将线性网络应用于一类带扰动的线性对象,提出了一种基于该线性网络的自适应逆控制方案,该方案由辨识器、控制器和扰动消除器三部分构成,合理选择三个线性网络的输入,通过辨识器的在线学习,同时更新控制器和扰动消除器的权值,文章研究了该方案的收敛性和方案的跟踪性。根据可变步长权值收敛条件,设计了输入解相关变步长LMS算法调整辨识器权值方法。通过仿真研究了逆控制方法的有效性。关键词:线性网络;LMS 算法;自适应逆控制Abstract:The linear neural network is applied of a class linear plant with Disturbance, and aLNN-based adaptive inverse control scheme is presented. The control scheme is composed ofthree parts: identifier, controller and disturbance canceller. Three LLN’s respectively selectedinputs are so reasonable that when on-line training is only in the identifier, three networks’ weight values are updated at the same time. The scheme’s weight convergence is expatiated, and a desired reference can be tracked by the plant output. In according to the weight convergence condition of the variable step size least mean square algorithm, a new input-decorrelated variable step size least mean square algorithm is presented to make the scheme be applied in practice. A simulation examples are also presented to evaluate the scheme.Key words:Linear Neural Network(LNN); Least Mean Square(LMS) Algorithm; AdaptiveInverse Control(AIC)
猜您喜欢
推荐内容
开源项目推荐 更多
热门活动
热门器件
用户搜过
随便看看
热门下载
热门标签
评论