HGTG27N120BN / HGT5A27N120BN
Data Sheet
October 2004
72A, 1200V, NPT Series N-Channel IGBT
The HGTG27N120BN and HGT5A27N120BN are
Non-
Punch Through
(NPT) IGBT design. This is a new member
of the MOS gated high voltage switching IGBT family. IGBTs
combine the best features of MOSFETs and bipolar
transistors. This device has the high input impedance of a
MOSFET and the low on-state conduction loss of a bipolar
transistor.
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential, such as: AC and DC motor
controls, power supplies and drivers for solenoids, relays
and contactors.
Formerly Developmental Type TA49280.
Features
• 72A, 1200V, T
C
= 25
o
C
• 1200V Switching SOA Capability
• Typical Fall Time. . . . . . . . . . . . . . . . 140ns at T
J
= 150
o
C
• Short Circuit Rating
• Low Conduction Loss
•
Thermal Impedance
SPICE Model
Temperature Compensating
SABER™ Model
www.fairchildsemi.com
• Avalanche Rated
Packaging
JEDEC STYLE TO-247
E
C
G
Ordering Information
PART NUMBER
HGTG27N120BN
HGT5A27N120BN
PACKAGE
TO-247
TO-247-ST
BRAND
G27N120BN
27N120BN
COLLECTOR
(BOTTOM SIDE
METAL)
NOTE: When ordering, use the entire part number.
Symbol
C
JEDEC STYLE TO-247-ST
G
COLLECTOR
(BOTTOM SIDE
METAL)
E
C
G
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073
4,598,461
4,682,195
4,803,533
4,888,627
4,417,385
4,605,948
4,684,413
4,809,045
4,890,143
4,430,792
4,620,211
4,694,313
4,809,047
4,901,127
4,443,931
4,631,564
4,717,679
4,810,665
4,904,609
4,466,176
4,639,754
4,743,952
4,823,176
4,933,740
4,516,143
4,639,762
4,783,690
4,837,606
4,963,951
4,532,534
4,641,162
4,794,432
4,860,080
4,969,027
4,587,713
4,644,637
4,801,986
4,883,767
©2004 Fairchild Semiconductor Corporation
HGTG27N120BN / HGT5A27N12BN Rev. C2
HGTG27N120BN / HGT5A27N120BN
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
HGTG27N120BN
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV
CES
Collector Current Continuous
At T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C25
At T
C
= 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C110
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
CM
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GES
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GEM
Switching Safe Operating Area at T
J
= 150
o
C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA
Power Dissipation Total at T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Power Dissipation Derating T
C
> 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forward Voltage Avalanche Energy (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
AV
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Short Circuit Withstand Time (Note 3) at V
GE
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
Short Circuit Withstand Time (Note 3) at V
GE
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
72
34
216
±20
±30
150A at 1200V
500
4.0
135
-55 to 150
260
8
15
W
W/
o
C
mJ
o
C
o
C
UNITS
V
A
A
A
V
V
1200
µs
µs
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Pulse width limited by Max junction temperature.
2. I
CE
= 30A, L = 400µH, T
J
= 125
o
C
3. V
CE(PK)
= 960V, T
J
= 125
o
C, R
G
= 3Ω.
