热搜关键词: matlablinuxSLAM开关电源自动驾驶

pdf

使用4225-PMU进行低电流脉冲I-V测量 脉冲测量单元和4225-RPM远程前置放大器开关模块

  • 1星
  • 2021-03-30
  • 1.26MB
  • 需要1积分
  • 16次下载
标签: 4225-PMU

4225-PMU

低电流

低电流

脉冲

脉冲

远程

远程

开关模块

开关模块

使用4225-PMU进行低电流脉冲I-V测量  脉冲测量单元和4225-RPM远程前置放大器开关模块

Making Low Current Pulse I-V
Measurements with the 4225-PMU
Pulse Measure Unit and 4225-RPM
Remote/Preamplifier Switch Modules
––
APPLICATION NOTE
Making Low Current Pulse I-V Measurements with the
4225-PMU Pulse Measure Unit and 4225-RPM Remote/Preamplifier Switch Modules
APPLICATION NOTE
Introduction
The ability to source high-speed voltage pulses and
simultaneously measure low current simultaneously is
important to many semiconductor device applications. Using
pulsed I-V rather than DC signals to characterize devices
allows eliminating or studying the effects of self-heating or
to minimize current drifting in measurements due to trapped
charge. Transient I-V measurements allow an engineer or
scientist to capture a current or voltage waveform in the time
domain or study a dynamic test circuit.
The 4200A-SCS Parameter Analyzer with the 4225-PMU
Pulse Measure Unit option supports making ultra-fast I-V
measurements. Adding 4225-RPM Remote Preamplifier/
Switch Modules (Figure
1)
expands the current ranges of the
PMU down to 100 nA full scale to make sensitive pulsed low
current measurements.
Given that semiconductor device measurements often require
measuring low currents, using the PMU with two RPMs can
provide these capabilities:
• Two independent or synchronized channels of pulsed I-V
source and measure
• A wide current measurement range, from ± 800 mA down
to ± 100 nA full scale
• Autoranging over all current ranges – ideal for I-V tests
on devices with a wide range of current response,
such as diodes
Figure 1. 4225-RPM Remote Preamplifier/Switch Modules.
Figure 2. Offset current for the 100 nA range at 0 V (average 10
discreet pulses)
• The ability to switch between DC I-V, C-V, and pulsed I-V
• Built-in interactive software for easy test configuration
and execution
This application note defines ultra-fast I-V, explains the
fundamental limits of current measurements as a function of
time and measure window, and describes the techniques for
making ultra-fast I-V low current measurements.
The graph in Figure
2
illustrates the low current capability
of the PMU with RPMs. In this graph the open circuit
offset current is measured as a function of time at 0 V. The
measurements were made on the 100 nA range with a pulse
width of 800 µs and averaging 10 pulses.
2 | WWW.TEK.COM
Making Low Current Pulse I-V Measurements with the
4225-PMU Pulse Measure Unit and 4225-RPM Remote/Preamplifier Switch Modules
APPLICATION NOTE
What is Ultra-Fast I-V?
The 4225-PMU can perform three types of ultra-fast I-V tests: pulsed I-V, transient I-V, and pulsed sourcing. These three modes
are illustrated in
Figure 3.
Samples
Sequence A
Voltage
Voltage
V2
V3
5
V4
1
V1
2
3
4
Time
Measure Window
Time
Sequence A De nition
Segment Start V Stop V Duration
1
V1
V2
T1
2
V2
V2
T2
3
V2
V3
T3
4
V3
V3
T4
5
V3
V4
T5
Pulsed I-V
Pulse/Measure with DC-like results
Train, Sweep, Step modes
General device characterization
Transient I-V
Time-based I and V measurements
Waveform capture
Dynamic device testing
Pulsed Sourcing
Multi-level pulsing
Arbitrary waveform generator
AC stress testing with measure
Figure 3. The 4225-PMU Ultra-Fast I-V Module’s three modes of operation.
Pulsed I-V
refers to any test with a pulsed source and
a corresponding high speed, time-based measurement
that provides DC-like results. The current and/or voltage
measurement is an average of readings taken in a
measurement window. This average of readings is called the
“spot mean.”
Transient I-V,
or waveform capture, is a time-based current
and/or voltage measurement that is typically the capture of
a pulsed waveform. A transient test is typically a single pulse
waveform that is used to study time-varying parameters.
Pulsed Sourcing
involves outputting user-defined two-level
or multi-level pulses using the built-in Segment ARB
®
function
or outputting an arbitrarily defined waveform.
Fundamental Limits of High-Speed
Low Current Measurements
The fundamental limit to a current measurement is Johnson-
Nyquist noise in the source resistance. In any resistance,
thermal energy produces motion of charged particles. This
charge movement results in noise which is also called thermal
noise. The power (P) available from this motion is given by:
P = 4kTB
where:
k
= Boltzmann’s constant (1.38 x 10
–23
J/K)
T
= absolute temperature (K)
B
