首页资源分类电源技术 > IGBT以及MOSFET的驱动参数的计算方法

IGBT以及MOSFET的驱动参数的计算方法

已有 445110个资源

下载专区

电源技术热门资源

本周本月全部

文档信息举报收藏

标    签:IGBTMOSFET驱动参数

分    享:

文档简介

IGBT以及MOSFET的驱动参数的计算方法

文档预览

IGBT 以及 MOSFET 的驱动参数的计算方法 AN-1001 应用指南 简介 本应用指南介绍了在特定应用条件下门极驱动性能参数的计算方法。通过本应用手册得出的一些参数值可以作为 选择一款合适驱动器的基本依据。 CONCEPT 产品的数据手册中所给出的参数在实际应用中是可以直接使用的。驱动器内部功率损耗以及其他内部 参数不必进一步降额或者修正。 对于快速预览,公式 1,4 及 5 是最重要的。 所需驱动功率 驱动器是用来控制功率器件的导通和关断。为了实现此功能,驱动器对功率器件的门极进行充电以达到门极开通 电压 VGE_on,或者是对门极进行放电至门极关断电压 VGE_off。 门极电压的两种电平间的转换过程中,在驱动器门极驱动电阻及功率器件组成的回路中产生一定的损耗。这个参 数我们称为驱动功率 PDRV。驱动器必须根据其所驱动的功率器件所需的驱动功率来选择。 驱动功率可以从门极电荷量 QGate,开关频率 fIN,以及驱动器实际输出电压摆幅 ∆VGate 计算得出: PDRV = QGate ⋅ fIN ⋅ ∆VGate (Eq. 1) 如果门极回路放置了一个电容 CGE (辅助门极电容),那么驱动器也需要对该电容进行充放电,如图 1 所示: + +15V RG RGE AC -10V CGE - 图 1.带外接阻容的门级驱动 只要 CGE 在一个周期内被完全的充放电,那么 RGE 值并不影响所需驱动功率。驱动功率可以从以下公式得出: PDRV = QGate ⋅ fIN ⋅ ∆VGate + CGE ⋅ fIN ⋅ ∆VGate2 (Eq. 2) 以上公式是在门极驱动电流不发生谐振的条件下得出的。只要这个开关过程是 IGBT 门极从完全打开到完全关断 或者反过来,则驱动功率并不依赖于门极电阻及占空比的变化而变化。接下来我们来看如何确定门极电荷量 QGate。 IGBT-Driver.com Page 1 AN-1001 应用指南 门极电荷量 QGate 绝不能从 IGBT 或 MOSFET 的输入电容 Cies 计算得出。Cies 仅仅是门极电荷量曲线在原点(VGE=0V)时的一阶 近似值。功率半导体的门极电荷量曲线是极其非线性的。这就是为什么 QGate 必须通过对门极电荷量曲线在 VGE_off 到 VGE_on 的区域内积分获得。 如果 QGate 在数据手册中已给出,在实际应用中一定要注意该参数给定的电压摆幅条件。不同的电压摆幅条件下 门极电荷量是不同的。举个例子:如果 VGE 从 0V 到 +15V 条件下的门极电荷量是 QGate,那么没有办法很准确的 得到 VGE 从-10V 到+15V 条件下的门极电荷量。 在这样的情况下,如果没有电荷量图表(QGate vs. VGE),则实测电荷量 QGate 是唯一的方法。图 2 显示的是一张典 型的驱动器开通过程的波形图。驱动器输出电流 IOUT 正在对功率器件的门极进行充电。因此,如图 2 所示,输 出电流曲线与时间轴围成的区域就是总的充电电荷量(见图 4 所示的原理图)。积分时间应宽到足以涵盖整个电压 摆幅(参照输出:GH, GL) 。积分时间包括驱动器输出电压至最终电压,或者是从驱动器开始输出电流至输出电 流为零这段时间。 ∫ QGate = IOUT dt (Eq. 3) IN IOUT GH (output high) GL (output low) gate charge: 11.4uC integration time 图 2.用积分的方法来测量门极电荷量 必须注意输出电流是否出现振荡。在实际应用中,电荷量的测量值通常受电流振荡影响而变得不准确,其原因是 过长的积分时间以及少量大数叠加而非大量小数叠加产生的不准确性。因此,强烈建议使用驱动电流无振荡的设 置来对门极电荷量进行测量。 驱动器输出电流振荡或可导致驱动器单元产生额外的功率损耗,这些损耗是由于钳位效应及输出级和控制回路的 非线性产生的。