Electrical Specifications
PARAMETER
T
C
= 25
o
C, Unless Otherwise Specified
SYMBOL
BV
CES
BV
ECS
I
CES
TEST CONDITIONS
I
C
= 250µA, V
GE
= 0V
I
C
= 10mA, V
GE
= 0V
V
CE
= 1200V
T
C
= 25
o
C
T
C
= 125
o
C
T
C
= 150
o
C
T
C
= 25
o
C
T
C
= 150
o
C
MIN
1200
15
-
-
-
-
-
6
-
150
-
-
-
-
-
-
-
-
-
-
TYP
-
-
-
300
-
2.45
3.8
6.6
-
-
9.2
270
350
24
20
195
80
2.2
2.7
2.3
MAX
-
-
250
-
4
2.7
4.2
-
±250
-
-
325
420
30
25
240
120
-
3.3
2.8
UNITS
V
V
µA
µA
mA
V
V
V
nA
A
V
nC
nC
ns
ns
ns
ns
mJ
mJ
mJ
Collector to Emitter Breakdown Voltage
Emitter to Collector Breakdown Voltage
Collector to Emitter Leakage Current
Collector to Emitter Saturation Voltage
V
CE(SAT)
V
GE(TH)
I
GES
SSOA
V
GEP
Q
G(ON)
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
I
C
= 27A,
V
GE
= 15V
V
GE
=
±20V
Gate to Emitter Threshold Voltage
Gate to Emitter Leakage Current
Switching SOA
Gate to Emitter Plateau Voltage
On-State Gate Charge
I
C
= 250µA, V
CE
= V
GE
T
J
= 150
o
C, R
G
= 3Ω, V
GE
= 15V,
L = 200µH, V
CE(PK)
= 1200V
I
C
= I
C110
, V
CE
= 0.5 BV
CES
I
C
= 27A,
V
CE
= 600V
V
GE
= 15V
V
GE
= 20V
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 5)
Turn-On Energy (Note 5)
Turn-Off Energy (Note 4)
IGBT and Diode at T
J
= 25
o
C,
I
CE
= 27A,
V
CE
= 960V,
V
GE
= 15V,
R
G
= 3Ω,
L = 1mH,
Test Circuit (Figure 18)
©2004 Fairchild Semiconductor Corporation
HGTG27N120BN / HGT5A27N12BN Rev. C2
HGTG27N120BN / HGT5A27N120BN
Electrical Specifications
PARAMETER
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 5)
Turn-On Energy (Note 5)
Turn-Off Energy (Note 4)
Thermal Resistance Junction To Case
NOTES:
4. Turn-Off Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending
at the point where the collector current equals zero (I
CE
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
5. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E
ON1
is the turn-on loss of the IGBT only. E
ON2
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T
J
as the IGBT. The diode type is specified in
Figure 18.
T
C
= 25
o
C, Unless Otherwise Specified
(Continued)
SYMBOL
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
R
θJC
TEST CONDITIONS
IGBT and Diode at T
J
= 150
o
C,
I
CE
= 27A,
V
CE
= 960V,
V
GE
= 15V,
R
G
= 3Ω,
L = 1mH,
Test Circuit (Figure 18)
MIN
-
-
-
-
-
-
-
-
TYP
22
20
220
140
2.7
5.1
3.4
-
MAX
28
25
280
200
-
6.5
4.2
0.25
UNITS
ns
ns
ns
ns
mJ
mJ
mJ
o
C/W
Typical Performance Curves
80
I
CE
, DC COLLECTOR CURRENT (A)
Unless Otherwise Specified
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
200
T
J
= 150
o
C, R
G
= 3Ω, V
GE
= 15V, L = 200µH
160
V
GE
= 15V
70
60
50
40
30
20
10
0
25
50
75
100
125
150
120
80
40
0
0
200
400
600
800
1000
1200
1400
T
C
, CASE TEMPERATURE (
o
C)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 1. DC COLLECTOR CURRENT vs CASE
TEMPERATURE
T
J
= 150
o
C, R
G
= 3Ω, L = 1mH, V
CE
= 960V
T
C
100
50
75
o
C
75
o
C
V
GE
15V
12V
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA
t
SC
, SHORT CIRCUIT WITHSTAND TIME (µs)
f
MAX
, OPERATING FREQUENCY (kHz)
V
CE
= 960V, R
G
= 3Ω, T
J
= 125
o
C
I
SC
400
40
30
300
10
f
MAX1
= 0.05 / (t
d(OFF)I
+ t
d(ON)I
)
f
MAX2
= (P
D
- P
C
) / (E
ON2
+ E
OFF
)
P
C
= CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
R
ØJC
= 0.25
o
C/W, SEE NOTES
1
5
10
20
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
60
20
t
SC
10
200
T
C
110
o
C
110
o
C
V
GE
15V
12V
100
0
11
12
13
14
15
0
16
V
GE