= noise bandwidth (Hz)
Johnson current noise (I) developed by a resistor (R) is:
I
=
4k
T R B
R
amperes, rms
WWW.TEK.COM | 3
Making Low Current Pulse I-V Measurements with the
4225-PMU Pulse Measure Unit and 4225-RPM Remote/Preamplifier Switch Modules
APPLICATION NOTE
All real current sources have internal resistance, therefore, they exhibit Johnson
noise.
Figure 4
shows the current noise generated by various resistances vs.
measurement window in time at room temperature (T = 290K). The measurement
window, in seconds (s), is defined in terms of the bandwidth (B) by:
1
B
=
(2 ×
Measure Window)
High Impedance
Measurement Techniques
To make optimal low current and high
impedance pulsed I-V measurements
you must use the appropriate
measurement techniques which are
outlined in the following sections.
If an application requires a current measurement that is below the line representing
the DUT resistance, it will not be possible to make the measurement due to Johnson
noise in the resistor. Reducing the temperature of the source resistance will help to
reduce the noise levels.
Johnson-Nyquist Noise vs. Measure Window
1E–7
1E–8
Correct for Current
Offsets Using
Connection Compensation
You can easily correct for offset current
errors caused by connections and
cable length between the PMU and the
device under test by using the built-
in connection compensation feature.
When connection compensation is
Current RMS Noise (A)
1E–9
1E–10
1k
1E–11
1E–12
1E–13
1E–14
1E–9
1E–8
1E–7
1E–6
1E–5
1E–4
1E–3
1E–2
10 k
100 k
1M
10 M
100 M
1G
10 G
enabled, the measured offset current
values are factored into each current
measurement. The PMU offset current
correction is a two-part process:
1.
Acquire the current offset on each
current range with an open circuit.
Probes must be up or the device
removed from the test fixture during
the compensation. In Clarius, go
to the Tools menu at the top of the
screen and select PMU Connection
Compensation. Select Measure
Offset and the error current on all
ranges on both channels will be
measured and stored.
2.
Once the offset correction data is
acquired, enable the connection
compensation within a test. From
the Configure view within the
test, go to the Terminal Settings
tab and select Advanced. In
the upper-right corner, select
Offset Current Correction. Stored
compensation measurements will
be automatically subtracted from
subsequent readings.
Measure Window (s)
Figure 4. Current noise vs. measure window at various source resistances.
4 | WWW.TEK.COM
Making Low Current Pulse I-V Measurements with the
4225-PMU Pulse Measure Unit and 4225-RPM Remote/Preamplifier Switch Modules
APPLICATION NOTE
Figure 5
illustrates an example of pulsed I-V curves taken
with and without offset correction applied.
When CH1 sources the voltage, some of the current flows to
the device (I
DUT
) and some of the current flows through the
leakage resistance and capacitance of the cable (I
LEAK
). The
measurement includes both the current of the device and the
leakage current of the cable (I
MEAS
= I
DUT
+ I
LEAK
).
CH2 is set to output 0 V so that both the center conductor
and outside shield of the cable are at the same potential,
0 V. As a result, no leakage flows through the cable. The
measured current is the device current (I
MEAS
= I
DUT
). Multiply
the current of CH2 by (-1) using the Formulator because the
current will be the opposite polarity. The current measured by
CH2, not CH1, is used in the high impedance measurement.
This method allows for faster measurements (because there’s
need to wait for CH1 to settle) and avoids errors due to
leakage of the cable and long settling times.
Figure 5. Pulsed I-V sweeps of 1 GΩ resistor generated with and
without offset correction.
I
DUT
5V
0V
Coax Cable
DUT=HiR
I
DUT
0V
0V
For optimum performance, repeat the connection
compensation whenever the connection setup is changed or
disturbed, including changes in temperature and humidity.
Use the “Low Side” Measurement Technique
The “low side” measurement technique is used to make
ultra-fast high impedance measurements. With this method,
illustrated in
Figure 6,
CH1 is used to source voltage only and
CH2 is used to measure current only.
PMU CH1
Source V
I
MEAS
= I
DUT
+ I
LEAK
PMU CH2
Measure I
Set V=0V
I
MEAS
= I
DUT
Figure 6. “Low side” high resistance ultra-fast measurement
technique.
WWW.TEK.COM | 5
展开预览

文档解析

这篇应用笔记详细介绍了如何使用Tektronix公司的4225-PMU脉冲测量单元和4225-RPM远程/前置放大器开关模块进行低电流脉冲I-V测量。在半导体设备测试中,脉冲I-V测量技术允许在消除自热效应或减少由于电荷捕获引起的电流漂移的同时,对设备进行动态测试。4200A-SCS参数分析仪配合4225-PMU,能够进行超快速的I-V测量,而4225-RPM模块的加入则扩展了测量范围至100nA全量程,以满足对敏感脉冲低电流测量的需求。

