热搜关键词: matlab人工智能算法嵌入式雷达电机驱动

pdf

功率半导体器件基础 ((美)巴利加著;韩郑生,陆江,宋李梅等译;孙宝刚审校)

  • 1星
  • 2024-08-24
  • 44.17MB
  • 需要1积分
  • 33次下载
标签: 功率半导体

功率半导体

《功率半导体器件基础(英文版)》结合作者多年的实践经验,深入讨论了半导体功率器件的物理模型、工作原理、设计原则和应用特性,不仅详细介绍了硅基器件,还讨论了碳化硅器件的特性与设计要求。主要内容包括材料特性与输运物理、击穿电压等。

Preface

Chapter  1  Introduction

1.1  Ideal  and  Typical  Power  Switching  Waveforms

1.2  Ideal  and  Typical  Power  Device  Characteristics

1.3  Unipolar  Power  Devices

1.4  Bipolar  Power  Devices

1.5  MOS-Bipolar  Power  Devices

1.6  Ideal  Drift  Region  for  Unipolar  Power  Devices

1.7  Charge-Coupled  Structures:Ideal  Specific  On-Resistance

1.8  Summary

Problems

References

Chapter  2  Material  Properties  and  Transport  Physics

2.1  Fundamental  Properties

2.1.1  Intrinsic  Carrier  Concentration

2.1.2  Bandgap  Narrowing

2.1.3  Built-in  Potential

2.1.4  Zero-Bias  Depletion  Width

2.1.5  Impact  Ionization  Coefficients

2.1.6  Carrier  Mobility

2.2  Resistivity

2.2.1  Intrinsic  Resistivity

2.2.2  Extrinsic  Resistivity

2.2.3  Neutron  Transmutation  Doping

2.3  Recombination  Lifetime

2.3.1  Shockley-Read-Hall  Recombination

2.3.2  Low-Level  Lifetime

2.3.3  Space-Charge  Generation  Lifetime

2.3.4  Recombination  Level  Optimization

2.3.5  Lifetime  Control

2.3.6  Auger  Recombination

2.4  Ohmic  Contacts

2.5  Summary

Problems

References

Chapter  3  Breakdown  Voltage

3.1  Avalanche  Breakdown

3.1.1  Power  Law  Appromations  for  the  Impact  Ionization  Coefficients

3.1.2  Multiplication  Coefficient

3.2  Abrupt  One-Dimensional  Diode

3.3  Ideal  Specific  On-Resistance

3.4  Abrupt  Punch-Through  Diode

3.5  Linearly  Graded  Junction  Diode

3.6  Edge  Terminations

3.6.1  Planar  Junction  Termination

3.6.2  Planar  Junction  with  Floating  Field  Ring

3.6.3  Planar  Junction  with  Multiple  Floating  Field  Rings

3.6.4  Planar  Junction  with  Field  Plate

3.6.5  Planar  Junction  with  Field  Plates  and  Field  Rings

3.6.6  Bevel  Edge  Terminations

3.6.7  Etch  Terminations

3.6.8  Junction  Termination  Extension

3.7  Open-Base  Transistor  Breakdown

3.7.1  Composite  Bevel  Termination

3.7.2  Double-Positive  Bevel  Termination

3.8  Surface  Passivation

3.9  Summary

Problems

References

Chapter  4  Schottky  Rectifiers

4.1  Power  Schottky  Rectifier  Structure

4.2  Metal-Semiconductor  Contact

4.3  Forward  Conduction

4.4  Reverse  Blocking

4.4.1  Leakage  Current

4.4.2  Schottky  Barrier  Lowering

4.4.3  Prebreakdown  Avalanche  Multiplication

4.4.4  Silicon  Carbide  Rectifiers

4.5  Device  Capacitance

4.6  Thermal  Considerations

4.7  Fundamental  Tradeoff  Analysis

4.8  Device  Technology

4.9  Barrier  Height  Adjustment

4.10  Edge  Terminations

4.11  Summary

Problems

References

Chapter  5  P-i-N  Rectifiers

5.1  One-Dimensional  Structure

5.1.1  Recombination  Current

5.1.2  Low-Level  Injection  Current

5.1.3  High-Level  Injection  Current

5.1.4  Injection  into  the  End  Regions

5.1.5  Carrier-Carrier  Scattering  Effect

5.1.6  Auger  Recombination  Effect

5.1.7  Forward  Conduction  Characteristics

5.2  Silicon  Carbide  P-i-N  Rectifiers

5.3  Reverse  Blocking

5.4  Switching  Performance

5.4.1  Forward  Recovery