因此,驱动器最大可用功率通常是在输出电流不发生振荡的情况下得出的。 谐振门极驱动可以利用高频开关下的振荡现象来获得某种好处。但这种驱动方法不在本应用指南讨论范围内。 Page 2 INTELLIGENT POWER ELECTRONICS AN-1001 应用指南 峰值驱动电流公式 门极驱动电路另一个重要的参数就是最大门极驱动电流 IOUT,max。门极驱动电流 IOUT,max 必须足够大以便在最大电 压摆幅及最小门极电阻条件下提供足够的驱动电流。其一阶最大值可以简写成: Iˆ = R∆V OUT (1.Order) Gate Gate _ Min (Eq. 4) 若门极电流存在振荡现象,则建议在选择驱动器时,其峰值电流应满足 IOUT,max> ÎOUT(1. Order)。如果门极电流的振 荡表现出低阻尼特性的话就必须引起注意。此时,峰值电流电流会很大,且通常只能通过测量得到。 实践经验表明,在门极电流无振荡,且驱动电阻较小的情况下,电路中实际观察到的电流峰值低于 ÎOUT(1. Order)的 70%。门极电流的减小是由于门极回路中的寄生电感导致的。这个寄生电感在门极充电开始时限制电流的斜率。 因此,在门极回路电流无振荡出现的情况下,对于驱动小阻值门极电阻,我们只需根据如下要求选择驱动器,驱 动器的门极电流至少需提供 0.7 倍的衰减因子: IOUT ,max ≥ 0.7 ⋅ IˆOUT (1.Order) (Eq. 5) 在使用公式 5 时,驱动器输出端的实际峰值电流需要进行实测以作确认。 举例:驱动器电压摆幅为 25V(+15 / -10V),门极电阻为 0.5Ω,IGBT 模块门极内阻为 0.2Ω,则驱动器提供的最 大峰值电流至少应为 25A。 实际应用中的 0.7 倍衰减因子的一个理论依据可以参照章节“最大驱动电流”。 输出电压摆幅的变化 门极驱动器的输出电压摆幅在输出功率范围内会有轻微的变化。这是因为驱动器高压隔离 DC/DC 电源的外特性 有些软所致。最边界的计算值是通过最大电压摆幅得出的。请在预期使用的功率范围内依据驱动器的数据手册得 出电压摆幅,或者是在电路中进行实测。 严格来说,门极电荷量需在特定的门极电压摆幅下进行测量。如果门极电荷量是在较大门极电压摆幅(在低频下) 条件下得出,那么计算得出的驱动功率会比实际驱动功率大(在目标频率下)。如果目标精度低于 5%,实际上没 有必要去考虑这个因素的影响。 最大运行温度 除非另有说明,CONCEPT 驱动器在–40°C 到 85°C 的温度范围内能输出全功率。如果没有关于降额说明,那么 可以认为在全温度范围内都能输出全功率和额定电流。 温度等级是参考无强迫风冷,自然对流的环境温度而言。即使是中级的强迫风冷(通过风扇形成环流)能够强烈地 改善驱动器的热传导—提高驱动器的可靠性。 最大开关频率 某些参数会影响最大可使用开关频率。首先,前面章节所讨论得出的输出功率。第二是门极电阻上的功耗变化。 门极电阻越大,在给定频率下驱动器推动级的功耗就越小。第三是由于高开关频率而影响驱动器的温升。 图 3 所示的是不同门极驱动电阻条件下,最大允许输出功率与开关频率的关系的曲线图。该图只适用某个具体的 驱动器,并不是通用的。 IGBT-Driver.com Page 3 AN-1001 应用指南 图 3.最大允许输出功率与开关频率的关系 最大驱动电流 实际应用中,驱动峰值电流的计算理论来源于以下问题: 在没有振荡的情况下,门极回路中的实际峰值电流能达到多少? 以下分析仅专注于门极电阻的变化而其他参数不变。假设门极回路不发生谐振也就是门极电流的波形不发生振荡。 图 4 所示为门极电路模型,由驱动器的推动级输出端 GH, GL;独立的门极电阻 Rg,on/off 以及相应的杂散电感 Lg,on/off;以及功率器件回路中存在的杂散电感 Lgg 组成。功率器件可以由一个常量电容建模而成。这是一个被简 化的模型,但是在门极充电过程的起始时刻是很合理的。门极充电起始时刻是最相关的阶段,因为充电电流在此 刻达到最大。 