应用仿人智能鲁棒性高、能对付难控对象的控制特点,结合模糊RBF 神经网络控制技术,提出仿人模糊神经网络控制方法,对PID 控制器参数进行优化调节。该方法采用仿人智能的多模态控制思想,对PID 控制器的模式进行选择。对非线性系统控制的仿真结果表明,加入仿人控制后,系统从响应速度和上升时间上均有明显提高,具有良好的控制效果。关键词:仿人智能;模糊控制;RBF 神经网络; PID 控制;仿真The Design And Implementation of Human-Simulated and Fuzzy Neural Network ControllerZHANG Hong (Department of Information and Control;Xi’an University of Post and Telecommunications;Xi’an 710061;china) Abstract: Human-Simulated Fuzzy Neural Network Control method is proposed, which applies with the performance of the high robust and the performance of dealing with the objects with dificulty of controlling , combines with fuzzy RBF Neural Network control technology, optimize the parameters of PID controller. The method uses multi-mode control thought of Human-Simulated intelligence, select the mode of PID controller .Simulation results in nonlinear system shows that the control performance of Human-Simulated fuzzy RBF Neural Network is better than the fuzzy RBF Neural Network .Key words:Human-Simulated intelligence; Fuzzy control; RBF Neural Network ;PIDcontrol;Simulation
猜您喜欢
推荐内容
开源项目推荐 更多
热门活动
热门器件
用户搜过
随便看看
热门下载
热门文章
热门标签
评论