5.4.2  Reverse  Recovery

5.5  P-i-N  Rectifier  Structure  with  Buffer  Layer

5.6  Nonpunch-Through  P-i-N  Rectifier  Structure

5.7  P-i-N  Rectifier  Tradeoff  Curves

5.8  Summary

Problems

References

Chapter  6  Power  MOSFETs

6.1  Ideal  Specific  On-Resistance

6.2  Device  Cell  Structure  and  Operation

6.2.1  The  V-MOSFET  Structure

6.2.2  The  VD-MOSFET  Structure

6.2.3  The  U-MOSFET  Structure

6.3  Basic  Device  Characteristics

6.4  Blocking  Voltage

6.4.1  Impact  of  Edge  Termination

6.4.2  Impact  of  Graded  Doping  Profile

6.4.3  Impact  of  Parasitic  Bipolar  Transistor

6.4.4  Impact  of  Cell  Pitch

6.4.5  Impact  of  Gate  Shape

6.4.6  Impact  of  Cell  Surface  Topology

6.5  Forward  Conduction  Characteristics

6.5.1  MOS  Interface  Physics

6.5.2  MOS  Surface  Charge  Analysis

6.5.3  Mamum  Depletion  Width

6.5.4  Threshold  Voltage

6.5.5  Channel  Resistance

6.6  Power  VD-MOSFET  On-Resistance

6.6.1  Source  Contact  Resistance

6.6.2  Source  Region  Resistance

6.6.3  Channel  Resistance

6.6.4  Accumulation  Resistance

6.6.5  JFET  Resistance

6.6.6  Drift  Region  Resistance

6.6.7  N  Substrate  Resistance

6.6.8  Drain  Contact  Resistance

6.6.9  Total  On-Resistance

6.7  Power  VD-MOSFET  Cell  Optimization

6.7.1  Optimization  of  Gate  Electrode  Width

6.7.2  Impact  of  Breakdown  Voltage

6.7.3  Impact  of  Design  Rules

6.7.4  Impact  of  Cell  Topology

6.8  Power  U-MOSFET  On-Resistance

6.8.1  Source  Contact  Resistance

6.8.2  Source  Region  Resistance

6.8.3  Channel  Resistance

6.8.4  Accumulation  Resistance

6.8.5  Drift  Region  Resistance

6.8.6  N  Substrate  Resistance

6.8.7  Drain  Contact  Resistance

6.8.8  Total  On-Resistance

6.9  Power  U-MOSFET  Cell  Optimization

6.9.1  Orthogonal  P-Base  Contact  Structure

6.9.2  Impact  of  Breakdown  Voltage

6.9.3  Ruggedness  Improvement

6.10  Square-Law  Transfer  Characteristics

6.11  Superlinear  Transfer  Characteristics

6.12  Output  Characteristics

6.13  Device  Capacitances

6.13.1  Basic  MOS  Capacitance

6.13.2  Power  VD-MOSFET  Structure  Capacitances

6.13.3  Power  U-MOSFET  Structure  Capacitances

6.13.4  Equivalent  Circuit

6.14  Gate  Charge

6.14.1  Charge  Extraction

6.14.2  Voltage  and  Current  Dependence

6.14.3  VD-MOSFET  vs.  U-MOSFET  Structure

6.14.4  Impact  of  VD-MOSFET  and  U-MOSFET  Cell  Pitch

6.15  Optimization  for  High  Frequency  Operation

6.15.1  Input  Switching  Power  Loss

6.15.2  Output  Switching  Power  Loss

6.15.3  Gate  Propagation  Delay

6.16  Switching  Characteristics

6.16.1  Turn-On  Transient

6.16.2  Turn-Off  Transient

6.16.3  Switching  Power  Losses

6.16.4  Capability

6.17  Safe  Operating  Area

6.17.1  Bipolar  Second  Breakdown

6.17.2  MOS  Second  Breakdown

6.18  Integral  Body  Diode

6.18.1  Reverse  Recovery  Enhancement

6.18.2  Impact  of  Parasitic  Bipolar  Transistor

6.19  High-Temperature  Characteristics

6.19.1  Threshold  Voltage

6.19.2  On-Resistance

6.19.3  Saturation  Transconductance

6.20  Complementary  Devices

6.20.1  The  p-Channel  Structure

6.20.2  On-Resistance

6.20.3  Deep-Trench  Structure

6.21  Silicon  Power  MOSFET  Process  Technology

