作为人工智能领域的研究重点,机器学习近年衍生出了各式各样的智能化应用,例如图像判别、语音助手和智能翻译等。尤其是图像判别技术已在各行业进行了大量的研究和实践,城市领域也不例外,这很大程度上是因为深度学习的卷积神经网络在计算机视觉领域取得了令人瞩目的成果。这也使得训练计算机判别建筑风格、城市肌理等城市特征的准确率大幅提升。本研究立足于深度学习图像判别技术,探索卷积神经网络在城市感知方面的应用。鉴于直接利用现成开源的带标签图像数据集训练个性化图像判别模型可能带来局限性和误差,本研究探索了从收集数据到自定义训练数据集,到搭建满足特定需求的图像判别模型的整体流程,并通过三个实验案例 :城市风貌分析、城市问题侦测和城市肌理评估,阐明深度学习在城市感知和城市规划中的应用可能性及潜力。
猜您喜欢
评论