该文把局部三值模式(Local Ternary Patterns, LTP)纹理特征引入Mean Shift 跟踪算法,提出了基于多特征的Mean Shift 人脸跟踪算法以解决Mean shift 跟踪算法的鲁棒性问题。通过对LTP 纹理特征的分析、研究,提出了一个LTP 关键纹理模型,既增强了目标的关键纹理信息,又简化了LTP 纹理模型。在此基础上,提出一种基于LTP 关键纹理特征和肤色特征的Mean Shift 人脸跟踪算法,有效地解决了Mean Shift 算法的鲁棒性问题。为进一步提高对快速运动目标的跟踪速度和跟踪性能,该文引入了卡尔曼滤波器对目标进行预测。实验结果表明,该文的算法在目标定位的准确性和跟踪性能上比Mean Shift 算法均有明显的提高
猜您喜欢
推荐内容
开源项目推荐 更多
热门活动
热门器件
用户搜过
随便看看
热门下载
热门文章
热门标签
评论