6.21.1  Planar  VD-MOSFET  Process

6.21.2  Trench  U-MOSFET  Process

6.22  Silicon  Carbide  Devices

6.22.1  The  Baliga-Pair  Configuration

6.22.2  Planar  Power  MOSFET  Structure

6.22.3  Shielded  Planar  Power  MOSFET  Structures

6.22.4  Shielded  Trench-Gate  Power  MOSFET  Structure

6.23  Summary

Problems

References

Chapter  7  Bipolar  Junction  Transistors

7.1  Power  Bipolar  Junction  Transistor  Structure

7.2  Basic  Operating  Principles

7.3  Static  Blocking  Characteristics

7.3.1  Open-Emitter  Breakdown  Voltage

7.3.2  Open-Base  Breakdown  Voltage

7.3.3  Shorted  Base-Emitter  Operation

7.4  Current  Gain

7.4.1  Emitter  Injection  Efficiency

7.4.2  Emitter  Injection  Efficiency  with  Recombination  in  the  Depletion  Region

7.4.3  Emitter  Injection  Efficiency  with  High-Level  Injection  in  the  Base

7.4.4  Base  Transport  Factor

7.4.5  Base  Widening  at  High  Collector  Current  Density

7.5  Emitter  Current  Crowding

7.5.1  Low-Level  Injection  in  the  Base

7.5.2  High-Level  Injection  in  the  Base

7.5.3  Emitter  Geometry

7.6  Output  Characteristics

7.7  On-State  Characteristics

7.7.1  Saturation  Region

7.7.2  Quasisaturation  Region

7.8  Switching  Characteristics

7.8.1  Turn-On  Transition

7.8.2  Turn-Off  Transition

7.9  Safe  Operating  Area

7.9.1  Forward-Biased  Second  Breakdown

7.9.2  Reverse-Biased  Second  Breakdown

7.9.3  Boundary  for  Safe  Operating  Area

7.10  Darlington  Configuration

7.11  Summary

Problems

References

Chapter  8  Thyristors

8.1  Power  Thyristor  Structure  and  Operation

8.2  Blocking  Characteristics

8.2.1  Reverse-Blocking  Capability

8.2.2  Forward-Blocking  Capability

8.2.3  Cathode  Shorting

8.2.4  Cathode  Shorting  Geometry

8.3  On-State  Characteristics

8.3.1  On-State  Operation

8.3.2  Gate-Triggering  Current

8.3.3  Holding  Current

8.4  Switching  Characteristics

8.4.1  Turn-On  Time

8.4.2  Gate  Design

8.4.3  Amplifying  Gate  Design

8.4.4  Capability

8.4.5  Turn-Off  Process

8.5  Light-Activated  Thyristors

8.5.1  Capability

8.5.2  Gate  Region  Design

8.5.3  Optically  Generated  Current  Density

8.5.4  Amplifying  Gate  Design

8.6  Self-Protected  Thyristors

8.6.1  Forward  Breakdown  Protection

8.6.2  Turn-On  Protection

8.7  The  Gate  Turn-Off  Thyristor  Structure

8.7.1  Basic  Structure  and  Operation

8.7.2  One-Dimensional  Turn-Off  Criterion

8.7.3  One-Dimensional  Storage  Time  Analysis

8.7.4  Two-Dimensional  Storage  Time  Model

8.7.5  One-Dimensional  Voltage  Rise  Time  Model

8.7.6  One-Dimensional  Current  Fall  Time  Model

8.7.7  Switching  Energy  Loss

8.7.8  Mamum  Turn-Off  Current

8.7.9  Cell  Design  and  Layout

8.8  The  Triac  Structure

8.8.1  Basic  Structure  and  Operation

8.8.2  Gate-Triggering  Mode  1

8.8.3  Gate-Triggering  Mode  2

8.8.4  Capability

8.9  Summary

Problems

References

Chapter  9  Insulated  Gate  Bipolar  Transistors

9.1  Basic  Device  Structures

9.2  Device  Operation  and  Output  Characteristics

9.3  Device  Equivalent  Circuit

9.4  Blocking  Characteristics

9.4.1  Symmetric  Structure  Forward-Blocking  Capability

9.4.2  Symmetric  Structure  Reverse-Blocking  Capability

