神经网络控制算法作为一种比较成熟的智能控制算法,在空空导弹的理论研究中也得到了很多应用,但它的实际应用通常是通过软件实现的,而软件实现是串行执行指令,运行速度慢,可靠性低,很难满足实际导弹制导系统实时性的要求。控制算法硬件实现的最大特点就是可提高控制算法的实时运算速度和可靠性。本课题针对导弹制导系统,以FPGA为硬件平台研究神经网络控制算法的硬件实现。本文首先对BP神经网络算法思想进行了深入分析,并对BP网络的各个阶段进行了理论推导,最后对BP神经网络PID飞行控制算法进行了研究和总结,为硬件实现提供了理论基础。基于对上述理论的深入研究和分析,本文提出了一种适合FPGA实现该神经网络控制算法的硬件实现模型。在该模型中,神经网络各层之间采用串行执行数据方式,层间则采用并行运行方式,可有效提高系统的运算速度。由于模块化、层次化的自顶向下的模块化设计方法可有效减少错误的产生,是设计复杂大规模系统的理想设计方法。本文采用了此设计方法,通过把系统模块化,对各个子模块分别用VHDL硬件描述语言进行描述,并基于QUARTUS II软件开发平台进行综合和仿真,直到达到研究设计要求。最后将仿真程序源代码下载配置到具体的Cyclone II系列EP2C70 FPGA芯片中,应用于某实际导弹控制系统的研究。理论分析和实验结果表明该神经网络飞行控制算法的FPGA硬件实现是有效可行的,可满足系统实时性的要求,为制导系统的实际工程实现提供了基础。
猜您喜欢
推荐内容
开源项目推荐 更多
热门活动
热门器件
用户搜过
随便看看
热门下载
热门文章
热门标签
评论