, GATE TO EMITTER VOLTAGE (V)
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME
©2004 Fairchild Semiconductor Corporation
HGTG27N120BN / HGT5A27N12BN Rev. C2
I
SC
, PEAK SHORT CIRCUIT CURRENT (A)
50
500
HGTG27N120BN / HGT5A27N120BN
Typical Performance Curves
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
140
120
100
T
C
= -55
o
C
80
60
40
20
0
T
C
= 25
o
C
DUTY CYCLE <0.5%, V
GE
= 12V
250µs PULSE TEST
Unless Otherwise Specified
(Continued)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
200
DUTY CYCLE <0.5%, V
GE
= 15V
250µs PULSE TEST
160
T
C
= 150
o
C
120
T
C
= -55
o
C
80
T
C
= 25
o
C
T
C
= 150
o
C
40
0
0
2
4
6
8
10
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
0
2
4
6
8
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
10
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE
15.0
12.5
T
J
= 150
o
C, V
GE
= 12V, V
GE
= 15V
10.0
7.5
5.0
2.5
T
J
= 25
o
C, V
GE
= 12V, V
GE
= 15V
0
5
10
15
20
25
30
35
40
45
50
55
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
E
OFF
, TURN-OFF ENERGY LOSS (mJ)
E
ON2
, TURN-ON ENERGY LOSS (mJ)
R
G
= 3Ω, L = 1mH, V
CE
= 960V
6
R
G
= 3Ω, L = 1mH, V
CE
= 960V
5
T
J
= 150
o
C, V
GE
= 12V OR 15V
4
3
2
1
0
T
J
= 25
o
C, V
GE
= 12V OR 15V
5
10
15
20
25
30
35
40
45
50
55
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
40
R
G
= 3Ω, L = 1mH, V
CE
= 960V
t
dI
, TURN-ON DELAY TIME (ns)
80
R
G
= 3Ω, L = 1mH, V
CE
= 960V
70
35
t
rI
, RISE TIME (ns)
60
50
40
30
20
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 15V
15
5
10
15
20
25
30
35
40
45
50
55
60
10
0
5
10
15
20
25
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 15V
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 12V
30
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 12V
25
20
30
35
40
45
50
55
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
©2004 Fairchild Semiconductor Corporation
HGTG27N120BN / HGT5A27N12BN Rev. C2
HGTG27N120BN / HGT5A27N120BN
Typical Performance Curves
400
t
d(OFF)I
, TURN-OFF DELAY TIME (ns)
R
G
= 3Ω, L = 1mH, V
CE
= 960V
350
t
fI
, FALL TIME (ns)
V
GE
= 12V, V
GE
= 15V, T
J
= 150
o
C
300
V
GE
= 12V, V
GE
= 15V, T
J
= 25
o
C
250
Unless Otherwise Specified
(Continued)
250
R
G
= 3Ω, L = 1mH, V
CE
= 960V
200
150
T
J
= 150
o
C, V
GE
= 12V OR 15V
100
200
50
T
J
= 25
o
C, V
GE
= 12V OR 15V
150
5
10
15
20
25
30
35
40
45
50
55
60
0
5
10
15
20
25
30
35
40
45
50
55
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER
CURRENT
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
350
300
250
200
150
100
50
0
V
GE
, GATE TO EMITTER VOLTAGE (V)
DUTY CYCLE <0.5%, V
CE
= 20V
250µs PULSE TEST
16
14
I
G(REF)
= 2mA, R
L
= 22.2Ω, T
C
= 25
o
C
V
CE
= 1200V
12
10
8
6
4
2
0
0
50
100
150
200
250
300
V
CE
= 400V
V
CE
= 800V
T
C
= 25
o
C
T
C
= 150
o
C
T
C
= -55
o
C
7
8
12
13
11
V
GE
, GATE TO EMITTER VOLTAGE (V)
9
10
14
15
Q
G
, GATE CHARGE (nC)
FIGURE 13. TRANSFER CHARACTERISTIC
FIGURE 14. GATE CHARGE WAVEFORMS
10
FREQUENCY = 1MHz
8
C
IES
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
40
DUTY CYCLE <0.5%, T
C
= 110
o
C
35 250µs PULSE TEST
30
25
20
15
10
5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
GE
= 15V
V
GE
= 10V
C, CAPACITANCE (nF)
6
4
C
RES
2
C
OES
0
0
5
10
15
20
25
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER
VOLTAGE
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE
©2004 Fairchild Semiconductor Corporation
HGTG27N120BN / HGT5A27N12BN Rev. C2
评论