VCC GH Driver Rg,on Rg,off L g,on L g,off L gg i(t) GL Cgg 图 4:门极驱动回路模型 门极电流 i(t)由 RLC 回路著名的二阶差分方程决定: Lg ⋅ d 2i(t) dt 2 + Rg ⋅ di(t) dt + i(t) Cgg = 0 (Eq. 6) Lg 与 Rg 分别是开通和关断回路中 L 与 R 的总和。区分振荡与非振荡的边界是 Lg, Cgg 以及 Rg 比例。i(t)不振荡 方程需满足以下阻尼条件: Page 4 INTELLIGENT POWER ELECTRONICS AN-1001 应用指南 Rg (non−osc) ≥ 2 Lg Cgg 得出电流波形不振荡的最小门极电阻计算公式为: (Eq. 7) R = 2 g ,min(non −osc) Lg Cgg (Eq. 8) 因此,在电流不振荡的前提下,最大峰值电流在临界阻尼条件下可以表示为峰值门极电流 Îmax(non-osc): Iˆmax( non − osc ) = 2 ⋅ ∆VGate e Rg,min(non−osc) ≈ 0.74 ⋅ ∆VGate Rg ,min(non−osc) (Eq. 9) 这里 e 是欧拉常数。 请注意公式 9 只在非振荡条件下计算最大电流时是正确的。当 Rg 大于 Rg,min(non-osc)时,峰值驱动电流小于 Îmax(nonosc)。对于大阻值的门极驱动电阻,可以按公式 4 计算门极电流。但是峰值门极电流也总是小于 Îmax(non-osc)。因此, 根据公式 9 来选择驱动器的带载能力(即驱动器最大输出电流)是完全可以的。必须根据门极回路设置及功率器件 来选择合适的 Rg,min(non-osc)。 理论上推导出来的 Îmax(non-osc)的衰减因子 0.74 在实际应用中会受到以下限制进一步减小,如:驱动器的开关速度, 门极回路传输线的属性以及驱动器支撑电容的内部时间常量。因此,实际应用中推荐衰减因子值 0.70 和理论得 出的值 0.74 的效果是一致的。 举例: 如果门极输出电压摆幅 ∆VGate=25V,门极回路的电感量为 20 nH,并假设 IGBT 的输入电容量是 30 nF,那么: R = 2 g ,min(non−osc) 20nH = 1.63Ω 30nF 如果门极电阻阻值小于 1.63Ω,门极电流就会开始震荡。假设这门极驱动上并不存在这个振荡。那么 Rg=1.63Ω 时最大非振荡门极电流为: Iˆmax( non − osc ) ≈ 0.74 ⋅ ∆VGate Rg ,min(non−osc) = 0.74 ⋅ 25V 1.63Ω = 11.4A 对于更大阻值的门极电阻,衰减因子由 0.74 上升至 1.0,相应的门极电流将减小且总小于 Îmax(non-osc)。 法律声明 本应用指南指定的设备并不能应用到所有特定的特性。对于运输,性能以及适用性并不能做出任何保证。 CT-Concept Technologie AG 保留在任何不事先通知的情况下对技术参数及产品规范做出修改的权利。 IGBT-Driver.com Page 5 AN-1001 应用指南 生产商 CT-Concept Technologie AG Intelligent Power Electronics Renferstrasse 15 CH-2504 Biel-Bienne Switzerland Tel. +41 - 32 - 344 47 47 Fax +41 - 32 - 344 47 40 eMail Internet Info@IGBT-Driver.com www.IGBT-Driver.com © 2010 CT-Concept Technologie AG - Switzerland. We reserve the right to make any technical modifications without prior notice. All rights reserved. Version of 2010-01-25 Page 6 INTELLIGENT POWER ELECTRONICS

Top_arrow
回到顶部
EEWORLD下载中心所有资源均来自网友分享,如有侵权,请发送举报邮件到客服邮箱bbs_service@eeworld.com.cn 或通过站内短信息或QQ:273568022联系管理员 高进,我们会尽快处理。