文章解释了脉冲I-V测量的基本概念,包括瞬态I-V测量和脉冲源,以及如何根据时间窗口和测量窗口来理解电流测量的基本限制。此外,还介绍了如何使用连接补偿来校正电流偏移,以及如何使用“低侧”测量技术来优化高阻抗测量。为了减少噪声,建议使用屏蔽、平均读数和系统预热等技术。最后,文章强调了了解低电流测量的基本限制和使用正确技术的重要性,以实现高速低电流测量。

猜您喜欢

推荐帖子 最新更新时间:2024-09-20 04:58

【Nucleo心得】+ RCC时钟
本帖最后由 强仔00001 于 2014-11-26 01:40 编辑    今天我跟大家探讨一下STM32L053R8的时钟系统。今天看芯片的参考手册,发现STM32L053R8的时钟系统很强大也比较复杂。在STM32L053R8这款芯片中的时钟源选择有5个,如下图:分别是:• HSI16 (high-speed internal) oscillator clock• HSE (high-s
强仔00001 stm32/stm8
【MangoTree】Atom-RIO的OEM版,适用于批量部署,无缝支持LabVIEW FPGA编程开发
【MangoTree】Atom-RIO的OEM版,适用于批量部署,无缝支持LabVIEW FPGA编程开发 Atom-RIO的OEM版,便于Atom-RIO的批量部署。高性价比。 程序写入后,可脱离CPU独立工作 I/O,支持2*25pin连接器。共80个用户控制DIO Spartan-6 LX75 FPGA (选配LX150),用于自定义I/O定时、控制和处理 支持PCIe DMA,C
MangoTree EE_FPGA学习乐园
MSP430驱动74HC595
用MSP430驱动74HC595,下面是主程序,P2.0是串行数据输入,P2.1是RCK,P2.2是SCK,假设的串行输入为01010101,为什么在HC595的并行输出几个脚上测不到电压呢,是串行数据没进去还是并行数据没出来呢? void main() {   WDTCTL=WDTPW+WDTHOLD;   Clock_Init();   unsigned int i = 8;   
jinger0311 微控制器 MCU
浅谈进程与线程
进程间的通信包括有管道(无名管道和有名管道)、消息队列、共享内存、信号量、信号、套接字。线程间资源保护机制包括:无名信号量、互斥锁、条件变量。线程是指进程内的一个执行单元,也是进程内的可调度实体.与进程的区别如下: (1)地址空间:进程内的一个执行单元;进程至少有一个线程;它们共享进程的地址空间;而进程有自己独立的地址空间; (2)资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进
Jacktang DSP 与 ARM 处理器
使用CPX制作的光刀和光剑
来自: https://blog.adafruit.com/2019/09/18/new-guide-magical-cardboard-craft-obsidian-sword-with-cpx-makecode/ https://blog.adafruit.com/2019/09/17/icymi-python-snakes-its-way-to-the-stm32-serpe
dcexpert MicroPython开源版块
模拟滤波器与规范分析
本帖最后由 dontium 于 2015-1-23 11:23 编辑 如果您需要降低信号链中的噪声,有源滤波器就非常不错。但是,滤波器的电阻器及放大器向信号路径中增加的固有噪声如何处理?我们都知道有源滤波器的用途。例如,低通滤波器可用来降低高于设计频率的噪声。您可使用高通滤波器消除低频率信号与系统噪声。此外,可在欠采样应用中使用带通滤波器。最后,带阻滤波器可阻止市电频率(例如 50 或 60Hz
wstt 模拟与混合信号
无人驾驶还有多远?从Atmel Avant Car开始
      无人驾驶可能还太早,但是我们可以先接触一些触手可及的先进电子技术!     未来3~5年,无论是中国市场还是全球市场,智能化对整个产业来说是非常好的机会。很多高端汽车的功能正在逐步迁移至初级和中级汽车应用,包括辅助驾驶、抬头显示等,未来车厂差异化的地方很多来自于人机交互和使用体验,汽车从以前我们认为是纯机械的产品,慢慢会转化成机械+IT的产品,因此处理器在此是非常有潜力的。
DreamerJane Microchip MCU
[忙里偷闲学习ufun_11]芯片唯一ID读取——可以做加密使用
源代码还是在前一节中下载。[忙里偷闲学习ufun_8]uarst1串口——调试小技巧 https://bbs.eeworld.com.cn/forum.php?mod=viewthread&tid=497317&extra=page%3D1%26filter%3Dtypeid%26typeid%3D440 代码超简单 就是读取固定地址的值。 void Get_ChipID(void) {
boming stm32/stm8

评论

登录/注册

意见反馈

求资源

回顶部

推荐内容

热门活动

热门器件

随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
×