b VSET = 11b IBATT = 90mA, TA = +25NC VSET = 11b VSET = 00b VSET = 01b VSET = 10b VSET = 11b IBATT = 90mA, TA = -40NC to +85NC 4.75 4.90 5.00 5.2 +10 1.2 40 5 4.221 4.242 4.171 3.535 3.889 4.091 4.192 4.191 3.535 3.889 4.091 4.192 -10 0 10 1.5 4.179 4.158 4.129 3.465 3.811 4.009 4.108 4.149 3.465 3.811 4.009 4.129 100 2.666 1200 20 3 4.2 4.2 4.150 3.500 3.850 4.050 4.150 4.170 3.500 3.850 4.050 4.170 -200 -300 -400 Disable V mA mV/ mA % mV V kI mA V V V mV PARAMETER CHG_IN to BATT Dropout On-Resistance SAFE_OUT SAFE_OUT Regulated Output SAFE_OUT Current Limit CHG_MON I/V Conversion Factor I/V Accuracy Output Voltage Charge Monitoring Range Output Impedance INDICATOR LED LED3 Current Sink BATT BATT Regulation Voltage (MAX8939) BATT Regulation Voltage (MAX8939A) BATT Regulation Voltage (MAX8939B) Programmable Restart Fast-Charge Threshold From BATT regulation voltage, default = disable 4 ELECTRICAL CHARACTERISTICS (Note 3) (continued) (VBATT = 3.7V, VCHG_IN = 5.0V, circuit of Figure 1, TA = -40NC to +85NC, unless otherwise noted. Typical values are at TA = +25NC.) PARAMETER CONDITIONS CHG_IN Fast-Charge Current (MAX8939) (Note 5) VBATT = 3.5V CHG_IN Fast-Charge Current (MAX8939A/MAX8939B) (Note 5) VBATT = 3.5V CHG_CONTROL_A.FAST_CHARGE = 000b 001b 010b 011b 100b 101b 110b 111b CHG_CONTROL_A.FAST_CHARGE = 000b 001b 010b 011b 100b 101b 110b 111b MIN 80 240 400 560 630 700 940 1050 82 250 420 575 695 775 100 160 TYP 90 270 450 630 765 850 1020 1275 90 270 450 630 765 850 120 180 90 MAX 100 300 500 700 900 1000 1200 1500 98 290 480 685 835 925 140 200 100 VBATT = 2V CHG_IN Precharge Current BATT Prequalification Threshold Voltage Soft-Start Time TOP-OFF VBATT rising hysteresis 140mV (typ) 2.5 2.55 2.6 Ramp time to fast-charge current UNITS mA mA mA V ms % 2.5 10 20 30 0 -20 +20 % 60 120 240 24 120 240 30 12 min min 5 Top-Off Threshold (% of Fast-Charge Current) IBATT falling TIMER Timer Accuracy Fast-Charge Time Limit From entering fast- charge to VBATT < 4.2V TOP_OFF = 00b TOP_OFF = 01b TOP_OFF = 10b TOP_OFF = 11b (default) MAX8939 MAX8939A/ MAX8939B CCTR = 00b (default) CCTR = 01b CCTR = 10b CCTR = 00b (default) CCTR = 01b CCTR = 10b Precharge Timer MAX8939 MAX8939A/MAX8939B
更多简介内容

推荐帖子

T12电烙铁制做分享过程1
T12电烙铁是个比较有趣且实用的制做,我们搞电子一般都会有把烙铁。T12的制做相对来说,还是很有趣的。我以前就想做,准备了2套部件,买了有好几年了,好像3年前买的,但是没有动手去做,这次决定趁空闲时间,组装成成品。T12的方案有些开源,有些是半开源只有图纸没有程序,我这次准备用网上的现成的硬件,PCB也是网上下载的,然后自己写软件。用的是STM32的芯片。板子前几天到了,还没焊好。先发个贴子,后面
long521 创意市集
如何抑制LED灯具浪涌电流?
ED 灯具的高浪涌电流现已成为照明行业的一个关注点,浪涌电流指的是在极短的一段时间内进入 LED 灯具的输入电流。在上电阶段灯具内的 LED 电源可被看做一个容性器件,下图显示了典型的浪涌电流在带有容性负载 230Vac 50Hz AC 线路输入的变化情况。   如果同时连接多个 LED 灯具,则最大浪涌电流及其持续时间可能会触发微型断路器或俗称空开的保护。对于工业感性电器或负
qwqwqw2088 【模拟与混合信号】
几个对比:关于4G/5G的区别分析
5G作为替代4G的产品,大多数人对于5G的理解就是传输速度比4G更快,其实5G和4G的区别是很多的,下面就给大家分享两者的区别。 一、帧结构比较 1. 4G和5G相同之处 帧和子帧长度均为:10ms和1ms。 最小调度单位资源:RB 2. 4G和5G不同之处 1);子载波宽度 4G:固定为15kHz。 5G:多种选择,15kHz、30kHz、60kHz、12
火辣西米秀 【无线连接】
MSP430的升级引导程序编写以及升级固件制作
详细介绍MSP430的升级引导程序编写以及升级固件制作。 1.关于升级引导代码的实现:       主要功能实现:进行相对应的升级程序跳转用户程序的选择       对于MSP430的启动初始化来讲,是默认看门狗打开,所以需要提前关闭看门狗,       void WDT_A_hold(uint16_t baseAddress) {     // Set Hol
Aguilera 【微控制器 MCU】
TI-CC芯片的硬件测试方法
简述 被迫要做些对目前方向没意义的事,就只能从中攫取点意义出来了。 基于TI的测试软件smartRF studio进行,所以需要硬件预留VCC、GND、RST、TCK、TMS接口,使用官方工具测试的主要原因是排查软件因素,可以理直气壮地告诉做硬件的,这就是硬件问题,和软件无关。 该工具是对寄存器直接操作,进而控制射频收发,换言之他就相当于测试了硬件的程序下载、时钟、射频,这些没问
火辣西米秀 【无线连接】
免费申请Vicor大功率模块化 DC-DC电源!
  模块化电源组件不仅可帮助工程师获得强大的设计优势(包括组件与系统功能性及可靠性可预测、很短的设计周期、便捷的系统配置、可重构性与扩展性),同时还可帮助他们实现超越最佳备选解决方案的系统工作效率、功率密度和经济性。使用各种组件的组合,工程师可设计一款完整的电源系统,其不仅可克服艰巨的空间及效率挑战,而且几乎可消除常规设计方法或定制设计方法常出现的“最后一分钟”惊险及延迟可能性。
eric_wang 电源技术

评论

登录/注册

意见反馈

求资源

回顶部

datasheet推荐 换一换

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版 版权声明

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2020 EEWORLD.com.cn, Inc. All rights reserved
$(function(){ var appid = $(".select li a").data("channel"); $(".select li a").click(function(){ var appid = $(this).data("channel"); $('.select dt').html($(this).html()); $('#channel').val(appid); }) })