9.4.3  Symmetric  Structure  Leakage  Current

9.4.4  Asymmetric  Structure  Forward-Blocking  Capability

9.4.5  Asymmetric  Structure  Reverse-Blocking  Capability

9.4.6  Asymmetric  Structure  Leakage  Current

9.5  On-State  Characteristics

9.5.1  On-State  Model

9.5.2  On-State  Carrier  Distribution:Symmetric  Structure

9.5.3  On-State  Voltage  Drop:Symmetric  Structure

9.5.4  On-State  Carrier  Distribution:Asymmetric  Structure

9.5.5  On-State  Voltage  Drop:Asymmetric  Structure

9.5.6  On-State  Carrier  Distribution:Transparent  Emitter  Structure

9.5.7  On-State  Voltage  Drop:Transparent  Emitter  Structure

9.6  Current  Saturation  Model

9.6.1  Carrier  Distribution:Symmetric  Structure

9.6.2  Output  Characteristics:Symmetric  Structure

9.6.3  Output  Resistance:Symmetric  Structure

9.6.4  Carrier  Distribution:Asymmetric  Structure

9.6.5  Output  Characteristics:Asymmetric  Structure

9.6.6  Output  Resistance:Asymmetric  Structure

9.6.7  Carrier  Distribution:Transparent  Emitter  Structure

9.6.8  Output  Characteristics:Transparent  Emitter  Structure

9.6.9  Output  Resistance:Transparent  Emitter  Structure

9.7  Switching  Characteristics

9.7.1  Turn-On  Physics:Forward  Recovery

9.7.2  Turn-Off  Physics:No-Load  Conditions

9.7.3  Turn-Off  Physics:Resistive  Load

9.7.4  Turn-Off  Physics:Inductive  Load

9.7.5  Energy  Loss  per  Cycle

9.8  Power  Loss  Optimization

9.8.1  Symmetric  Structure

9.8.2  Asymmetric  Structure

9.8.3  Transparent  Emitter  Structure

9.8.4  Comparison  of  Tradeoff  Curves

9.9  Complementary(P-Channel)Structure

9.9.1  On-State  Characteristics

9.9.2  Switching  Characteristics

9.9.3  Power  Loss  Optimization

9.10  Latch-Up  Suppression

9.10.1  Deep  P  Diffusion

9.10.2  Shallow  P  Layer

9.10.3  Reduced  Gate  Ode  Thickness

9.10.4  Bipolar  Current  Bypass

9.10.5  Diverter  Structure

9.10.6  Cell  Topology

9.10.7  Latch-Up  Proof  Structure

9.11  Safe  Operating  Area

9.11.1  Forward-Biased  Safe  Operating  Area

9.11.2  Reverse-Biased  Safe  Operating  Area

9.11.3  Short-Circuit  Safe  Operating  Area

9.12  Trench-Gate  Structure

9.12.1  Blocking  Mode

9.12.2  On-State  Carrier  Distribution

9.12.3  On-State  Voltage  Drop

9.12.4  Switching  Characteristics

9.12.5  Safe  Operating  Area

9.12.6  Modified  Structures

9.13  Blocking  Voltage  Scaling

9.13.1  N-Base  Design

9.13.2  Power  MOSFET  Baseline

9.13.3  On-State  Characteristics

9.13.4  Tradeoff  Curve

9.14  High  Temperature  Operation

9.14.1  On-State  Characteristics

9.14.2  Latch-Up  Characteristics

9.15  Lifetime  Control  Techniques

9.15.1  Electron  Irradiation

9.15.2  Neutron  Irradiation

9.15.3  Helium  Irradiation

9.16  Cell  Optimization

9.16.1  Planar-Gate  Structure

9.16.2  Trench-Gate  Structure

9.17  Reverse  Conducting  Structure

9.18  Summary

Problems

References

Chapter  10  Synopsis

10.1  Typical  H-Bridge  Topology

10.2  Power  Loss  Analysis

10.3  Low  DC  Bus  Voltage  Applications

10.4  Medium  DC  Bus  Voltage  Applications

10.5  High  DC  Bus  Voltage  Applications

10.6  Summary

Problems

References

Index

展开预览

评论

登录/注册

意见反馈

求资源

回顶部

推荐内容

热门活动

热门器件

随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
×